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Abstract

The aim of this paper is to develop a theory of finite transformation monoids and
in particular to study primitive transformation monoids. We introduce the notion
of orbitals and orbital digraphs for transformation monoids and prove a monoid
version of D. Higman’s celebrated theorem characterizing primitivity in terms of
connectedness of orbital digraphs.

A thorough study of the module (or representation) associated to a transfor-
mation monoid is initiated. In particular, we compute the projective cover of the
transformation module over a field of characteristic zero in the case of a transi-
tive transformation or partial transformation monoid. Applications of probability
theory and Markov chains to transformation monoids are also considered and an
ergodic theorem is proved in this context. In particular, we obtain a generalization
of a lemma of P. Neumann, from the theory of synchronizing groups, concerning the
partition associated to a transformation of minimal rank.
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1 Introduction

The principal task here is to initiate a theory of finite transformation monoids that is
similar in spirit to the theory of finite permutation groups that can be found, for example,
in [26, 18]. I say similar in spirit because attempting to study transformation monoids
by analogy with permutation groups is like trying to study finite dimensional algebras
by analogy with semisimple algebras. In fact, the analogy between finite transformation
monoids and finite dimensional algebras is quite apt, as the theory will show. In particular,
an analogue of Green’s theory [33, Chapter 6] of induction and restriction functors relating
an algebraA with algebras of the form eAe with e idempotent plays a key role in this paper,
whereas there is no such theory in permutation groups as there is but one idempotent.

There are many worthy books that touch upon — or even focus on — transformation
monoids [22,34,36,30,46], as well as a vast number of research articles on the subject. But
most papers in the literature focus on specific transformation monoids (such as the full
transformation monoid, the symmetric inverse monoid, the monoid of order preserving
transformations, the monoid of all partial transformations, etc.) and on combinatorial
issues, e.g., generalizations of cycle notation, computation of the submonoid generated by
the idempotents [35], computation of generators and relations, computation of Green’s
relations, construction of maximal submonoids satisfying certain properties, etc.

The only existing theory of finite transformation and partial transformation monoids
as a general object is the Krohn-Rhodes wreath product decomposition theory [41, 42,
43], whose foundations were laid out in the book of Eilenberg [28]. See also [57] for a
modern presentation of the Krohn-Rhodes theory, but with a focus on abstract rather
than transformation semigroups.

The Krohn-Rhodes approach is very powerful, and in particular has been very success-
ful in dealing with problems in automata theory, especially those involving classes of lan-
guages. However, the philosophy of Krohn-Rhodes is that the task of classifying monoids
(or transformation monoids) up to isomorphism is hopeless and not worthwhile. Instead,
one uses a varietal approach [28] similar in spirit to the theory of varieties of groups [51].
But there are some natural problems in automata theory where one really has to stick with
a given transformation monoid and cannot perform the kind of decompositions underlying
the Krohn-Rhodes theory. One such problem is the Černý conjecture, which has a vast
literature [53, 54, 7, 27, 21, 5, 61, 62, 1, 73, 72, 3, 39, 4, 59, 60, 69, 38, 74, 10, 19, 20, 2, 9, 63, 68].
In the language of transformation monoids, it says that if X is a set of maps on n letters
such that some product of elements of X is a constant map, then there is a product of
length at most (n−1)2 that is a constant map. The best known upper bound is cubic [55],
whereas it is known that one cannot do better than (n− 1)2 [21].

Markov chains can often be fruitfully studied via random mappings: one has a trans-
formation monoid M on the state set Ω and a probability P on M . One randomly chooses
an element of M according to P and has it act on Ω. A theory of transformation mon-
oids, in particular of the associated matrix representation, can then be used to analyze
the Markov chain. This approach has been adopted with great success by Bidigare, Han-
lon and Rockmore [12], Diaconis and Brown [17, 15, 16] and Björner [14, 13]; see also my
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papers [66, 67]. This is another situation to which the Krohn-Rhodes theory does not
seem to apply.

This paper began as an attempt to systematize and develop some of the ideas that
have been used by various authors while working on the Černý conjecture. The end result
is the beginnings of a theory of transformation monoids. My hope is that the theory
initiated here will lead toward some progress on the Černý conjecture. However, it is also
my intent to interest combinatorialists, group theorists and representation theorists in
transformation monoids and convince them that there is quite a bit of structure there. For
this reason I have done my best not to assume any background knowledge in semigroup
theory and to avoid usage of certain semigroup theoretic notions and results, such as
Green’s relations [32] and Rees’s theorem [22], that are not known to the general public.
In particular, many standard results in semigroup theory are proved here in a novel way,
often using transformation monoid ideas and in particular an analogue of Schur’s lemma.

The first part of the paper is intended to systemize the foundations of the theory of
transformation monoids. A certain amount of what is here should be considered folklore,
although probably some bits are new. I have tried to indicate what I believe to be folklore
or at least known to the cognoscenti. In particular, some of Sections 3 and 4 can be
viewed as a specialization of Schützenberger’s theory of unambiguous matrix monoids [11].
The main new part here is the generalization of Green’s theory [33] from the context of
modules to transformation monoids. A generalization of Green’s results to semirings,
with applications to the representation theory of finite semigroups over semirings, can be
found in [37].

The second part of the paper is a first step in the program of understanding primitive
transformation monoids. In part, they can be understood in terms of primitive groups
in much the same way that irreducible representations of monoids can be understood in
terms of irreducible representations of groups via Green’s theory [33, 31] and the theory
of Munn and Ponizovsky [22, Chapter 5]. The tools of orbitals and orbital digraphs are
introduced, generalizing the classical theory from permutation groups [26, 18].

The third part of the paper commences a detailed study of the modules associated to a
transformation monoid. In particular, the projective cover of the transformation module
is computed for the case of a transitive action by partial or total transformations. The
paper ends with applications of Markov chains to the study of transformation semigroups.

2 Actions of monoids on sets

Before turning to transformation monoids, i.e., monoids acting faithfully on sets, we must
deal with some “abstract nonsense” type preliminaries concerning monoid actions on sets
and formalize notation and terminology.

2.1 M-sets

Fix a monoid M . A (right) action of M on a set Ω is, as usual, a map Ω ×M −→ Ω,
written (α,m) 7→ αm, satisfying, for all α ∈ Ω, m,n ∈M ,
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1. α1 = α;

2. (αm)n = α(mn).

Equivalently, an action is a homomorphism M −→ TΩ, where TΩ is the monoid of all
self-maps of Ω acting on the right. In this case, we say that Ω is an M-set. The action
is faithful if the corresponding morphism is injective. Strictly speaking, there is a unique
action of M on the empty set, but in this paper we tacitly assume that we are dealing
only with actions on non-empty sets.

A morphism f : Ω −→ Λ of M-sets is a map such that f(αm) = f(α)m for all α ∈ Ω
and m ∈ M . The set of morphisms from Ω to Λ is denoted homM(Ω,Λ). The category
of right M-sets will be denoted SetM

op

following category theoretic notation for presheaf
categories [47].

The M-set obtained by considering the right action of M on itself by right multipli-
cation is called the regular M-set. It is a special case of a free M-set. An M-set Ω is free
on a set X if there is a map ι : X −→ M so that given a function g : X −→ Λ with Λ an
M-set, there is a unique morphism of M-sets f : Ω −→ Λ such that

X
ι

//

g
  

@@
@@

@@
@@

Ω

f

��

Λ

commutes. The free M-set on X exists and can explicitly be realized as X×M where the
action is given by (x,m′)m = (x,m′m) and the morphism ι is x 7→ (x, 1). The functor
X 7→ X × M from Set to SetM

op

is left adjoint to the forgetful functor. In concrete
terms, an M-set Ω is free on a subset X ⊆ Ω if and only if, for all α ∈ Ω, there exists a
unique x ∈ X and m ∈ M such that α = xm. We call X a basis for the M-set Ω. Note
that if M is a group, then Ω is free if and only if M acts freely on Ω, i.e., αm = α, for
some α ∈ Ω, implies m = 1. In this case, any transversal to the M-orbits is a basis.

Group actions are to undirected graphs as monoid actions are to directed graphs
(digraphs). Just as a digraph has both weak components and strong components, the
same is true for monoid actions. Let Ω be anM-set. A non-empty subset ∆ isM-invariant
if ∆M ⊆ ∆; we do not consider the empty set as an M-invariant subset. An M-invariant
subset of the form αM is called cyclic. The cyclic sub-M-sets form a poset Pos(Ω) with
respect to inclusion. The assignment Ω −→ Pos(Ω) is a functor SetM

op

−→ Poset. A
cyclic subset will be called minimal if it is minimal with respect to inclusion.

Associated to Pos(Ω) is a preorder on Ω given by α 6Ω β if and only if αM ⊆ βM . If
Ω is clear from the context, we drop the subscript and simply write 6. From this preorder
arise two naturally defined equivalence relations: the symmetric-transitive closure ≃ of
6 and the intersection ∼ of 6 and >. More precisely, α ≃ β if and only if there is a
sequence α = ω0, ω1, . . . , ωn = β of elements of Ω such that, for each 0 6 i 6 n− 1, either
ωi 6 ωi+1 or ωi+1 6 ωi. On the other hand, α ∼ β if and only if α 6 β and β 6 α,
that is, αM = βM . The equivalence classes of ≃ shall be called weak orbits, whereas the
equivalence classes of ∼ shall be called strong orbits. These correspond to the weak and
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strong components of a digraph. If M is a group, then both notions coincide with the
usual notion of an orbit.

Notice that weak orbits are M-invariant, whereas a strong orbit is M-invariant if and
only if it is a minimal cyclic subset αM . The action of M will be called weakly transitive
if it has a unique weak orbit and shall be called transitive, or strongly transitive for
emphasis, if it has a unique strong orbit. Observe that M is transitive on Ω if and only if
there are no proper M-invariant subsets of Ω. Thus transitive M-sets can be thought of
as analogues of irreducible representations; on the other hand weakly transitive M-sets
are the analogues of indecomposable representations since it is easy to see that the action
of M on Ω is weakly transitive if and only if Ω is not the coproduct (disjoint union) of
two proper M-invariant subsets. The regular M-set is weakly transitive, but if M is finite
then it is transitive if and only if M is a group. The weak orbit of an element α ∈ Ω will
be denoted Ow(α) and the strong orbit Os(α). The set of weak orbits will be denoted
π0(Ω) (in analogy with connected components of graphs; and in any event this designation
can be made precise in the topos theoretic sense) and the set of strong orbits shall be
denoted Ω/M . Note that Ω/M is naturally a poset isomorphic to Pos(Ω) via the bijection
Os(α) 7→ αM . Also note that π0(Ω) is in bijection with π0(Pos(Ω)) where we recall that
if P is a poset, then the set π0(P ) of connected components of P is the set of equivalence
classes of the symmetric-transitive closure of the partial order (i.e., the set of connected
components of the Hasse diagram of P ).

We shall also have need to consider M-sets with zero. An element α ∈ Ω is called a
sink if αM = {α}. An M-set with zero, or pointed M-set, is a pair (Ω, 0) where Ω is an
M-set and 0 ∈ Ω is a distinguished sink1. An M-set with zero (Ω, 0) is called 0-transitive
if αM = Ω for all α 6= 0. Notice that an M-set with zero is the same thing as an action
of M by partial transformations (just remove or adjoin the zero) and that 0-transitive
actions correspond to transitive actions by partial functions. Morphisms of M-sets with
zero must preserve the zero and, in particular, in this context M-invariant subsets are
assumed to contain the zero. The category of M-sets with zero will be denoted SetM

op

∗

as it is the category of all contravariant functors from M to the category of pointed sets.

Proposition 2.1. Suppose that Ω is a 0-transitive M-set. Then 0 is the unique sink of
Ω.

Proof. Suppose that α 6= 0. Then 0 ∈ Ω = αM shows that α is not a sink.

A strong orbit O of M on Ω is called minimal if it is minimal in the poset Ω/M , or
equivalently the cyclic poset ωM is minimal for ω ∈ O. The union of all minimal strong
orbits of M on Ω is M-invariant and is called the socle of Ω, denoted Soc(Ω). If M is a
group, then Soc(Ω) = Ω. The case that Ω = Soc(Ω) is analogous to that of a completely
reducible representation: one has that Ω is a coproduct of transitive M-sets. If Ω is an
M-set with zero, then a minimal non-zero strong orbit is called 0-minimal. In this setting
we define the socle to be the union of all the 0-minimal strong orbits together with zero;
again it is an M-invariant subset.

1This usage of the term “pointed transformation monoid” differs from that of [57].
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A congruence or system of imprimitivity on an M-set Ω is an equivalence relation
≡ such that α ≡ β implies αm ≡ βm for all α, β ∈ Ω and m ∈ M . In this case, the
quotient Ω/≡ becomes an M-set in the natural way and the quotient map Ω −→ Ω/≡ is
a morphism. The standard isomorphism theorem holds in this context. If ∆ ⊆ Ω is M-
invariant, then one can define a congruence ≡∆ by putting α ≡∆ β if α = β or α, β ∈ ∆.
In other words, the congruence ≡∆ crushes ∆ to a point. The quotient M-set is denoted
Ω/∆. The class of ∆, often denoted by 0, is a sink and it is more natural to view Ω/∆ as
an M-set with zero. The reader should verify that if

Ω = Ω0 ⊃ Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωk (2.1)

is an unrefinable chain of M-invariant subsets, then the successive quotients Ωi/Ωi+1 are
in bijection with the strong orbits of M on Ω. If we view Ωi/Ωi+1 as an M-set with zero,
then it is a 0-transitive M-set corresponding to the natural action of M on the associated
strong orbit by partial maps. Of course, Ωk will be a minimal strong orbit and hence a
minimal cyclic sub-M-set.

For example, if N is a submonoid of M , there are two natural congruences on the
regular M-set associated to N : namely, the partition of M into weak orbits of the left
action of N and the partition of M into the strong orbits of the left action of N . To the
best of the author’s knowledge, only the latter has ever been used in the literature and
most often when M = N .

More generally, if Ω is an M-set, a relation ρ on Ω is said to be stable if α ρ β implies
αm ρ βm for all m ∈M .

If Υ is any set, then we can make it into an M-set via the trivial action αm = α for all
α ∈ Υ and m ∈M ; such M-sets are called trivial. This gives rise to a functor ∆: Set −→
SetM

op

. The functor π0 : SetM
op

−→ Set provides the left adjoint. More precisely, we
have the following important proposition that will be used later when applying module
theory.

Proposition 2.2. Let Ω be an M-set and Υ a trivial M-set. Then a function f : Ω −→ Υ
belongs to homM(Ω,Υ) if and only if f is constant on weak orbits. Hence homM(Ω,Υ) ∼=
Set(π0(Ω),Υ).

Proof. As the weak orbits are M-invariant, if we view π0(Ω) as a trivial M-set, then the
projection map Ω −→ π0(Ω) is an M-set morphism. Thus any map f : Ω −→ Υ that is
constant on weak orbits is anM-set morphism. Conversely, suppose that f ∈ homM(Ω,Υ)
and assume α 6 β ∈ Ω. Then α = βm for some m ∈M and so f(α) = f(βm) = f(β)m =
f(β). Thus the relation 6 is contained in ker f . But ≃ is the equivalence relation
generated by 6, whence f is constant on weak orbits. This completes the proof.

Remark 2.3. The right adjoint of the functor ∆ is the so-called “global sections” functor
Γ: SetM

op

−→ Set taking an M-set Ω to the set of M-invariants of Ω, that is, the set of
global fixed points of M on Ω.

We shall also need some structure theory about automorphisms of M-sets.
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Proposition 2.4. Let Ω be a transitive M-set. Then every endomorphism of Ω is sur-
jective. Moreover, the fixed point set of any non-trivial endomorphism of Ω is empty. In
particular, the automorphism group of Ω acts freely on Ω.

Proof. If f : Ω −→ Ω is an endomorphism, then f(Ω) is M-invariant and hence coincides
with Ω. Suppose that f has a fixed point. Then the fixed point set of f is an M-invariant
subset of Ω and thus coincides with Ω. Therefore, f is the identity.

In particular, the endomorphism monoid of a finite transitive M-set is its automor-
phism group.

2.2 Green-Morita theory

An important role in the theory to be developed is the interplay between M and its
subsemigroups of the form eMe with e an idempotent of M . Notice that eMe is a
monoid with identity e. The group of units of eMe is denoted Ge and is called the
maximal subgroup of M at e. The set of idempotents of M shall be denoted E(M); more
generally, if X ⊆ M , then E(X) = E(M)∩X. First we need to define the tensor product
in the context of M-sets (cf. [40, 47]).

Let Ω be a right M-set and Λ a left M-set. A map f : Ω×Λ −→ Φ of sets is M-bilinear
if f(ωm, λ) = f(ω,mλ) for all ω ∈ Ω, λ ∈ Λ and m ∈ M . The universal bilinear map
is Ω × Λ −→ Ω ⊗M Λ given by (ω, λ) 7→ ω ⊗ λ. Concretely, Ω ⊗M Λ is the quotient of
Ω×Λ by the equivalence relation generated by the relation (ωm, λ) ≈ (ω,mλ) for ω ∈ Ω,
λ ∈ Λ and m ∈M . The class of (ω, λ) is denoted ω⊗λ. Suppose that N is a monoid and
that Λ is also right N -set. Moreover, assume that the left action of M commutes with
the right action of N ; in this case we call Λ a bi-M-N-set. Then Ω⊗M Λ is a right N -set
via the action (ω ⊗ λ)n = ω ⊗ (λn). That this is well defined follows easily from the fact
that the relation ≈ is stable for the right N -set structure because the actions of M and
N commute.

For example, if N is a submonoid of M and {∗} is the trivial N -set, then {∗}⊗NM is
easily verified to be isomorphic as an M-set to the quotient of the regular M-set by the
weak orbits of the left action of N on M .

If Υ is a right N -set and Λ a bi-M-N set, then homN(Λ,Υ) is a right M-set via the
action (fm)(λ) = f(mλ). The usual adjunction between tensor product and hom holds
in this setting. We just sketch the proof idea.

Proposition 2.5. Let Ω be a right M-set, Λ a bi-M-N-set and Υ a right N-set. Then
there is a natural bijection

homN(Ω ⊗M Λ,Υ) ∼= homM(Ω, homN(Λ,Υ))

of sets.

Proof. Both sides are in bijection with M-bilinear maps f : Ω × Λ −→ Υ satisfying
f(ω, λn) = f(ω, λ)n for ω ∈ Ω, λ ∈ Λ and n ∈ N .
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Something we shall need later is the description of Ω⊗M Λ when Λ is a free left M-set.

Proposition 2.6. Let Ω be a right M-set and let Λ be a free left M-set with basis B.
Then Ω⊗M Λ is in bijection with Ω×B. More precisely, if λ ∈ Λ, then one can uniquely
write λ = mλbλ with mλ ∈M and bλ ∈ B. The isomorphism takes ω ⊗ λ to (ωmλ, bλ).

Proof. It suffices to show that the map f : Ω× Λ −→ Ω×B given by (ω, λ) 7→ (ωmλ, bλ)
is the universal M-bilinear map. It is bilinear because freeness implies that if n ∈ M ,
then since nλ = nmλbλ, one has mnλ = nmλ and bnλ = bλ. Thus

f(ω, nλ) = (ωnmλ, bλ) = f(ωn, λ)

and so f is M-bilinear.
Suppose now that g : Ω × Λ −→ Υ is M-bilinear. Then define h : Ω × B −→ Υ by

h(ω, b) = g(ω, b). Then

h(f(ω, λ)) = h(ωmλ, bλ) = g(ωmλ, bλ) = g(ω, λ)

where the last equality uses M-bilinearity of g and that mλbλ = λ. This completes the
proof.

We are now in a position to present the analogue of the Morita-Green theory [33,
Chapter 6] in the context of M-sets. This will be crucial for analyzing transformation
monoids, in particular, primitive ones. The following result is proved in an identical
manner to its ring theoretic counterpart.

Proposition 2.7. Let e ∈ E(M) and let Ω be an M-set. Then there is a natural isomor-
phism homM(eM,Ω) ∼= Ωe.

Proof. Define ϕ : homM(eM,Ω) −→ Ωe by ϕ(f) = f(e). This is well defined because
f(e) = f(ee) = f(e)e ∈ Ωe. Conversely, if α ∈ Ωe, then one can define a morphism
Fα : eM −→ Ω by Fα(m) = αm. Observe that Fα(e) = αe = α and so ϕ(Fα) = α. Thus
to prove these constructions are inverses it suffices to observe that if f ∈ homM(eM,Ω)
and m ∈ eM , then f(m) = f(em) = f(e)m = Fϕ(f)(m) for all m ∈ eM .

We shall need a stronger form of this proposition for the case of principal right ideals
generated by idempotents. Associate to M the category ME (known as the idempotent
splitting of M) whose object set is E(M) and whose hom sets are given by ME(e, f) =
fMe. Composition

ME(f, g) ×ME(e, f) −→ME(e, g),

for e, f, g ∈ E(M), is given by (m,n) 7→ mn. This is well defined since gMf · fMe ⊆
gMe. One easily verifies that e ∈ ME(e, e) is the identity at e. The endomorphism
monoid ME(e, e) of e is eMe. The idempotent splitting plays a crucial role in semigroup
theory [71, 57]. The following result is well known to category theorists.

Proposition 2.8. The full subcategory C of SetM
op

with objects the right M-sets eM with
e ∈ E(M) is equivalent to the idempotent splitting ME. Consequently, the endomorphism
monoid of the M-set eM is eMe (with its natural left action on eM).
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Proof. Define ψ : ME −→ C on objects by ψ(e) = eM ; this map is evidentally surjective.
We already know (by Proposition 2.7) that, for each pair of idempotents e, f of M , there is
a bijection ψe,f : fMe −→ homM(eM, fM) given by ψe,f(n) = Fn where Fn(m) = nm. So
to verify that the family {ψe,f}, together with the object map ψ, provides an equivalence
of categories, we just need to verify functoriality, that is, if n1 ∈ fMe and n2 ∈ gMf ,
then Fn2

◦ Fn1
= Fn2n1

and Fe = 1eM . For the latter, clearly Fe(m) = em = m for any
m ∈ eM . As to the former, Fn2

(Fn1
(m)) = Fn2

(n1m) = n2(n1m) = Fn2n1
(m).

For the final statement, because ME(e, e) = eMe it suffices just to check that the
actions coincide. But if m ∈ eM and n ∈ eMe, then the corresponding endomorphism
Fn : eM −→ eM takes m to nm.

As a consequence, we see that if e, f ∈ E(M), then eM ∼= fM if and only if there
exists m ∈ eMf and m′ ∈ fMe such that mm′ = e and m′m = f . In semigroup theoretic
lingo, this is the same thing as saying that e and f are D-equivalent [22, 57, 34, 32]. If
e, f ∈ E(M) are D-equivalent, then because eMe is the endomorphism monoid of eM
and fMf is the endomorphism monoid of fM , it follows that eMe ∼= fMf (and hence
Ge

∼= Gf ) as eM ∼= fM . The reader familiar with Green’s relations [32, 22] should verify
that the elements of fMe representing isomorphisms eM −→ fM are exactly those
m ∈M with f R m L e.

It is a special case of more general results from category theory that if M and N are
monoids, then SetM

op

is equivalent to SetN
op

if and only if ME is equivalent to NE , if
and only if there exists f ∈ E(N) such that N = NfN and M ∼= fNf ; see also [70]. In
particular, for finite monoids M and N it follows that SetM

op

and SetN
op

are equivalent
if and only if M ∼= N since the ideal generated by a non-identity idempotent of a finite
monoid is proper. The proof goes something like this. The category ME is equivalent
to the full subcategory on the projective indecomposable objects of SetM

op

and hence is
taken to NE under any equivalence SetM

op

−→ SetN
op

. If the object 1 of ME is sent to
f ∈ E(N), then M ∼= fNf and N = NfN . Conversely, if f ∈ E(N) with fNf ∼= M and
NfN = N , then fN is naturally a bi-M-N -set using that M ∼= fNf . The equivalence
SetM

op

−→ SetN
op

then sends an M-set Ω to Ω ⊗M fN .
Fix now an idempotent e ∈ E(M). Then eM is a left eMe-set and so homM(eM,Ω) ∼=

Ωe is a right eMe-set. The action on Ωe is given simply by restricting the action of M to
eMe. Thus there results a restriction functor rese : SetM

op

−→ SeteMeop given by

rese(Ω) = Ωe.

It is easy to check that this functor is exact in the sense that it preserves injectivity and
surjectivity. It follows immediately from the isomorphism rese(−) ∼= homM(eM, (−)) that
rese has a left adjoint, called induction, inde : SeteMeop −→ SetM

op

given by

inde(Ω) = Ω ⊗eMe eM.

Observe that Ω ∼= inde(Ω)e as eMe-sets via the map α 7→ α⊗ e (which is the unit of the
adjunction). As this map is natural, the functor rese inde is naturally isomorphic to the
identity functor on SeteMeop.
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Let us note that if Ω is a right M-set, then each element of Ω⊗M Me can be uniquely
written in the form α ⊗ e with α ∈ Ω. Thus the natural map Ω ⊗M Me −→ Ωe sending
α ⊗ e to αe is an isomorphism. Hence Proposition 2.7 shows that rese also has a right
adjoint coinde : SeteMeop −→ SetM

op

, termed coinduction, defined by putting

coinde(Ω) = homeMe(Me,Ω).

Note that coinde(Ω)e ∼= Ω as eMe-sets via the map sending f to f(e) (which is the counit
of the adjunction) and so rese coinde is also naturally isomorphic to the identity functor
on SeteMeop .

The module theoretic analogues of these constructions are essential to much of repre-
sentation theory, especially monoid representation theory [33, 31, 48].

Proposition 2.9. Let Ω be an eMe-set. Then inde(Ω)eM = inde(Ω).

Proof. Indeed, α⊗m = (α⊗ e)m ∈ inde(Ω)eM for m ∈ eM .

Let us now investigate these constructions in more detail. First we consider how the
strong and weak orbits of M and Me interact.

Proposition 2.10. Let α, β ∈ Ωe. Then α 6Ω β if and only if α 6Ωe β. In other words,
there is an order embedding f : Pos(Ωe) −→ Pos(Ω) taking αeMe to αM .

Proof. Trivially, α ∈ βeMe implies αM ⊆ βM . Conversely, suppose that αM ⊆ βM .
Then αeMe = αMe ⊆ βMe = βeMe.

As an immediate consequence, we have:

Corollary 2.11. The strong orbits of Ωe are the sets of the form Os(α)∩Ωe with α ∈ Ωe.
Consequently, if Ω is a transitive M-set, then Ωe is a transitive eMe-set.

The relationship between weak orbits of Ω and Ωe is a bit more tenuous.

Proposition 2.12. There is a surjective map ϕ : π0(Ωe) −→ π0(Ω). Hence if Ωe is weakly
transitive, then Ω is weakly transitive.

Proof. The order embedding Pos(Ωe) −→ Pos(Ω) from Proposition 2.10 induces a map
ϕ : π0(Ωe) −→ π0(Ω) that sends the weak orbit of α ∈ Ωe under eMe to its weak orbit
Ow(α) under M . This map is onto, because Ow(ω) = Ow(ωe) for any ω ∈ Ω.

In general, the map ϕ in Proposition 2.12 is not injective. For example, let Ω = {1, 2, 3}
and let M consist of the identity map on Ω together with the maps

e =

(
1 2 3
2 2 3

)
, f =

(
1 2 3
3 2 3

)
.

Then M is weakly transitive on Ω, but eMe = {e}, Ωe = {2, 3} and eMe is not weakly
transitive on Ωe.

Next we relate the substructures and the quotient structures of Ω and Ωe via Galois
connections. The former is the easier one to deal with. If Ω is an M-set, then SubM(Ω)
will denote the poset of M-invariant subsets.
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Proposition 2.13. There is a surjective map of posets

ψ : SubM(Ω) −→ SubeMe(Ωe)

given by Λ 7→ Λe. Moreover, ψ admits an injective left adjoint given by ∆ 7→ ∆M . More
concretely, this means that ∆M is the least M-invariant subset Λ such that Λe = ∆.

Proof. If Λ is M-invariant, then ΛeeMe ⊆ Λe and hence Λe ∈ SubeMe(Ωe). Clearly, ψ
is an order preserving map. If ∆ ⊆ Ωe is eMe-invariant, then ∆M is M-invariant and
∆ = ∆e ⊆ ∆Me = ∆eMe ⊆ ∆. Thus ψ is surjective. Moreover, if Λ ∈ SubM(Ω) satisfies
Λe = ∆, then ∆M ⊆ ΛeM ⊆ Λ. This completes the proof.

We now show that induction preserves transitivity.

Proposition 2.14. Let Ω be a transitive eMe-set. Then inde(Ω) is a transitive M-set.

Proof. Since inde(Ω)e ∼= Ω is transitive, if Λ ⊆ inde(Ω) is M-invariant, then we have Λe =
inde(Ω)e. Thus Propositions 2.9 and 2.13 yield inde(Ω) = inde(Ω)eM ⊆ Λ establishing
the desired transitivity.

It is perhaps more surprising that similar results also hold for the congruence lattice. If
Ω is an M-set, denote by CongM(Ω) the lattice of congruences on Ω. If ≡ is a congruence
on Ωe, then we define a congruence ≡′ on Ω by α ≡′ β if and only if αme ≡ βme for all
m ∈M .

Proposition 2.15. Let ≡ be a congruence on Ωe. Then:

1. ≡′ is a congruence on Ω;

2. ≡′ restricts to ≡ on Ωe;

3. ≡′ is the largest congruence on Ω satisfying (2).

Proof. Trivially, ≡′ is an equivalence relation. To see that it is a congruence, suppose
α ≡′ β and n ∈ M . Then, for any m ∈ M , we have αnme ≡ βnme by definition of ≡′.
Thus αn ≡′ βn and so ≡′ is a congruence.

To prove (2), suppose that α, β ∈ Ωe. If α ≡′ β, then α = αe ≡ βe = β by definition
of ≡′. Conversely, if α ≡ β and m ∈ M , then αme = αeme ≡ βeme = βme. Thus
α ≡′ β.

Finally, suppose that ≈ is a congruence on Ω that restricts to ≡ on Ωe and assume
α ≈ β. Then for any m ∈ M , we have αme, βme ∈ Ωe and αme ≈ βme. Thus
αme ≡ βme by hypothesis and so α ≡′ β. This completes the proof.

Let us reformulate this result from a categorical viewpoint.

Proposition 2.16. The map ̺ : CongM(Ω) −→ CongeMe(Ωe) induced by restriction is
a surjective morphism of posets. Moreover, it admits an injective right adjoint given by
≡ 7→ ≡′.
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3 Transformation monoids

A transformation monoid is a pair (Ω,M) where Ω is a set and M is a submonoid of
TΩ. Notice that if e ∈ E(M), then (Ωe, eMe) is also a transformation monoid. Indeed,
if m,m′ ∈ eMe and restrict to the same function on Ωe, then for any α ∈ Ω, we have
αm = αem = αem′ = αm′ and hence m = m′.

A transformation monoid (Ω,M) is said to be finite if Ω is finite. Of course, in this
case M is finite, too. In this paper, we are primarily interested in the theory of finite
transformation monoids. If |Ω| = n, then we say that (Ω,M) has degree n.

3.1 The minimal ideal

For the moment assume that (Ω,M) is a finite transformation monoid. Following standard
semigroup theory notation going back to Schützenberger, if m ∈M , then mω denotes the
unique idempotent that is a positive power of m. Such a power exists because finiteness
implies mk = mk+n for some k > 0 and n > 0. Then ma+n = ma for any a > k and
so if r is the unique natural number k 6 r 6 k + n − 1 that is divisible by n, then
(mr)2 = m2r = mr. Uniqueness follows because {ma | a > k} is easily verified to be a
cyclic group with identity mr. For the basic structure theory of finite semigroups, the
reader is referred to [43] or [57, Appendix A].

If M is a monoid, then a right ideal R of M is a non-empty subset R so that RM ⊆ R;
in other words, right ideals are M-invariant subsets of the (right) regular M-set. Left
ideals are defined dually. The strong orbits of the regular M-set are called R-classes
in the semigroup theory literature. An ideal is a subset of M that is both a left and
right ideal. If M is a monoid, then Mop denotes the monoid obtained by reversing the
multiplication. Notice that Mop ×M acts on M by putting x(m,m′) = mxm′. The ideals
are then the Mop ×M-invariant subsets; note that this action is weakly transitive. The
strong orbits of this action are called J -classes in the semigroup literature.

If Λ is an M-set and R is a right ideal of M , then observe that ΛR is an M-invariant
subset of Λ.

A key property of finite monoids that we shall use repeatedly is stability. A monoid
M is stable if, for any m,n ∈M , one has that:

MmnM = MmM ⇐⇒ mnM = mM ;

MnmM = MmM ⇐⇒ Mnm = Mm.

A proof can be found, for instance, in [57, Appendix A]. We offer a different (and easier)
proof here for completeness.

Proposition 3.1. Finite monoids are stable.

Proof. We handle only the first of the two conditions. Trivially, mnM = mM implies
MmnM = MmM . For the converse, assume MmnM = MmM . Clearly, mnM ⊆ mM .
Suppose that u, v ∈ M with umnv = m. Then mM ⊆ umnM and hence |mM | 6

|umnM | 6 |mnM | 6 |mM |. It follows that mM = mnM .
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An important consequence is the following. Let G be the group of units of a finite
monoid M . By stability, it follows that every right/left unit of M is a unit and conse-
quently M \ G is an ideal. Indeed, suppose m has a right inverse n, i.e., mn = 1. Then
MmM = M = M1M and so by stability Mm = M . Thus m has a left inverse and hence
an inverse. The following result is usually proved via stability, but we use instead the
techniques of this paper.

Proposition 3.2. Let M be a finite monoid and suppose that e, f ∈ E(M). Then eM ∼=
fM if and only if MeM = MfM . Consequently, if e, f ∈ E(M) with MeM = MfM ,
then eMe ∼= fMf and hence Ge

∼= Gf .

Proof. If eM ∼= fM , then by Proposition 2.8 that there exist m ∈ fMe and m′ ∈ eMf
with m′m = e and mm′ = f . Thus MeM = MfM .

Conversely, if MeM = MfM , choose u, v ∈ M with uev = f and put m = fue,
m′ = evf . Then m ∈ fMe, m′ ∈ eMf and mm′ = fueevf = f . Thus the morphism
Fm : eM −→ fM corresponding to m (as per Proposition 2.8) is surjective and in par-
ticular |fM | 6 |eM |. By symmetry, |eM | 6 |fM | and so Fm is an isomorphism by
finiteness.

The last statement follows since eM ∼= fM implies that eMe ∼= fMf by Proposi-
tion 2.8 and hence Ge

∼= Gf .

A finite monoid M has a unique minimal ideal I(M). Indeed, if I1, I2 are ideals, then
I1I2 ⊆ I1 ∩ I2 and hence the set of ideals of M is downward directed and so has a unique
minimum by finiteness. Trivially, I(M) = MmM = I(M)mI(M) for any m ∈ I(M) and
hence I(M) is a simple semigroup (meaning it has no proper ideals). Such semigroups are
determined up to isomorphism by Rees’s theorem [22, 57, 56] as Rees matrix semigroups
over groups. However, we shall not need the details of this construction in this paper.

If m ∈ I(M), then mω ∈ I(M) and so I(M) contains idempotents. Let e ∈ E(I(M)).
The following proposition is a straightforward consequence of the structure theory of the-
ory of finite semigroups. We include a somewhat non-standard proof using transformation
monoids.

Proposition 3.3. Let M be a finite monoid and e ∈ E(I(M)). Then

1. eM is a transitive M-set;

2. eMe = Ge;

3. Ge is the automorphism group of eM . In particular, eM is a free left Ge-set;

4. If f ∈ E(I(M)), then fM ∼= eM and hence Ge
∼= Gf .

Proof. If m ∈ eM , then m = em and hence, as MemM = I(M) = MeM , stability yields
eM = emM = mM . Thus eM is a transitive M-set. Since eM is finite, Proposition 2.4
shows that the endomorphism monoid of eM coincides with its automorphism group,
which moreover acts freely on eM . But the endomorphism monoid is eMe by Proposi-
tion 2.8. Thus eMe = Ge and eM is a free left Ge-set. For the final statement, observe
that MeM = I(M) = MfM and apply Proposition 3.2.
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It is useful to know the following classical characterization of the orbits of Ge on eM .

Proposition 3.4. Let e ∈ E(I(M)) and m,m′ ∈ eM . Then Gem = Gem
′ if and only if

Mm = Mm′.

Proof. This is immediate from the dual of Proposition 2.10 and the fact that eMe =
Ge.

An element s of a semigroup S is called (von Neumann) regular if s = sts for some
t ∈ S. For example, every element of TΩ is regular [22]. It is well known that, for a finite
monoid M , every element of I(M) is regular in the semigroup I(M). In fact, we have the
following classical result.

Proposition 3.5. Let M be a finite monoid. Then the disjoint union

I(M) =
⊎

e∈E(I(M))

Ge

is valid. Consequently, each element of I(M) is regular in I(M).

Proof. Clearly maximal subgroups are disjoint. Suppose m ∈ I(M) and choose k > 0 so
that e = mk is idempotent. Then because

MeM = Mmmk−1M = I(M) = MmM,

we have by stability that eM = mM . Thus em = m and similarly me = m. Hence
m ∈ eMe = Ge. This establishes the disjoint union. Clearly, if g is in the group Ge, then
gg−1g = g and so g is regular.

The next result is standard. Again we include a proof for completeness.

Proposition 3.6. Let N be a submonoid of M and suppose that n, n′ ∈ N are regular
in N . Then nN = n′N if and only if nM = n′M and dually Nn = Nn′ if and only if
Mn = Mn′.

Proof. We handle only the case of right ideals. Trivially, nN = n′N implies nM = n′M .
For the converse, suppose nM = n′M . Write n′ = n′bn′ with b ∈ N . Assume that
n = n′m with m ∈ M . Then n′bn = n′bn′m = n′m = n and so nN ⊆ n′N . A symmetric
argument establishes n′N ⊆ nN .

In the case M 6 TΩ, the minimal ideal has a (well-known) natural description. Let Ω
be a finite set and let f ∈ TΩ. Define the rank of f

rk(f) = |f(Ω)|

by analogy with linear algebra. It is well known and easy to prove that TΩfTΩ = TΩgTΩ

if and only if rk(f) = rk(g) [22, 34]. By stability it follows that f ∈ Gfω if and only if
rk(f) = rk(f 2). The next theorem should be considered folklore.

the electronic journal of combinatorics 17 (2010), #R164 15



Theorem 3.7. Let (Ω,M) be a transformation monoid with Ω finite. Let r be the mini-
mum rank of an element of M . Then

I(M) = {m ∈M | rk(m) = r}.

Proof. Let J = {m ∈ M | rk(m) = r}; it is clearly an ideal and so I(M) ⊆ J . Suppose
m ∈ J . Then m2 ∈ J and so rk(m2) = r = rk(m). Thus m belongs to the maximal
subgroup of TΩ at mω and so mk = m for some k > 1. It follows that m is regular in
M . Suppose now that e ∈ E(I(M)). Then we can find u, v ∈ M with umv = e. Then
eume = e and so eumM = eM . Because rk(eum) = r = rk(m), it follows that TΩeum =
TΩm by stability. But eum and m are regular in M (the former by Proposition 3.5)
and thus Meum = Mm by Proposition 3.6. Thus m ∈ I(M) completing the proof that
J = I(M).

We call the number r from the theorem the min-rank of the transformation monoid
(Ω,M). Some authors call this the rank of M , but this conflicts with the well-established
usage of the term “rank” in permutation group theory.

In TΩ one has fTΩ = gTΩ if and only if ker f = ker g and TΩf = TΩg if and only if
Ωf = Ωg [22, 34]. Therefore, Proposition 3.6 immediately yields:

Proposition 3.8. Let (Ω,M) be a finite transformation monoid and suppose m,m′ ∈
I(M). Then mM = m′M if and only if kerm = kerm′ and Mm = Mm′ if and only if
Ωm = Ωm′.

The action of M on Ω induces an action of M on the power set P (Ω). Define

minM(Ω) = {Ωm | m ∈ I(M)}

to be the set of images of elements of M of minimal rank.

Proposition 3.9. The set minM(Ω) is an M-invariant subset of P (Ω).

Proof. Observe that minM(Ω) = {Ω}I(M) and the latter set is trivially M-invariant.

Let s ∈ I(M) and suppose that ker s = {P1, . . . , Pr}. Then if X ∈ minM(Ω), the
fact that r = |Xs| = |X| implies that |X ∩ Pi| 6 1 for i = 1, . . . , r. But since ker s is a
partition into r = |X| blocks, we conclude that |X ∩ Pi| = 1 for all i = 1, . . . , r. We state
this as a proposition.

Proposition 3.10. Let X ∈ minM(Ω) and s ∈ I(M). Suppose that P is a block of ker s.
Then |X ∩ P | = 1. In particular, right multiplication by s induces a bijection X −→ Xs.

We now restate some of our previous results specialized to the case of minimal idem-
potents. See also [11].

Proposition 3.11. Let (Ω,M) be a finite transformation monoid and let e ∈ E(I(M)).
Then:
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1. (Ωe,Ge) is a permutation group of degree the min-rank of M ;

2. |Ωe/Ge| > |π0(Ω)|;

3. If M is transitive on Ω, then (Ωe,Ge) is a transitive permutation group.

Another useful and well-known fact is that if (Ω,M) is a finite transitive transformation
monoid, then I(M) is transitive on Ω.

Proposition 3.12. Let (Ω,M) be a finite transitive transformation monoid. Then the
semigroup I(M) is transitive on Ω (i.e., there are no proper I(M)-invariant subsets).

Proof. If α ∈ Ω, then αI(M) is M-invariant and so αI(M) = Ω.

In the case that the maximal subgroup Ge of the minimal ideal is trivial and the action
of M on Ω is transitive, one has that each element of I(M) acts as a constant map and
Ω ∼= eM . This fact should be considered folklore.

Proposition 3.13. Let (Ω,M) be a finite transitive transformation monoid and let e ∈
E(I(M)). Suppose that Ge is trivial. Then I(M) = eM , Ω ∼= eM and I(M) is the set of
constant maps on Ω.

Proof. If f ∈ E(I(M)), then Gf
∼= Ge implies Gf is trivial. Proposition 3.5 then implies

that I(M) consists only of idempotents. By Proposition 3.11, the action of Gf on Ωf
is transitive and hence |Ωf | = 1; say Ωf = {ωf}. Thus each element of I(M) is a
constant map. In particular, ef = f for all f ∈ I(M) and hence eM = I(M). By
transitivity of I(M) on Ω (Proposition 3.12), we have that each element of Ω is the image
of a constant map from I(M). Consequently, we have a bijection eM −→ Ω given by
f 7→ ωf (injectivity follows from faithfulness of the action on Ω). The map is a morphism
of M-sets because if m ∈M , then fm ∈ I(M) and Ωfm = {ωfm} and so ωfm = ωfm by
definition. This shows that Ω ∼= eM .

Let us relate I(M) to the socle of Ω.

Proposition 3.14. Let (Ω,M) be a finite transformation monoid. Then ΩI(M) =
Soc(Ω). Hence the min-ranks of Ω and Soc(Ω) coincide.

Proof. Let α ∈ Soc(Ω). Then αM is a minimal cyclic sub-M-set and hence a transitive M-
set. Therefore, αM = αI(M) by transitivity ofM on αM and so α ∈ ΩI(M). Conversely,
suppose that α ∈ ΩI(M), say α = ωm with ω ∈ Ω and m ∈ I(M). Let β ∈ αM . We
show that βM = αM , which will establish the minimality of αM . Suppose that β = αn
with n ∈M . Then β = ωmn and mn ∈ I(M). Stability now yields mM = mnM and so
we can find n′ ∈ M with mnn′ = m. Thus βn′ = ωmnn′ = ωm = α. It now follows that
αM is minimal and hence α ∈ Soc(Ω).
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3.2 Wreath products

We shall mostly be interested in transitive (and later 0-transitive) transformation semi-
groups. In this section we relate transitive transformation monoids to induced transfor-
mation monoids and give an alternative description of certain tensor products in terms of
wreath products. This latter approach underlies the Schützenberger representation of a
monoid [64, 22, 57]. Throughout this section, M is a finite monoid.

Not all finite monoids have a faithful transitive representation. A monoid M is called
right mapping with respect to its minimal ideal if it acts faithfully on the right of I(M) [43,
57]. Regularity implies that if e1, . . . , ek are idempotents forming a transversal to the R-
classes of I(M), then I(M) =

⊎m
i=1 ekM . (Indeed, if mnm = m, then mn is idempotent

and mM = mnM .) But all these right M-sets are isomorphic (Proposition 3.3). Thus
M is right mapping with respect to I(M) if and only if M acts faithfully on eM for
some (equals any) idempotent of I(M) and so in particular M has a faithful transitive
representation. The converse is true as well.

Proposition 3.15. Let (Ω,M) be a transformation monoid and let e ∈ E(M). Suppose
that Ω = ΩeM , e.g., if M is transitive. Then M acts faithfully on eM and there is a
surjective morphism f : inde(Ωe) −→ Ω of M-sets.

Proof. The counit of the adjunction yields a morphism f : inde(Ωe) −→ Ω, which is
surjective because

f(inde(Ωe)) = f(inde(Ωe)eM) = ΩeM = Ω

where we have used Proposition 2.9 and that f takes inde(Ωe)e bijectively to Ωe. Trivially,
if m,m′ ∈M act the same on eM , then they act the same on inde(Ωe) = Ωe⊗eMe eM . It
follows from the surjectivity of f that m,m′ also act the same on Ω and so m = m′.

As a consequence we see that a finite monoid M has a faithful transitive representation
if and only if it is right mapping with respect to its minimal ideal.

Suppose that (Ω,M) and (Λ, N) are transformation monoids. Then N acts on the
left of the monoid MΛ by endomorphisms by putting nf(λ) = f(λn). The corresponding
semidirect product MΛ ⋊N acts faithfully on Ω × Λ via the action

(ω, λ)(f, n) = (ωf(λ), λn).

The resulting transformation monoid (Ω×Λ,MΛ ⋊N) is called the transformation wreath
product and is denoted (Ω,M) ≀ (Λ, N). The semidirect product MΛ ⋊N is denoted M ≀
(Λ, N). The wreath product is well known to be associative on the level of transformation
monoids [28].

Suppose now that M is finite and e ∈ E(I(M)). Notice that since Ge acts on the left
of eM by automorphisms, the quotient set Ge\eM has the structure of a right M-set given
by Gen ·m = Genm. The resulting transformation monoid is denoted (Ge\eM,RLM(M))
in the literature [57, 43]. The monoid RLM(M) is called right letter mapping of M .

Let’s consider the following slightly more general situation. Suppose that G is a group
and M is a monoid. Let Λ be a right M-set and suppose that G acts freely on the left of
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Λ by automorphisms of the M-action. Then M acts naturally on the right of G\Λ. Let
B be a transversal to G\Λ; then Λ is a free G-set on B. Suppose that Ω is a right G-set.
Then Proposition 2.6 shows that Ω⊗G Λ is in bijection with Ω×B and hence in bijection
with Ω × G\Λ. If we write Gλ for the representative from B of the orbit Gλ and define
gλ ∈ G by λ = gλGλ, then the bijection is ω ⊗ λ −→ (ωgλ, Gλ) 7→ (ωgλ, Gλ). The action
of M is then given by (ω,Gλ)m = (ωgGλm, Gλm). This can be rephrased in terms of
the wreath product, an idea going back to Frobenius for groups and Schützenberger for
monoids [22, 23]; see also [50] for a recent exposition in the group theoretic context.

Proposition 3.16. Let (Λ,M) be a transformation monoid and suppose that G is a group
of automorphisms of the M-set Λ acting freely on the left. Let Ω be a right G-set. Then:

1. If Ω is a transitive G-set and Λ is a transitive M-set, then Ω⊗G Λ ∼= Ω×G\Λ is a
transitive M-set.

2. If Ω is a faithful G-set, then the action of M on Ω⊗G Λ ∼= Ω×G\Λ is faithful and
is contained in the wreath product

(Ω, G) ≀ (G\Λ,M)

where M is the quotient of M by the kernel of its action on G\Λ.

Proof. We retain the notation from just before the proof. We begin with (1). Let (α0, Gλ0)
and (α1, Gλ1) be elements of Ω×G\Λ. Without loss of generality, we may assume λ0, λ1 ∈
B. By transitivity we can choose m ∈M with λ0m = λ1. Then (α0, Gλ0)m = (α0, Gλ1).
Then by transitivity of G, we can find g ∈ G with α′g = α1. By transitivity of M , there
exists m′ ∈M such that gλ1 = λ1m

′. Then Gλ1m′ = λ1 and gλ1m′ = g. Therefore,

(α0, Gλ1)m
′ = (α0gλ1m′ , Gλ1) = (α0g,Gλ1) = (α1, Gλ1).

This establishes the transitivity of M on Ω ⊗G Λ.
To prove (2), first suppose that m 6= m′ are elements of M . Then we can find λ ∈ Λ

such that λm 6= λm′. Then gλm 6= gλm′ for all g ∈ G and so we may assume that
λ ∈ B. If Gλm 6= Gλm′, we are done. Otherwise, λm = gλmGλm and λm′ = gλm′Gλm
and hence gλm 6= gλm′ . Thus by faithfulness of the action of G, we have α ∈ Ω such that
αgλm 6= αgλm′ . Therefore, we obtain

(α,Gλ)m = (αgλm, Gλm) 6= (αgλm′, Gλm) = (α,Gλ)m′

establishing the faithfulness of M on Ω ⊗G Λ.
Finally, we turn to the wreath product embedding. Write m for the class of m ∈ M in

the monoid M . For m ∈M , we define fm : G\Λ −→ Ω by fm(Gλ) = gGλm. Then (fm, m)
is an element of the semidirect product GG\Λ ⋊M and if α ∈ Ω and λ ∈ Λ, then

(α,Gλ)(fm, m) = (αfm(Gλ), Gλm) = (αgGλm, Gλm) = (α,Gλ)m

as required. Since the action of M on Ω×G\Λ is faithful, this embeds M into the wreath
product.
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A particularly important case of this result is when (Ω,M) is a transitive transforma-
tion monoid and G is a group of M-set automorphisms of Ω; the action of G is free by
Proposition 2.4. Observing that Ω = G⊗G Ω, we have the following corollary.

Corollary 3.17. Let (Ω,M) be a transitive transformation monoid and G a group of
automorphisms of (Ω,M). Then Ω is in bijection with G×G\Ω and the action of M on
Ω is contained in the wreath product (G,G) ≀ (G\Ω,M) where M is the quotient of M by
the kernel of its action on G\Ω.

Another special case is the following slight generalization of the classical Schützenber-
ger representation [22, 43, 57], which pertains to the case Ω = Ge (as inde(Ge) ∼= eM);
cf. [23].

Corollary 3.18. Suppose that M is a finite right mapping monoid (with respect to I(M))
and let e ∈ E(I(M)). If Ω is a transitive Ge-set, then inde(Ω) is a transitive M-set.
Moreover, if Ω is faithful, then inde(Ω) is a faithful M-set and (inde(Ω),M) is contained
inside of the wreath product (Ω, Ge) ≀ (Ge\eM,RLM(M)).

Thus faithful transitive representations of a right mapping monoid M are, up to di-
vision [43, 28, 57], the same things as wreath products of the right letter mapping repre-
sentation with transitive faithful permutation representations of the maximal subgroup
of I(M).

4 Finite 0-transitive transformation monoids

In this section we begin to develop the corresponding theory for finite 0-transitive trans-
formation monoids. Much of the theory works as in the transitive case once the correct
adjustments are made. For this reason, we will not tire the reader by repeating analogues
of all the previous results in this context. What we call a 0-transitive transformation
monoid is called by many authors a transitive partial transformation monoid.

Assume now that (Ω,M) is a finite 0-transitive transformation monoid. The zero map,
which sends all elements of Ω to 0, is denoted 0.

Proposition 4.1. Let (Ω,M) be a finite 0-transitive transformation monoid. Then the
zero map belongs to M and I(M) = {0}.

Proof. Let e ∈ E(I(M)). First note that 0 ∈ Ωe. Next observe that if 0 6= α ∈ Ωe, then
αeMe = αMe = Ωe and hence Ge = eMe is transitive on Ωe. But 0 is a fixed point of
Ge and so we conclude that Ωe = {0} and hence e = 0. Then trivially I(M) = MeM =
{0}.

An ideal I of a monoid M with zero is called 0-minimal if I 6= 0 and the only ideal
of M properly contained in I is {0}. It is easy to see that I is 0-minimal if and only if
MaM = I for all a ∈ I \ {0}, or equivalently, the action of Mop ×M on I is 0-transitive.
In a finite monoid M with zero, a 0-minimal ideal is regular (meaning all its elements are
regular in M) if and only if I2 = I [22, 57]. We include a proof for completeness.
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Proposition 4.2. Suppose that I is a 0-minimal ideal of a finite monoid M . Then I is
regular if and only if I2 = I. Moreover, if I 6= I2, then I2 = 0.

Proof. If I is regular and 0 6= m ∈ I, then we can write m = mnm with n ∈ M and so
m = m(nm) ∈ I2. It follows I2 = I. Conversely, if I2 = I and m ∈ I \ {0}, then we
can write m = ab with a, b ∈ I \ {0}. Then MmM = MabM = MaM = MbM and so
stability yields mM = aM and Mm = Mb. Therefore, we can write a = mx and b = ym
and hence m = mxym is regular.

For the final statement, suppose I 6= I2. Then I2 is an ideal strictly contained in I
and so I2 = 0.

Of course if I is regular, then it contains non-zero idempotents. Using this one can
easily show [22, 57] that each element of I is regular in the semigroup I. In fact, I is a
0-simple semigroup and hence its structure is determined up to isomorphism by Rees’s
theorem [22,57, 56].

If Ω is an M-set and Λ is an M-set with 0, then the map sending each element of Ω
to 0 is an M-set map, which we again call the zero map and denote by 0.

Proposition 4.3. Let Ω be an M-set and Λ a 0-transitive M-set. Then every non-zero
morphism f : Ω −→ Λ of M-sets is surjective.

Proof. If f : Ω −→ Λ is a non-zero morphism, then 0 6= f(Ω) is M-invariant and hence
equals Λ by 0-transitivity.

As a corollary we obtain an analogue of Schur’s lemma.

Corollary 4.4. Let Ω be a finite 0-transitive M-set. Then every non-zero endomorphism
of Ω is an automorphism. Moreover, AutM(Ω) acts freely on Ω \ {0}.

Proof. By Proposition 4.3, any non-zero endomorphism of Ω is surjective and hence is
an automorphism. Since any automorphism of Ω fixes 0 (as it is the unique sink by
Proposition 2.1), it follows that Ω \ {0} is invariant under AutM(Ω). If f ∈ AutM(Ω),
then its fixed point set is M-invariant and hence is either 0 or all of Ω. This shows that
the action of AutM(Ω) on Ω \ {0} is free.

We can now prove an analogue of Proposition 3.3 for 0-minimal ideals. Again this
proposition is a well-known consequence of the classical theory of finite semigroups.
See [11] for the corresponding result in the more general situation of unambiguous repre-
sentations of monoids.

Proposition 4.5. Let M be a finite monoid with zero, let I be a regular 0-minimal ideal
and let e ∈ E(I) \ {0}. Then:

1. eM is a 0-transitive M-set;

2. eMe = Ge ∪ {0};
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3. Ge is the automorphism group of the M-set eM and so in particular, eM \ {0} is a
free left Ge-set;

4. If f ∈ E(I)\{0}, then fM ∼= eM and hence Ge
∼= Gf ; moreover, one has fMe\{0}

and eMf \ {0} are in bijection with Ge.

Proof. Trivially 0 ∈ eM . Suppose that 0 6= m ∈ eM . Then m = em and hence, as
MmM = MemM = MeM , stability yields mM = eM . Thus eM is a 0-transitive M-set.
Since eM is finite, Corollary 4.4 shows that the endomorphism monoid of eM consists
of the zero morphism and its group of units, which acts freely on eM \ {0}. But the
endomorphism monoid is eMe by Proposition 2.8. Thus eMe = Ge ∪ {0} and eM \ {0}
is a free left Ge-set.

Now we turn to the last item. Since MeM = I = MfM , we have that eM ∼= fM
by Proposition 3.2. Clearly the automorphism group Ge of eM is in bijection with the
set of isomorphisms eM −→ fM ; but this latter set is none other than fMe \ {0}. The
argument for eMf \ {0} is symmetric.

Of course the reason for developing all this structure is the folklore fact that a finite 0-
transitive transformation monoid has a unique 0-minimal ideal, which moreover is regular.
Any element of this ideal will have minimal non-zero rank.

Theorem 4.6. Let (Ω,M) be a finite 0-transitive transformation monoid. Then M has a
unique 0-minimal ideal I; moreover, I is regular and acts 0-transitively (as a semigroup)
on Ω.

Proof. We already know that 0 ∈ M by Proposition 4.1. Let I be a 0-minimal ideal of
M (it has one by finiteness). Then ΩI is M-invariant. It is also non-zero since I contains
a non-zero element of M . Thus ΩI = Ω. Therefore, ΩI2 = ΩI = Ω and so I2 6= 0.
We conclude by Proposition 4.2 that I is regular. This also implies the 0-transitivity of
I because if 0 6= α ∈ Ω, then αI ⊇ αMI = ΩI = Ω. Finally, suppose that I ′ is any
non-zero ideal of M . Then ΩI ′ 6= 0 and is M-invariant. Thus Ω = ΩI ′ = ΩII ′ and so
0 6= II ′ ⊆ I ∩ I ′. By 0-minimality, we conclude I = I ∩ I ′ ⊆ I ′ and hence I is the unique
0-minimal ideal of M .

We also have the following analogue of Proposition 3.11(3).

Proposition 4.7. Let (Ω,M) be a finite 0-transitive transformation monoid with 0-
minimal ideal I and let 0 6= e ∈ E(I). Then (Ωe \ {0}, Ge) is a transitive permutation
group.

Proof. If 0 6= α ∈ Ωe, then αeMe = αMe = Ωe. But eMe = Ge ∪ {0} and hence
αGe = Ωe \ {0} (as 0 is a fixed point for Ge).

Again, in the case that Ge is trivial, one can say more, although not as much as in the
transitive case.
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Proposition 4.8. Let (Ω,M) be a finite 0-transitive transformation monoid with 0-
minimal ideal I and let 0 6= e ∈ E(I). Suppose that Ge is trivial. Then each element of
I \ {0} has rank 2 and Ω ∼= eM .

Proof. First observe that since Ge is trivial, Proposition 4.7 implies that Ωe contains
exactly one non-zero element. Thus, for each m ∈ I \ {0}, there is a unique non-zero
element ωm ∈ Ω so that Ωm = {0, ωm}, as all non-zero elements of I have the same rank
and have 0 in their image. We claim that 0 7→ 0 and m 7→ ωm gives an isomorphism
between eM and Ω. First we verify injectivity. Since m ∈ eM \ {0} implies eM = mM ,
all elements of eM \{0} have the same kernel. This kernel is a partition {P1, P2} of Ω with
0 ∈ P1. Then all elements of eM send P1 to 0 and hence each element of eM is determined
by where it sends P2. Thus m 7→ ωm is injective on eM . Clearly it is a morphism ofM-sets
because if m ∈ eM \ {0} and n ∈ M , then either mn = 0 and hence ωmn ∈ Ωmn = {0}
or {0, ωmn} = Ωmn = {0, ωmn}. Finally, to see that the map is surjective observe that
ωee = ωe and so {0} 6= ωeeM . The 0-transitivity of M then yields ωeeM = Ω. But then
if 0 6= α ∈ Ω, we can find m ∈ eM \ {0} so that α = ωem = ωem = ωm. This completes
the proof.

One can develop a theory of induced and coinduced M-sets with zero and wreath
products in this context and prove analogous results, but we avoid doing so for the sake
of brevity. We do need one result on congruences.

Proposition 4.9. Let (Ω,M) be a finite 0-transitive transformation monoid with 0-
minimal ideal I and let 0 6= e ∈ E(I). Suppose that ≡ is a congruence on (Ωe \ {0}, Ge).
Then there is a unique largest congruence ≡′ on Ω whose restriction to Ωe \ {0} is ≡.

Proof. First extend ≡ to Ωe by setting 0 ≡ 0. Then ≡ is a congruence for eMe = Ge∪{0}
and any congruence ∼ whose restriction to Ωe \ {0} equals ≡ satisfies 0 ∼ 0. The result
now follows from Proposition 2.15.

A monoid M that acts faithfully on the right of a 0-minimal ideal I is said to be right
mapping with respect to I [43, 57]. In this case I is the unique 0-minimal ideal of M , it
is regular and M acts faithfully and 0-transitively on eM for any non-zero idempotent
e ∈ E(I). Conversely, if (Ω,M) is finite 0-transitive, then one can verify (similarly to the
transitive case) that if 0 6= e ∈ E(I), where I is the unique 0-minimal ideal of M , then
M acts faithfully and 0-transitively on eM and hence is right mapping with respect to I.
Indeed, if 0 6= ω ∈ Ωe, then ωeM is non-zero and M-invariant, whence Ω = ωeM . Thus
if m,m′ ∈ M act the same on eM , then they also act the same on Ω. Alternatively, one
can use induced modules in the category of M-sets with zero to prove this.

5 Primitive transformation monoids

A transformation monoid (Ω,M) is primitive if it admits no non-trivial proper congru-
ences. In this section, we assume throughout that |Ω| is finite. Trivially, if |Ω| 6 2 then
(Ω,M) is primitive, so we shall also tacitly assume that |Ω| > 3,
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Proposition 5.1. Suppose that (Ω,M) is a primitive transformation monoid with 2 < |Ω|.
Then M is either transitive or 0-transitive. In particular, M is weakly transitive.

Proof. If ∆ is an M-invariant subset, then consideration of Ω/∆ shows that either ∆ = Ω
or ∆ consists of a single point. Singleton invariant subsets are exactly sinks. However, if
α, β are sinks, then {α, β} is an M-invariant subset. Because |Ω| > 2, we conclude that
Ω has at most one sink.

First suppose that Ω has no sinks. Then if α ∈ Ω, one has that αM 6= {α} and hence
by primitivity αM = Ω. As α was arbitrary, we conclude that M is transitive.

Next suppose that Ω has a sink 0. We already know it is unique. Hence if 0 6= α ∈M ,
then αM 6= {α} and so αM = Ω. Thus M is 0-transitive.

The final statement follows because any transitive or 0-transitive action is trivially
weakly transitive.

The following results constitute a transformation monoid analogue of Green’s results
relating simple modules over an algebra A with simple modules over eAe for an idempotent
e, cf. [33, Chapter 6].

Proposition 5.2. Let (Ω,M) be a primitive transformation monoid and e ∈ E(M).
Then (Ωe, eMe) is a primitive transformation monoid. Moreover, if |Ωe| > 1, then Ω ∼=
inde(Ωe)/=

′ where =′ is the congruence on inde(Ωe) associated to the trivial congruence
= on inde(Ωe)e ∼= Ωe as per Proposition 2.15.

Proof. Suppose first that (Ωe, eMe) admits a non-trivial proper congruence ≡. Then
Proposition 2.15 shows that ≡′ is a non-trivial proper congruence on Ω. This contradiction
shows that (Ωe, eMe) is primitive.

Next assume |Ωe| > 1. The counit of the adjunction provides a morphism

f : inde(Ωe) −→ Ω.

As the image is M-invariant and contains Ωe, which is not a singleton, it follows that f
is surjective. Now ker f must be a maximal congruence by primitivity of Ω. However,
the restriction of f to inde(Ωe)e ∼= Ωe is injective. Proposition 2.15 shows that =′ is the
largest such congruence on inde(Ωe). Thus ker f is =′, as required.

Of course, the case of interest is when e belongs to the minimal ideal.

Corollary 5.3. Suppose that (Ω,M) is a primitive transitive transformation monoid and
that e ∈ E(I(M)). Then (Ωe,Ge) is a primitive permutation group. If Ge is non-trivial,
then Ω = inde(Ωe)/=

′.

This result is analogous to the construction of the irreducible representations ofM [31].
In the transitive case if Ge is trivial, then we already know that Ω ∼= eM = inde(Ωe)

(since |Ωe| = 1) and that I(M) consists of the constant maps on Ω (Proposition 3.13). In
this case, things can be quite difficult to analyze. For instance, let (Ω, G) be a permutation
group and let (Ω, G) consist of G along with the constant maps on Ω. Then it is easy to
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see that (Ω, G) is primitive if and only if (Ω, G) is primitive. The point here is that any
equivalence relation is stable for the ideal of constant maps and so things reduce to G.

Sometimes it is more convenient to work with the coinduced action. The following is
dual to Proposition 5.2.

Proposition 5.4. Let (Ω,M) be a primitive transformation monoid and let e ∈ E(M)
with |Ωe| > 1. Then there is an embedding g : Ω → coinde(Ωe) of M-sets. The image of
g is coinde(Ωe)eM , which is the least M-invariant subset containing coinde(Ωe)e ∼= Ωe.

Proof. The unit of the adjunction provides the map g and moreover, g is injective on Ωe.
Because |Ωe| > 1, it follows that g is injective by primitivity. For the last statement,
observe that ΩeM = Ω by primitivity because |Ωe| > 1. Thus g(Ω) = g(Ωe)eM =
coinde(Ωe)eM .

We hope that the theory of primitive permutation groups can be used to understand
transitive primitive transformation monoids in the case the maximal subgroups of I(M)
are non-trivial.

Next we focus on the case of a 0-transitive transformation monoid.

Proposition 5.5. Let (Ω,M) be a 0-transitive primitive transformation monoid with 0-
minimal ideal I and suppose 0 6= e ∈ E(I). Then one has that (Ωe\{0}, Ge) is a primitive
permutation group.

Proof. If (Ωe\{0}, Ge) admits a non-trivial proper congruence, then so does Ω by Propo-
sition 4.9.

Again one can prove that (Ω,M) is a quotient of an induced M-set with zero and
embeds in a coinduced M-set with zero when |Ωe\{0}| > 1. In the case that Ge is trivial,
we know from Proposition 4.8 that Ω ∼= eM and each element of the 0-minimal ideal I
acts on Ω by rank 2 transformations (or equivalently by rank 1 partial transformations
on Ω \ {0}).

Recall that a monoid M is an inverse monoid if, for each m ∈ M , there exists a
unique m∗ ∈ M with mm∗m = m and m∗mm∗. Inverse monoids abstract monoids of
partial injective maps, e.g., Lie pseudogroups [45]. It is a fact that the idempotents of an
inverse monoid commute [45, 22]. We shall use freely that in an inverse monoid one has
eM = mM with e ∈ E(M) if and only if mm∗ = e and dually Me = Mm if and only if
m∗m = e. We also use that (mn)∗ = n∗m∗ [45].

The next result describes all finite 0-transitive transformation inverse monoids (transi-
tive inverse monoids are necessarily groups). This should be considered folklore, although
the language of tensor products is new in this context; more usual is the language of
wreath products. The corresponding results for the matrix representation associated to a
transformation inverse monoid can be found in [67].

Theorem 5.6. Let (Ω,M) be a finite transformation monoid with M an inverse monoid.

1. If M is transitive on Ω, then M is a group.
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2. If Ω is a 0-transitive M-set, then M acts on Ω \ {0} by partial injective maps and
Ω ∼= (Ωe \ {0}) ⊗Ge

eM where e is a non-zero idempotent of the unique 0-minimal
ideal I of M .

Proof. Suppose first that M is transitive on Ω. It is well known that the minimal ideal
I(M) of a finite inverse monoid is a group [22,43,57]. Let e be the identity of this group.
Then since I(M) is transitive on Ω, we have Ω = Ωe. Thus e is the identity of M and so
M = I(M) is a group.

Next suppose that M is 0-transitive on Ω. Let I be the 0-minimal ideal of M and
let e ∈ E(I) \ {0}. We claim that αe 6= 0 implies α ∈ Ωe. Indeed, if αe 6= 0, then
αeI = Ω and so we can write α = αem with m ∈ I. Then αeme = αe 6= 0. Thus eme
is a non-zero element of eMe = Ge ∪ {0}. Therefore, e = (eme)∗eme = em∗eme and
hence m∗me = m∗mem∗eme = em∗eme = e. But em∗m = m∗me = e and thus e ∈
m∗mMm∗m = Gm∗m ∪ {0}. We conclude e = m∗m. Thus α = αem = αemm∗m = αeme
and so α ∈ Ωe. Of course, this is true for any idempotent of E(I) \ {0}, not just for e.

Now let f ∈ E(M) \ {0} and suppose that ωf 6= 0. We claim ωf = ω. Indeed, choose
α ∈ Ωf \ {0}. Then αI = Ω by 0-transitivity and so we can write ω = αm with m ∈ I.
Then ωf = αmf . Because α = αmf(mf)∗(mf) it follows that αmf(mf)∗ 6= 0. The
previous paragraph applied to mf(mf)∗ ∈ E(I) \ {0} yields α = αmf(mf)∗ = αmfm∗.
Therefore, ω = αm = αmfm∗m = αmf = ωf .

Suppose next that ω1, ω2 ∈ Ω \ {0} and m ∈ M with ω1m = ω2m 6= 0. Then
ω1mm

∗ = ω2mm
∗ 6= 0 and so by the previous paragraph ω1 = ω1mm

∗ = ω2mm
∗ = ω2.

We conclude that the action of M on Ω\{0} by partial maps is by partial injective maps.
Let e ∈ E(I) \ {0} and put Λ = Ωe \ {0}. Then (Λ, Ge) is a transitive permutation

group by Proposition 4.7. Consider Λ⊗Ge
eM . Observe that if α, β ∈ Λ and αg = β with

g ∈ Ge, then β ⊗ 0 = αg ⊗ 0 = α⊗ g0 = α⊗ 0. Thus Λ × {0} forms an equivalence class
of Λ⊗Ge

eM that we denote by 0. It is a sink for the right action of M on Λ⊗Ge
eM and

hence we can view the latter set as a right M-set with zero.
Define F : Λ ⊗Ge

eM −→ Ω by α ⊗m 7→ αm. This is well defined because the map
Λ×eM −→ Ω given by (α,m) 7→ αm is Ge-bilinear. The map F is a morphism of M-sets
with zero because F (α ⊗ m)m′ = αmm′ = F (α ⊗ mm′) and 0 is sent to 0. Observe
that F is onto. Indeed, fix α ∈ Λ. Then since αeM = αM = Ω by 0-transitivity, given
ω ∈ Ω \ {0}, we can find m ∈ eM with ω = αm. Thus ω = F (α⊗m). We conclude that
F is surjective.

To show injectivity, first observe that if F (α ⊗m) = 0, then m = 0. Indeed, assume
m 6= 0. Then m ∈ eM \ {0} implies that eM = mM and hence mm∗ = e. Thus
0 = αmm∗ = αe = α. This contradiction shows that m = 0 and hence only 0 maps to 0.
Next suppose that F (α⊗m) = F (β ⊗ n) with m,n ∈ eM \ {0}. Then αm = βn. From
mm∗ = e, we obtain 0 6= α = αe = αmm∗ = βnm∗ and nm∗ ∈ eMe \ {0} = Ge. Then
e = nm∗mn∗ and so nm∗m = nm∗mn∗n = en = n. Therefore, α ⊗ m = βnm∗ ⊗m =
β ⊗ nm∗m = β ⊗ n completing the proof that F is injective.

This theorem shows that the study of (0-)transitive representations of finite inverse
monoids reduces to the case of groups. It also reduces the classification of primitive inverse
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transformation monoids to the case of permutation groups.

Corollary 5.7. Let (Ω,M) be a primitive finite transformation monoid with M an inverse
monoid. Then either (Ω,M) is a primitive permutation group, or it is 0-transitive and
Ge = {e} for any non-zero idempotent e of the unique 0-minimal ideal of M . In the latter
case, (Ω,M) ∼= (eM,M).

Proof. A primitive transformation monoid is either transitive or 0-transitive (Proposi-
tion 5.1). By Theorem 5.6, if (Ω,M) is transitive, then it is a primitive permutation
group. Otherwise, the theorem provides an isomorphism (Ω,M) ∼= (Ωe \ {0}⊗Ge

eM,M)
where e is a non-zero idempotent in the 0-minimal ideal of M . Suppose that |Ge| > 1.
Since Ωe \ {0} is a faithful Ge-set, we conclude |Ωe \ {0}| > 1. Functoriality of the tensor
product yields a non-injective, surjective M-set morphism

(Ω,M) −→ ({∗} ⊗Ge
eM,M) ∼= (Ge\eM,M).

As 0 and e are in different orbits of Ge, this morphism is non-trivial. This contradiction
establishes that Ge is trivial. We conclude that (Ω,M) ∼= (eM,M) by Proposition 4.8.

Remark 5.8. A finite primitive transformation monoid (Ω,M) can only have a non-trivial
automorphism group G if M is a group. Indeed, consideration of G\Ω shows that either
G is trivial or transitive. But if G is transitive, then M is a monoid of endomorphisms of
a finite transitive G-set and hence is a permutation group.

6 Orbitals

Let us recall that if (Ω, G) is a transitive permutation group, then the orbits of G on
Ω2 = Ω × Ω are called orbitals. The diagonal orbital ∆ is called the trivial orbital.
The rank of G is the number of orbitals. For instance, G has rank 2 if and only if G
is 2-transitive. Associated to each non-trivial orbital O is an orbital digraph Γ(O) with
vertex set Ω and edge set O. Moreover, there is a vertex transitive action of G on Γ(O). A
classical result of D. Higman is that the weak and strong components of an orbital digraph
coincide and that G is primitive if and only if each orbital digraph is connected [26, 18].
The goal of this section is to obtain the analogous results for transformation monoids.
The inspiration for how to do this comes out of Trahtman’s paper [73] on the Černý
conjecture for aperiodic automata. He considers there certain strong orbits of M on Ω2

and it turns out that these have the right properties to play the role of orbitals.
After coming up with the definition of orbital presented below, I did an extensive

search of the literature with Google and found the paper of Scozzafava [65]. In this paper,
if (Ω,M) is a finite transformation monoid, then a minimal strong orbit is termed an
orbitoid. Scozzafava then views the orbitoids of M on Ω2 as the analogue of orbitals. He
provides two pieces of evidence to indicate that his notion of orbital is “correct”. The
first is that the number of orbitoids of M on Ω2 is to equal the number of orbitoids of
a point stabilizer on Ω, generalizing the case of permutation groups. The second is that
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from an orbitoid of Ω2, one obtains an action of M on a digraph by graph endomor-
phisms. However, this approach does not lead to a generalization of Higman’s theorem
characterizing primitivity of permutation groups in terms of connectedness of non-trivial
orbital digraphs. Suppose for instance that G is a transitive permutation group on Ω and
M consists of G together with the constant maps on Ω. Then the unique orbitoid of M
on Ω2 is the diagonal ∆ and so one has no non-trivial orbitals in the sense of [65]. On
the other hand, it is easy to see that M is primitive if and only if G is primitive. In fact,
it is clear that if M contains constant maps, then there is no non-trivial digraph on Ω
preserved by M if we use the standard notion of digraph morphism. Our first step is to
define the appropriate category of digraphs in which to work.

6.1 Digraphs and cellular morphisms

A (simple) digraph Γ consists of a set of vertices V and an anti-reflexive relation E on
V × V . If v, w ∈ V , then there is an edge from v to w, denoted (v, w), if (v, w) ∈ E. A
walk p of length m in a digraph is a sequence of vertices v0, v1, . . . , vm such that, for each
0 6 i 6 m− 1, one has (vi, vi+1) is an edge, or vi = vi+1. In particular, for each vertex v,
there is an empty walk of length 0 consisting of only the vertex v. A walk is called simple
if it never visits a vertex twice. The walk p is closed if v0 = vm. A closed non-empty walk
is called a cycle if the only repetition occurs at the final vertex. If v0, v1, . . . , vm is a walk,
then a deletion is a removal of a subwalk vi, vi+1 with vi = vi+1. A walk that admits no
deletions is called non-degenerate; we consider empty walks as non-degenerate. Deletion
is confluent and so from any walk v0, . . . , vm, we can obtain a unique non-degenerate walk
(v0, . . . , vm)∧ by successive deletions (the resulting path may be empty).

Define a preorder on the vertices of Γ by putting v 6 w if there is a walk from w
to v. Then the symmetric-transitive closure ≃ of 6 is an equivalence relation on the
vertices. If this relation has a single equivalence class, then the digraph Γ is said to be
weakly connected or just connected for short. In general, the weak components of Γ are
the maximal weakly connected subgraphs of Γ. They are disjoint from each other and
have vertex sets the ≃-equivalence classes (with the induced edge sets). The digraph Γ
is strongly connected if v 6 w and w 6 v hold for all vertices v, w. In general, the strong
components are the maximal strongly connected subgraphs. A strong component is said
to be trivial if it contains no edges; otherwise it is non-trivial. A digraph is said to be
acyclic if all its strong components are trivial. In this case, the preorder 6 is in fact a
partial order on the vertex set. It is easy to see that if a strong component is non-trivial,
then each of its edges belongs to a cycle. Conversely, a digraph in which each edge belongs
to a cycle is strongly connected. In particular, a digraph is acyclic if and only if it contains
no cycles, whence the name.

Usually morphisms of digraphs are required to send edges to edges, but we need to
consider here a less stringent notion of morphism. Namely, we allow maps with degenera-
cies, i.e., that map edges to vertices. More precisely, if Γ = (V,E) and Γ′ = (V ′, E ′) are
digraphs, then a cellular morphism is a map f : V −→ V ′ such that if (v, w) ∈ E, then
either f(v) = f(w) or (f(v), f(w)) ∈ E ′. The reason for the term “cellular” is that if we
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view graphs as 1-dimensional CW-complexes, then it is perfectly legal to map a cell to
a lower dimensional cell. If p = v0, . . . , vm is a walk in Γ, then f(p) = f(v0), . . . , f(vm)
is a walk in Γ′; however, non-degenerate walks can be mapped to degenerate walks. It is
trivial to see that if f : Γ −→ Γ′ is a morphism, then f takes weak components of Γ into
weak components of Γ′ and strong components of Γ into strong components of Γ′.

A cycle C in a digraph Γ is minimal if it has minimal length amongst all cycles of Γ.
Minimal cycles exist in non-acyclic digraphs and have length at least 2 because we do not
allow loop edges.

Proposition 6.1. Let f : Γ −→ Γ be a cellular endomorphism of Γ and let C be a minimal
cycle of Γ. Then either f(C) is a minimal cycle or f(C)∧ is empty.

Proof. Let m be the length of C and suppose f(C)∧ is non-empty. Then f(C)∧ is a closed
path of length at most m. If it is not a cycle, then it contains a proper subwalk that is a
cycle of length smaller than the length of C, a contradiction. Thus f(C)∧ is a cycle. But
then minimality of C implies that f(C)∧ has length m. Thus f(C) = f(C)∧ is a minimal
cycle.

By an action of a monoid M on a digraph Γ = (V,E), we mean an action by cellular
morphisms. In other words, M acts on V in such a way that the reflexive closure of E is
stable for the action of M . We say the action is vertex transitive if M is transitive on V ;
we say that it is edge transitive if either M acts transitively on E or M acts 0-transitively
on (E ∪ ∆)/∆ where ∆ = {(v, v) | v ∈ V } is the diagonal. Equivalently, for each pair of
edges e, f ∈ E, there is an element m ∈ M with em = f where in the setting of monoid
actions on digraphs, we shall use the notation of right actions.

Lemma 6.2. Suppose that Γ is a non-acyclic digraph admitting an edge transitive monoid
M of cellular endomorphisms. Then every edge of Γ belongs to a minimal cycle.

Proof. Let C be a minimal cycle of Γ and fix an edge e of C. Suppose now that f is an
arbitrary edge of Γ. By edge transitivity, there exists m ∈M with em = f . Since (Cm)∧

is non-empty (it contains the edge f), it follows that Cm is minimal by Proposition 6.1.
This completes the proof.

An immediate corollary of the lemma is the following result.

Corollary 6.3. Suppose that Γ is a digraph admitting an edge transitive monoid of cel-
lular endomorphisms. Then either Γ is acyclic or each weak component of Γ is strongly
connected.

Proof. If Γ is not acyclic, then Lemma 6.2 shows that each edge of Γ belongs to a cycle.
It is then immediate that each weak component is strongly connected (since the relation
6 is symmetric in this case).
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6.2 Orbital digraphs

Suppose now that (Ω,M) is a transitive transformation monoid. Then M acts on Ω2 =
Ω × Ω by (α, β)m = (αm, βm). Notice that ∆ = {(α, α) | α ∈ Ω} is a (minimal) strong
orbit. We call ∆ the trivial orbital of M . A strong orbit O 6= ∆ is an orbital if it is
minimal in the poset (Ω2/M) \ {∆}, or equivalently if it is 0-minimal in Ω2/∆. Such
orbitals are called non-trivial. This coincides with the usual group theoretic notion when
M is a group [26, 18]. Non-trivial orbitals were first studied by Trahtman [73] under a
different name in the context of the Černý conjecture. The number of orbitals of M is
called the rank of M because this is the well-established terminology in group theory.
From now on we assume that Ω is finite in this section.

For permutation groups, it is well known [26, 18] that the number of orbitals is equal
to the number of suborbits (recall that a suborbit is an orbit of the point stabilizer). This
is not the case for transformation monoids. For example, if Ω is a finite set of size n and
M consists of the identity map and the constant maps, then there are n2 −n+1 orbitals,
which is larger than the number of points of Ω.

If O is a non-trivial orbital, then the corresponding orbital digraph Γ(O) has vertex
set Ω and edge set O. Since O is a strong orbit, it follows that M acts edge transitively
on Γ(O) by cellular morphisms. Hence we have the following immediate consequence of
Corollary 6.3.

Theorem 6.4. Let (Ω,M) be a transformation monoid and let O be a non-trivial orbital.
Then the orbital digaph Γ(O) is either acyclic or each weak component of Γ(O) is strongly
connected.

It was shown by Trahtman [73] that if M is aperiodic, then Γ(O) is always acyclic
(using different terminology: he speaks neither of digraphs nor orbitals). Here we recall
that a finite monoid M is aperiodic if each of its maximal subgroups Ge with e ∈ E(M)
is trivial, or equivalently, if M satisfies an identity of the form xn = xn+1. On the
other hand, if M is a non-trivial group, then each weak component of Γ(O) is strongly
connected [26, 18].

Let O be a non-trivial orbital. Then M either acts transitively on O (if it is a minimal

strong orbit) or 0-transitively on the set Õ = (O ∪∆)/∆. In either case, the action need
not be faithful. For example if I(M) consists of the constant maps on Ω, then all of I(M)

acts as the zero map on Õ. Let M(O) be the faithful quotient. If M is aperiodic, then
so is M(O).

Theorem 6.5. Let (Ω,M) be a finite transformation monoid and suppose that O is a
non-trivial orbital.

1. If M acts transitively on O, then Γ(O) is acyclic if Ge is trivial for e ∈ E(I(M(O))).

2. If M acts 0-transitively on Õ and e ∈ E(I) \ {0} where I is the 0-minimal ideal of
M(O), then Γ(O) is acyclic if Ge is trivial.
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Proof. We handle (2) only as (1) is similar, but simpler. Suppose that Ge is trivial, but
that Γ(O) is not acyclic. Since Ge is transitive on Oe \ ∆, we have |Oe \ ∆| = 1. Let
(α, β) ∈ Oe \ ∆. By Lemma 6.2, (α, β) belongs to some minimal cycle C. Let m ∈ M
with m mapping to e in M(O). Then (α, β)m = (α, β) and so Cm is a minimal cycle by
Proposition 6.1. If X is the set of edges of C, this yields that Xe is a subset of Oe \∆ of
size greater than 1. This contradiction shows that Γ(O) is acyclic.

Theorem 6.5 admits the following corollary, due to Trahtman with a different formu-
lation.

Corollary 6.6 (Trahtman [73]). Let (Ω,M) be a transitive finite transformation monoid
with M aperiodic. The each non-trivial orbital digraph Γ(O) is acyclic and hence defines
a non-trivial partial order on Ω that is stable for the action of M .

If (Ω, G) is a finite transitive permutation group, then a classical result of D. Higman
says that G is primitive if and only if each non-trivial orbital digraph is strongly connected
(equals weakly connected in this context) [26, 18]. We now prove the transformation
monoid analogue. It is this result that justifies our choice of the notion of an orbital.

Theorem 6.7. A finite transitive transformation monoid (Ω,M) is primitive if and only
if each of its non-trivial orbital digraphs is weakly connected.

Proof. Suppose first that (Ω,M) is primitive and let O be a non-trivial orbital. Then the
partition of Ω into the weak components of Γ(O) is a non-trivial congruence. Indeed, as
M acts by cellular morphisms, it preserves the weak components; moreover, Γ(O) has at
least one edge so not all weak components are trivial. It follows by primitivity that there
is just one weak component, i.e., Γ(O) is weakly connected.

Conversely, assume that each non-trivial orbital digraph is weakly connected and let
≡ be a non-trivial congruence on Ω. Then ≡ is an M-invariant subset of Ω2 strictly
containing the diagonal ∆. By finiteness, we conclude that ≡ contains a minimal strong
orbit of Ω2 \ {∆}, that is, there is a non-trivial orbital O with O ⊆ ≡. The weak
components of Γ(O) are the equivalence classes of the equivalence relation generated by
O and hence each weak component of Γ(O) is contained in a single ≡-class. But Γ(O)
is weakly connected, so Ω is contained in a single ≡-class, that is, ≡ is not a proper
congruence. This completes the proof that (Ω,M) is primitive.

As a corollary, we obtain the following.

Corollary 6.8. Let (Ω,M) be a primitive finite transitive transformation monoid with
M aperiodic. Then Ω admits a stable connected partial order.

Later on, it will be convenient to have a name for the set of weak orbits of M on Ω2.
We shall call them weak orbitals.
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7 Transformation modules

Our goal now is to study the representations associated to a transformation monoid.
The theory developed here has a different flavor from the group case because there is an
interesting duality that arises.

Fix for this section a finite transformation monoid (Ω,M) and a fieldK of characterstic
0. Let KM be the corresponding monoid algebra. Associated to the M-set Ω are a
right KM-module and a left KM-module together with a dual pairing. This pairing has
already been implicitly exploited in a number of papers in the Černý conjecture literature,
e.g., [27, 39, 69, 68].

The transformation module associated to (Ω,M) is the right KM-module KΩ. That
is we take a K-vector space with basis Ω and extend the action of M on Ω linearly:
formally, for m ∈M , define

(
∑

ω∈Ω

cωω

)
m =

∑

ω∈Ω

cωωm.

The dual transformation module is the space KΩ of K-valued functions on Ω with the
left KM-module structure given by mf(ω) = f(ωm) for m ∈M and f : Ω −→M . When
M is a group, these two representations are the same under the natural correspondence
between left modules and right modules, but for monoids these modules are simply dual
to each other.

There is a non-degenerate pairing 〈 , 〉 : KΩ ×KΩ −→ K given by

〈α, f〉 = f(α) (7.1)

for α ∈ Ω. The pairing on general linear combinations is given by
〈
∑

α∈Ω

cαα, f

〉
=
∑

α∈Ω

cαf(α).

Observe that KΩ has basis the Dirac functions δω with ω ∈ Ω. If m ∈ M , then one
verifies that

mδω =
∑

α∈ωm−1

δα

and more generally if S ⊆ Ω and IS denotes the indicator (or characteristic) function of
S, then

mIS = ISm−1 .

Intuitively, the action of M on KΩ is by inverse images and this is why KΩ and KΩ

contain the same information in the case of groups.
The following adjointness holds.

Proposition 7.1. The left and right actions of m ∈M on KΩ and KΩ are adjoint. That
is, for v ∈ KΩ, f ∈ KΩ and m ∈M , one has

〈vm, f〉 = 〈v,mf〉
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Proof. It suffices by linearity to handle the case v = α ∈ Ω. Then

〈αm, f〉 = f(αm) = mf(α) = 〈α,mf〉,

as required.

As a consequence, we see that KΩ is dual to KΩ, that is,

KΩ ∼= homK(KΩ, K)

as left KM-modules. We remark that the bases Ω and {δω | ω ∈ Ω} are dual with respect
to the pairing (7.1).

If |Ω| = n and we fix an ordering Ω = {ω1, . . . , ωn}, then it is convenient to identify
elements of KΩ with row vectors in Kn and elements of KΩ with column vectors (by
associating f with the column vector (f(ω1), . . . , f(ωn))

T ). The dual pairing then turns
into the usual product of a row vector with a column vector. If ρ : M −→ Mn(K) is the
matrix representation afforded by the right KM-module KΩ, then the action on column
vectors is the matrix representation afforded by the left KM-module KΩ.

We mention the following trivial observation.

Proposition 7.2. Let (Ω,M) be a finite transformation monoid and O1, . . . ,Os be the
weak orbits of M . Then KΩ ∼=

⊕s
i=1KOi and KΩ ∼=

⊕s
i=1K

Oi where we identify KOi

with those functions Ω −→ K supported on Oi, for 1 6 i 6 s.

Thus for most purposes, it suffices to restrict our attention to the weakly transitive
case.

7.1 The subspace of M-invariants

Let V be a left/right KM-module. Then V M denotes the subspace of M-invariants,
that is, of all vectors fixed by M . If K is the trivial left/right KM-module, then V M ∼=
homKM(K, V ). Unlike the case of groups, it is not in general true that homKM(K, V ) ∼=
homKM(V,K). In fact, we shall see in a moment that in most cases KΩM = {0}, whereas
the K-dimension of homKM(KΩ, K) is the number of weak orbits of M . It is also the
case that the module KΩ is almost never semisimple and quite often the multiplicity of
the trivial module as a composition factor of KΩ is strictly greater than the number of
weak orbits of M .

The following result generalizes a standard result from permutation group theory.

Proposition 7.3. Consider homKM(KΩ, K) where K is given the structure of a trivial
KM-module and homM(Ω, K) where K is given the structure of a trivial M-set. Then
there are K-vector space isomorphisms

homKM(KΩ, K) ∼= homM(Ω, K) = (KΩ)M ∼= Kπ0(Ω). (7.2)

More precisely, f ∈ (KΩ)M if and only if it is constant on weak orbits of Ω. Consequently,
dimK homKM(KΩ, K) = dimK(KΩ)M is the number of weak orbits of M on Ω.
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Proof. A K-linear map T : KΩ −→ K is the same thing as a map Ω −→ K because Ω
is a basis for KΩ. Clearly, T is a KM-module morphism if and only if the associated
mapping Ω −→ K is an M-set morphism. This provides the first isomorphism of (7.2).
Proposition 2.2 shows that f : Ω −→ K is an M-set morphism if and only if it is constant
on weak orbits yielding the isomorphism of the second and fourth terms of (7.2). Finally,
observe that f : Ω −→ K is an M-set map if and only if f(ωm) = f(ω) for all ω ∈ Ω,
m ∈ M . But this is equivalent to asking mf = f for all m ∈ M , i.e., f ∈ (KΩ)M . This
completes the proof.

The situation for KΩM is quite different. It is well known that a finite monoid M
admits a surjective maximal group image homomorphism σ : M −→ G(M) where G(M)
is a finite group. This map is characterized by the universal property that if ϕ : M −→ H
is a homomorphism from M into a group H , then there is a unique homomorphism
ψ : G(M) −→ H so that

M
σ
//

ϕ
##F

FFFF
FF

FF
G(M)

ψ

��

H

commutes. Using the fact that a finite monoid is a group if and only if it has a unique
idempotent, one can describe G(M) as the quotient of M by the least congruence for
which all idempotents are equivalent and σ as the quotient map. Alternatively, it is the
quotient by the intersection of all congruences on M whose corresponding quotient is a
group.

Proposition 7.4. If (Ω,M) is a transformation monoid, then KΩM 6= 0 if and only if
there is an M-invariant subset Λ fixed by all idempotents of M .

Proof. Suppose first that Λ is an M-invariant subset fixed by all idempotents of M . Then
Λ is naturally a G(M)-set and KΛM = KΛG(M). Group representation theory then yields
that dimK KΛG(M) is the number of orbits of G(M) on Λ, and so is non-zero. Thus
KΩM 6= 0.

Next suppose that v ∈ KΩM . Then ve = v for all idempotents e ∈ E(M), so
v ∈

⋂
e∈E(M)KΩe. Suppose that v =

∑
λ∈Λ cλλ with cλ 6= 0 for all λ ∈ Λ. Then Λ ⊆ Ωe

for all e ∈ E(M). Also, if m ∈ M , then vm = v implies that Λm = Λ and so Λ is
M-invariant.

As corollaries, we obtain the following results.

Corollary 7.5. Suppose that all elements of I(M) have the same image Λ. Then KΩM 6=
0.

Proof. Let e be an idempotent of M and choose m ∈ I(M). Then me ∈ I(M) and so
Λ = Ωme ⊆ Ωe. Thus all idempotents of M fix Λ. Since minM(Ω) = {Λ}, it follows that
Λ is M-invariant. The result now follows from Proposition 7.4.
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The next corollary shows that in the transitive setting only groups admit non-trivial
invariants.

Corollary 7.6. Suppose that (Ω,M) is transitive. Then KΩM 6= 0 if and only if M is
a group. In particular, if (Ω,M) is transitive, then the module KΩ is semisimple if and
only if M is a group.

Proof. If M is a group, then dimK KΩM is the number of orbits of M on G and hence is
non-zero. For the converse, suppose KΩM 6= 0. Then Proposition 7.4 implies that there is
an M-invariant subset Λ ⊆ Ω such that every idempotent of M fixes Λ. But transitivity
implies Λ = Ω. Thus the unique idempotent of M is the identity. We conclude that M is
a group.

The final statement follows because if KΩ is semisimple, then homKM(KΩ, K) 6= 0
(by Proposition 7.3) implies that the trivial representation is a subrepresentation of KΩ.
But this means that KΩM 6= 0 and so M is a group. Conversely, if M is a group, then
KΩ is semisimple by Maschke’s theorem.

Let us now interpret some of these results for associated actions of M . A K-bilinear
form B : KΩ ×KΩ −→ K is said to be M-invariant if

B(vm,wm) = B(v, w)

for all v, w ∈ KΩ and m ∈ M . Let bilK(KΩ) be the space of K-bilinear forms on KΩ.
There is a natural left KM-module structure on bilK(KΩ) given by putting (mB)(v, w) =
B(vm,wm). Then bilK(KΩ)M is the space of M-invariant K-bilinear forms. As K-
bilinear forms are determined by their values on a basis, it is easy to see that bilK(KΩ) ∼=
KΩ×Ω as KM-modules. Moreover, bilK(KΩ)M ∼= (KΩ×Ω)M . Thus we have proved the
following.

Proposition 7.7. The dimension of the space of M-invariant K-bilinear forms on KΩ
is the number of weak orbitals of (Ω,M).

Let Ω{2} denote the subset of P (Ω) consisting of all 1- and 2-element subsets. Then
Ω{2} is M-invariant and can be identified with the quotient of Ω2 by the equivalence
relation putting (α, ω) ≡ (ω, α) for all α, ω. It is then easy to see that KΩ{2}

is isomorphic

as a KM-module to the space of symmetric K-bilinear forms on KΩ and hence (KΩ{2}
)M

is the space of M-invariant symmetric K-bilinear forms on KΩ. Thus we have proved:

Proposition 7.8. The dimension of the space of M-invariant symmetric K-bilinear forms
on KΩ is the number of weak orbits of M on Ω{2}.

7.2 The augmentation submodule

If (Ω,M) is a finite transformation monoid, then one always has the augmentation map
ε : KΩ −→ K given by

ε(v) = 〈v, IΩ〉.
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If v =
∑

ω∈Ω cωω, then ε(v) =
∑

ω∈Ω cω. Clearly IΩ is constant on weak orbits and so ε is a
KM-module homomorphism (where K is given the trivial KM-module structure). Thus
ker ε is a KM-submodule, called the augmentation submodule, and is denoted Aug(KΩ).
A key fact, which plays a role in the Černý conjecture literature, is that m ∈ M is a
constant map if and only if m annihilates the augmentation submodule. Indeed Aug(KΩ)
consists of those vectors v =

∑
ω∈Ω cωω such that

∑
ω∈Ω cω = 0. If we fix ω0 ∈ Ω, then

the set of differences ω− ω0 where ω runs over Ω \ {ω0} is a basis for Aug(KΩ). Thus m
annihilates Aug(Ω) if and only if ωm = ω0m for all ω ∈ Ω, i.e., m is a constant map. This
has a generalization, due to the author and Almeida [2] (inspired by Rystsov [60]), that
we reproduce here for the reader’s convenience. First we need some notation. If X ⊆ Ω,
let [X] =

∑
ω∈X ω.

Proposition 7.9. Let (Ω,M) be a transformation monoid of degree n and min-rank r.
Let KΩr be the subspace of Aug(KΩ) spanned by the differences [X] − [Y ] with X, Y ∈
minM(Ω). Then KΩr is a KM-submodule with dimKKΩr 6 n − r. Moreover, if M is
transitive, then m ∈M annihilates KΩr if and only if m ∈ I(M).

Proof. First observe that ε([X] − [Y ]) = r − r = 0 for X, Y ∈ minM(Ω) and so KΩr ⊆
Aug(KΩ). The M-invariance of KΩr follows from the fact that minM(Ω) is M-invariant
and Proposition 3.10. Fix s ∈ I(M) and let ker s = {P1, . . . , Pr}. Proposition 3.10 shows
that if X ∈ minM(Ω), then |X ∩ Pi| = 1 for i = 1, . . . , r. But |X ∩ Pi| = 〈[X], IPi

〉
and so KΩr ⊆ Span{IPi

| 1 6 i 6 r}⊥. Since {P1, . . . , Pr} is a partition, the indicator
functions IP1

, . . . , IPr
trivially form a linearly independent subset of KΩ. As our pairing

is non-degenerate, we may conclude that dimK KΩr 6 n− r.
Suppose now that (Ω,M) is transitive. Then if m ∈ I(M), trivially Xm = Ωm for

any X ∈ minM(Ω). Thus m annihilates KΩr. Suppose that m /∈ I(M). Then m has rank
at least r + 1. Choose X ∈ minM(Ω). Then |Xm| = r and hence Xm is a proper subset
of Ωm. Let α ∈ Ωm \Xm and suppose that α = βm. By transitivity of I(M) on Ω, we
can find n ∈ I(M) with β ∈ Ωn = Y . Then ([Y ] − [X])m = [Y ]m − [X]m 6= 0 as the
coefficient of α in [Y ]m is non-zero, whereas the coefficient of α in [X]m is zero. Thus m
does not annihilate KΩr, completing the proof.

Of course, when the min-rank is 1 and (Ω,M) is transitive, then I(M) consists of the
constant maps and KΩ1 = Aug(KΩ). On the other extreme, if the min-rank of (Ω,M)
is n, that is, (Ω,M) is a permutation group, then KΩn = {0}.

Our next result generalizes a result from [7] for permutation groups. Let us continue
to assume that K is a field of characteristic 0. Then a transformation monoid (Ω,M)
is said to be a KI-monoid if Aug(KΩ) is a simple KM-module. It is well known that
for permutation groups being a CI-group is equivalent to 2-transitivity and being an
RI-group is equivalent to 2-homogeneity [6]. The case of QI-groups has been studied
in [7, 25, 6]. The results of [7] imply that a KI-group (Ω, G) is primitive and if f is any
non-invertible map on Ω, then 〈G, f〉 contains a constant map. Here is the general case.

Theorem 7.10. Let (Ω,M) be a KI-monoid. Then:

1. (Ω,M) is primitive;
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2. If in addition (Ω,M) is transitive, then either it is a permutation group or contains
a constant map.

Proof. Let ≡ be a non-trivial proper congruence on Ω. Functoriality of the transformation
module construction and the observation that the trivial module K is the transformation
module associated to the trivial action of M on a one-point set yield the commutative
diagram

KΩ
ψ

//

ε
!!C

C
C

C
C

C
C

C
K[Ω/≡]

ε′
zzvvvvvvvvv

K

with ψ induced by the quotient map and with ε, ε′ the augmentations. As ≡ is proper and
non-trivial it follows that kerψ is a non-zero proper KM-submodule of ker ε = Aug(KΩ),
contradicting that (Ω,M) is a KI-monoid. Thus (Ω,M) is primitive.

To prove the second item, assume by way of contradiction that the min-rank r of
(Ω,M) satisfies 1 < r < n. Since r < n, minM(Ω) has at least two elements and so
KΩr 6= 0. On the other hand, Proposition 7.9 shows that KΩr is a KM-submodule of
Aug(KΩ) of dimension at most n − r < n − 1 = dim Aug(KΩ). This contradicts that
(Ω,M) is a KI-monoid.

7.3 Partial transformation modules

Next we consider the case of M-sets with zero. Even if we start with a transformation
monoid (Ω,M), consideration of the quotient Ω/Λ by an M-invariant subset Λ will lead
us to this case. So suppose that (Ω,M) is a finite transformation monoid with Ω an
M-set with zero. For the moment we shall denote the zero of Ω by ζ to distinguish it
from the zero element of KΩ. Define the partial transformation module (or contracted
transformation module)

K0Ω = KΩ/Kζ.

This is indeed a KM-module because Kζ is a KM-submodule. As a K-vector space,
K0Ω has basis the cosets α +Kζ with ζ 6= α ∈ Ω. Thus from now on we identify ζ with
the zero of K0Ω and return to using 0 for the distinguished sink of Ω. We identify α with
the coset α +Kζ for 0 6= α ∈ Ω. Said differently, we can view K0Ω as a K-vector space
with basis Ω \ {0}. The action of m ∈ M on Ω is extended linearly, but where we now
identify the zero of Ω with the zero of KΩ0.

An alternate viewpoint is the following (retaining the above notation). The augmen-
tation

ε : KΩ −→ K

splits via the map K −→ KΩ given by c 7→ cζ . Thus

KΩ = Aug(KΩ) ⊕Kζ ∼= Aug(KΩ) ⊕K
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as a KM-module and so K0Ω = KΩ/Kζ ∼= Aug(KΩ). The natural basis to take for
Aug(KΩ) consists of all differences ω − ζ with ω ∈ Ω \ {ζ}. Then the action of m ∈ M
is given by m(ω − ζ) = mω − ζ and so this provides another model of K0Ω.

If M contains the zero map z, then z acts on K0Ω as a zero and so K0Ω is naturally a
module for the contracted monoid algebra K0M = KM/Kz. Therefore, we will continue
to use 0 to denote the zero map on Ω and we shall identify the zero of M with the zero
of K0M and view K0Ω as a K0M-module. The representations of K0M are exactly the
representations of M that send 0 to the zero matrix. In particular, the trivial KM-module
K is not a K0M-module and hence K0Ω does not contain the trivial representation as a
constituent. We record this as a proposition.

Proposition 7.11. Let (Ω,M) be transformation monoid where Ω is an M-set with zero
and suppose that M contains the zero map. Then the trivial module is not a constituent
of K0Ω and in particular K0Ω

M = 0.

Notice that if Ω is an M-set and Λ is an M-invariant subset, then there is an isomor-
phism KΩ/KΛ ∼= K0[Ω/Λ]. We shall use both notations as convenient.

Returning to the case of a transformation monoid (Ω,M) where Ω is an M-set with
zero, we would like the analogue of the dual pairing (7.1). Let us again momentarily use
the notation ζ for the zero of Ω. Let KΩ

0 be the subspace of all function f : Ω −→ K such
that f(ζ) = 0. This is a KM-submodule because f(ζ) = 0 implies mf(ζ) = f(ζm) =
f(ζ) = 0 for all m ∈M . As KΩ

0 is the annihilator of Kζ with respect to the pairing (7.1),
it follows that the pairing descends to a non-degenerate dual pairing K0Ω × KΩ

0 → K
given by

〈α, f〉 = f(α)

for α ∈ Ω \ {0} which is compatible with the KM-module structure. Alternatively, if
we identify K0Ω with Aug(KΩ), then we can just restrict the original pairing (7.1). We
now return to writing 0 for ζ and identify KΩ

0 with KΩ\{0}. The left action of m ∈ M on
f : KΩ\{0} −→ K is then given by

mf(α) =

{
f(αm) αm 6= 0

0 else.

The dual basis to Ω \ {0} consists of the functions δα with α ∈ Ω \ {0}. If M contains the
zero map z, then z annihilates KΩ

0 (viewed as a subspace of KΩ) and hence KΩ
0 is a left

K0M-module.
Let us return to the case of a finite transformation monoid (Ω,M) (with or without

zero). Consider a strong orbit Os(ω) of M on Ω. Let Υ(ω) = ωM \ Os(ω). Then ωM is
an M-invariant subset of Ω and Υ(ω) is an M-invariant subset of ωM . Thus we can form
the quotient 0-transitive M-set ωM/Υ(ω) and hence the partial transformation module
K0[ωM/Υ(ω)] ∼= KωM/KΥ(ω) (where if Υ(ω) = ∅, we interpret ωM/Υ(ω) = ωM and
KΥ(ω) = 0). This module has a basis in bijection with Os(ω). Thus we can put a right
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KM-module structure on KOs(ω) by putting, for α ∈ Os(ω),

αm =

{
α ·m α ·m ∈ Os(ω)

0 α ·m /∈ Os(ω)

where for the moment we use · to indicate the action in Ω. With this module structure,
we have a KM-isomorphism KOs(ω) ∼= K0[ωM/Υ(ω)]. If one considers an unrefinable
series of M-invariant subsets of Ω as per (2.1), then one obtains a series

KΩ = KΩ0 ⊃ KΩ1 ⊃ KΩ2 ⊃ · · · ⊃ KΩk ⊃ {0}

with successive quotients the modules of the form KOs(ω) with ω ∈ Ω. In particular,
every irreducible constituent of KΩ is a constituent of some KOs(ω) with ω ∈ Ω.

8 A brief review of monoid representation theory

In this section we briefly review the theory of irreducible representations of finite monoids.
This theory was first developed by Munn, Ponizovsky and Clifford [22, Chapter 5]. It was
further refined and elaborated on by Rhodes and Zalcstein [58], Lallement and Petrich [44]
and McAlister [49]. In [31] a modern functorial approach was adopted based on Green’s
theory [33, Chapter 6]; more in depth information can be found in [48]. See also [37] for
the analogue over semirings. The advantage of this approach is that it avoids reliance on
technical semigroup theory and at the same time clarifies the situation by highlighting
functoriality and adjunctions.

Fix a finite monoid M . If e ∈ E(M), define Ie = {m ∈ M | e /∈ MmM} and
observe that Ie is an ideal of M . We follow the obvious conventions when Ie = ∅, that
is, e ∈ E(I(M)). Define Ae = KM/KIe ∼= K0[M/Ie]. Stability immediately yields that
Ie ∩ eMe = eMe \ Ge. Thus eAee ∼= KGe. Hence by Green’s theory [33, 31] there are
induction, restriction and coinduction functors between KGe-modules and Ae-modules.
Viewing the category of Ae-modules as a full subcategory of the category ofKM-modules,
we have the following functors:

Inde : mod-KGe −→ mod-KM

Rese : mod-KM −→ mod-KGe

Coinde : mod-KGe −→ mod-KM

defined by

Inde(V ) = V ⊗KGe
e(KM/KIe) = V ⊗KGe

K0[eM/eIe]

Rese(V ) = V e

Coinde(V ) = homKGe
((KM/KIe)e, V ) = homGe

(Me \ Iee, V ).

Moreover, we have the following results [31, 48].
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Proposition 8.1. Let e ∈ E(M). Let K be any field (not necessarily characteristic zero).

1. If V is a KM-module annihilated by Ie and W is a KGe-module, then there are
natural isomorphisms:

homKM(Inde(W ), V ) ∼= homKGe
(W,Rese(V ))

homKM(V,Coinde(W )) ∼= homKGe
(Rese(V ),W ).

2. The functors Rese Inde and Rese Coinde are naturally isomorphic to the identity
functor on mod-KGe.

3. The functors Inde, Rese and Coinde are exact and preserve direct sum decomposi-
tions. Moreover, Inde and Coinde preserve indecomposability.

Proof. We just sketch the proof. See [31,48,33] for details. The first part follows from the
classical adjunction between tensor products and hom functors once one observes that
Rese(V ) ∼= homAe

(eAe, V ) ∼= V ⊗Ae
Ae. The second part is direct from Green-Morita

theory [33, Chapter 6]; see also [31]. Let us turn to the last part. The point here is that
eM \ eIe is a free left Ge-set and Me\ Iee is a free right Ge-set [57,22]. Thus e(KM/KIe)
and (KM/KIe)e are free KGe-modules and so Inde and Coinde are exact. As any additive
functor preserves direct sum decompositions it remains to consider indecomposability.

To see that these functors preserve indecomposability, let V be a KGe-module and
observe that (1) and (2) yield

homKM(Inde(V ), Inde(V )) ∼= homKGe
(V,Rese Inde(V )) ∼= homKGe

(V, V )

and in fact this isomorphism is a ring isomorphism. But a module is indecomposable if
and only if the only idempotents in its endomorphism algebra are 0 and 1. Thus V is
indecomposable if and only if Inde(V ) is indecomposable. The argument for Coinde(V )
is identical.

From the theory of Green [33, 31], if V is a simple KGe-module, then Inde(V ) has a
unique maximal submodule rad(Inde(V )) that can be described as the largest submodule
annihilated by e, or alternatively

rad(Inde(V )) = {v ∈ Inde(V ) | vme = 0, ∀m ∈M}.

The quotient Ṽ = Inde(V )/ rad(Inde(V )) is then a simple KM-module and Ṽ e ∼= V ; in

fact, the image of the projection Inde(V ) −→ Ṽ under the restriction functor Rese is
the identity as e annihilates rad(Inde(V )). It turns out that all simple KM-modules are
constructed in this way [31].

Theorem 8.2. Let K be a field and M a finite monoid. Choose a transversal of idem-
potents e1, . . . , em to the set of principal ideals generated by idempotents. Let Irr(KGei

)
contain one simple KGei

-module from each isomorphism class. Then the modules of the

form Ṽ = Indei
(V )/ rad(Indei

(V )) where V ∈ Irr(KGei
) and 1 6 i 6 m form a complete

set of representatives of the isomorphism classes of simple KM-modules.
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Recall that if V is a KM-module, then rad(V ) is the intersection of all the maximal
submodules of V . The quotient V/ rad(V ) is a semisimple module called the top of V ,
denoted top(V ).

The description of the radical of Indei
(V ) for V a simple KGei

-module generalizes.

Proposition 8.3. Let M be a finite monoid and e ∈ E(M). Suppose that K is a field of
characteristic zero and V is a KGe-module. Then

rad(Inde(V )) = {w ∈ Inde(V ) | wme = 0, ∀m ∈M} (8.1)

is the largest submodule of Inde(V ) annihilated by e.

Proof. Denote by U the right hand side of (8.1); it is clearly the largest KM-submodule
of Inde(V ) annihilated by e. Let V =

⊕s
i=1miVi be the decomposition of V into simple

KGe-modules. Then as

Inde(V ) ∼=

s⊕

i=1

mi Inde(Vi),

and Ṽi = Inde(Vi)/ rad(Inde(Vi)), we have an exact sequence of KM-modules

0 −→ rad(Inde(V )) −→ Inde(V ) →
s⊕

i=1

miṼi −→ 0.

Using the exactness of the restriction functor Rese and the fact that it maps the projection
Inde(Vi) −→ Ṽi to the identity map Vi −→ Vi, we see that 0 = Rese(rad(Inde(V ))) =
rad(Inde(V ))e. This shows that rad(Inde(V )) ⊆ U .

For the converse, let ϕ : Inde(V ) −→ W be an epimorphism of KM-modules with
W a simple KM-module. Then Ie annihilates W and so by the adjunction, we have a
non-zero morphism V −→ We and so We 6= 0. Now ϕ(U) is a submodule of W . If it is
non-zero, then ϕ(U) = W . But then We = ϕ(U)e = ϕ(Ue) = ϕ(0) = 0, a contradiction.
Thus U ⊆ kerϕ. As ϕ was arbitrary, we conclude that U ⊆ rad(Inde(V )).

A fact we shall use later is that

Inde(V )eKM = V ⊗KGe
e(KM/Ie)eKM = Inde(V )

because e(KM/Ie)e = KGe and V KGe = V .

9 The projective cover of a transformation module

From now on we assume that the characteristic of our field K is zero and we fix a finite
monoid M . An important special case of the above theory is when e ∈ E(I(M)). In this
case Ie = ∅ and so Inde(V ) = V ⊗KGe

eKM and Coinde(V ) = homGe
(Me, V ). Moreover,

the adjunctions of Proposition 8.1 hold for allKM-modules V . Observe that Inde(KGe) =
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KGe ⊗KGe
eKM = eKM is a projective KM-module (as KM = eKM ⊕ (1 − e)KM).

Let

KGe =
s⊕

i=1

diVi

be the decomposition of KGe into simple modules. Then the decomposition

eKM = Inde(KGe) =

s⊕

i=1

di Inde(Vi)

establishes that the Inde(Vi) are projective modules. Furthermore, Inde(Vi) is indecom-

posable by Proposition 8.1. Thus Inde(Vi) −→ Ṽi is the projective cover of the simple

module Ṽi. We recall here that if V is a module over a finite dimensional algebra A,
then the projective cover P of V is a projective module P together with an epimorphism
π : P −→ V such that π induces an isomorphism top(P ) −→ top(V ) [8]. Equivalently, it
is an epimorphism π : P −→ V with ker π ⊆ rad(P ). The projective cover of a module
is unique up to isomorphism [8]. The projective covers of the simple modules are the
projective indecomposables. We have thus proved:

Proposition 9.1. Let K be a field of characteristic zero and M a finite monoid. Let e ∈
E(I(M)) and assume that Vi is a simple KGe-module. Then the projection Inde(Vi) −→ Ṽi
is the projective cover of the simple KM-module Ṽi.

Note that if Λ is a right M-set and Ω is a bi-M-N -set, then K[Λ⊗M Ω] ∼= KΛ⊗KMKΩ
as a right KN -module, as is immediate from the universal property of tensor products.
In particular, if e ∈ E(I(M)) and Ω is a Ge-set, then one has K[inde(Ω)] ∼= Inde(KΩ).
Taking Ω to be the trivial Ge-set {∗}, we then have Inde(K) ∼= K[inde({∗})] = K({∗}⊗Ge

eM) = K(Ge\eM). Thus Proposition 9.1 has the following consequence.

Corollary 9.2. The projective cover of the trivial representation of KM is the augmenta-
tion map ε : K[Ge\eM ] −→ K where e ∈ E(I(M)). In particular, if (Ω,M) is a transitive
transformation monoid with the maximal subgroup of I(M) trivial, then KΩ is a projec-
tive indecomposable representation with simple top the trivial KM-module and radical
Aug(KΩ).

Proof. It just remains to verify the final statement. But Proposition 3.13 shows that in
this case Ω ∼= eM = Ge\eM .

Let A be any finite dimensional K-algebra and P a projective indecomposable with
corresponding simple module S = P/ rad(P ). Then it is well known that, for any A-
module V , the K-dimension of homA(P, V ) is the multiplicity of S as an irreducible
constituent of V [8]. Hence we have the reciprocity result:

Proposition 9.3. Suppose e ∈ E(I(M)) and Vi is a simple KGe-module. Let W be

a KM-module. Then the multiplicity of Ṽi as a constituent of W is the same as the
multiplicity of Vi as a constituent of Rese(W ) = We.
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Proof. Since Inde(Vi) is the projective cover of Ṽi, we have that the multiplicity of Ṽi in
W is

dimK homKM(Inde(Vi),W ) = dimK homKGe
(Vi,Rese(W ))

and this latter dimension is the multiplicity of Vi in We.

The advantage of this proposition is that one can then apply the orthogonality relations
of group representation theory [24] in order to compute the multiplicity. Applying this to
the special case of the trivial representation of KGe yields:

Corollary 9.4. Let (Ω,M) be a transformation monoid. The multiplicity of the trivial
KM-module as an irreducible constituent of KΩ is the number of orbits of Ge on Ωe
where e ∈ E(I(M)). This can be strictly larger than

dimK homKM(KΩ, K) = |π0(Ω)|.

Proof. By standard group representation theory, the multiplicity of the trivial represen-
tation of Ge in KΩe is the number of orbits of Ge on Ωe [24, 18, 26]. The final statement
follows from Proposition 7.3 and the example just after Proposition 2.12.

Next we want to establish the analogues of Propositions 9.1 and 9.3 for the case of
monoids with zero.

Proposition 9.5. Let M be a finite monoid with zero containing a unique 0-minimal
ideal I and let K be a field of characteristic zero. Let 0 6= e ∈ E(I) and suppose that V
is a simple KGe-module. Then Inde(V ) is a projective indecomposable KM-module and

the projection Inde(V ) −→ Ṽ is the projective cover. Moreover, if W is a K0M-module,

then the multiplicity of Ṽ as a constituent in W is the same as the multiplicity of V as a
constituent in We.

Proof. First observe that if z is the zero of M , then z and 1 − z are central idempotents
of KM and so we have an isomorphism of K-algebras

KM = (1 − z)KM ⊕ zK ∼= K0M ⊕K.

Thus K0M is a projective KM-module. But K0M = eK0M ⊕ (1− e)K0M and so eK0M
is a projective KM-module. Suppose that KGe =

⊕s

i=1 diVi is the decomposition into
simple KGe-modules. Then

eK0M = KGe ⊗KGe
eK0M = Inde(KGe) =

s⊕

i=1

di Inde(Vi)

and thus each Inde(Vi) is a projective module. Proposition 8.1 then yields that Inde(Vi)

is a projective indecomposable and hence the canonical projection Inde(Vi) −→ Ṽi is the
projective cover.

For the final statement, Proposition 8.1 provides the isomorphism

homKM(Inde(V ),W ) ∼= homKGe
(V,We).

The dimension of the left hand side is the multiplicity of Ṽ as a constituent of W , whereas
the dimension of the right hand side is the multiplicity of V as a constituent in We.
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An immediate corollary is the following.

Corollary 9.6. Let (Ω,M) be a 0-transitive finite transformation monoid such that Ge

is trivial for 0 6= e ∈ E(I) where I is the 0-minimal ideal of M . Then K0Ω is a projective
indecomposable KM-module.

Proof. We know that Ω ∼= eM from Proposition 4.8 and so K0Ω ∼= eK0M = Inde(K) and
hence is a projective indecomposable by Proposition 9.5.

In [67] it is proved that if (Ω,M) is a 0-transitive transformation inverse monoid,
then the module K0Ω is semisimple and decomposes as follows. Let e be a non-zero
idempotent of the 0-minimal ideal of M and let

⊕s

i=1miVi be decomposition of KΩe into
simple KGe-modules. Then

K0Ω ∼=

s⊕

i=1

miṼi.

For more general transformation monoids, we lose semisimplicity. But we show here that
the analogous result holds at the level of the projective cover. Of course, in characteristic
zero, inverse monoid algebras are semisimple [22] and so the simple modules are the
projective indecomposables.

9.1 The transitive case

We describe here the projective cover of KΩ when (Ω,M) is transitive (and in slightly
more generality).

Theorem 9.7. Let (Ω,M) be a finite transformation monoid and K a field of character-
istic zero. Let e ∈ E(I(M)) and suppose that ΩeM = Ω; this happens, for instance, if
(Ω,M) is transitive. Then the natural map

ϕ : Inde(KΩe) −→ KΩ

induced by the identity map on KΩe is the projective cover.

Proof. First we observe that ϕ is an epimorphism because

ϕ(Inde(KΩe)) = ϕ(Inde(KΩe)eKM) = KΩeM = KΩ.

It remains to show that kerϕ ⊆ rad(Inde(KΩe)). By Proposition 8.3 this occurs if and
only if e annihilates kerϕ. But we have an exact sequence

0 −→ kerϕ −→ Inde(KΩe)
ϕ
−→ KΩ −→ 0

and hence application of Rese, which is exact, and the fact that Rese(ϕ) = 1KΩe yield an
exact sequence

0 −→ (kerϕ)e −→ KΩe
1KΩe−−−→ KΩe −→ 0.

Thus (kerϕ)e = 0, as required.
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As a corollary, we have the following description of top(KΩ).

Corollary 9.8. Under the hypotheses of Theorem 9.7 one has

top(KΩ) ∼=

s⊕

i=1

miṼi

where KΩe =
⊕s

i=1miVi is the decomposition into simple KGe-modules. In particular,
if (Ω,M) is transitive (and hence (Ωe,Ge) is transitive), then

∑s
i=1m

2
i is the rank of the

permutation group (Ωe,Ge).

Proof. The first part is clear from Theorem 9.7; the second part follows from a well-known
result in permutation group theory [26, 18].

9.2 The 0-transitive case

Our next result is the analogous theorem for the 0-transitive case. Observe that if (Ω,M)
is a 0-transitive finite transformation monoid and e is a non-zero idempotent of the 0-
minimal ideal I, then K0Ωe is the permutation module associated to the permutation
group (Ωe \ {0}, Ge).

Theorem 9.9. Let (Ω,M) be a finite 0-transitive transformation monoid and K be a field
of characteristic 0. Let e 6= 0 be an idempotent of the 0-minimal ideal I of M . Then the
natural homomorphism

ϕ : Inde(K0Ωe) −→ K0Ω

induced by the identity map on K0Ωe is the projective cover. In particular, if KM is
semisimple, then Inde(K0Ωe) ∼= K0Ω.

Proof. The homomorphism ϕ is surjective by the computation

ϕ(Inde(K0Ωe)) = ϕ(Inde(K0Ωe)eKM) = K0ΩeM = K0Ω

where the last equality uses 0-transitivity. To show that ϕ is the projective cover, we
must show that kerϕ is contained in rad(Inde(K0Ωe)), or equivalently by Proposition 8.3,
that e annihilates kerϕ. This is proved exactly as in Theorem 9.7. Applying the exact
functor Rese to the exact sequence

0 −→ kerϕ −→ Inde(K0Ωe)
ϕ
−→ K0Ω −→ 0

and using that Rese(ϕ) = 1K0Ωe we obtain the exact sequence

0 −→ (kerϕ)e −→ K0Ωe
1K0Ωe

−−−→ K0Ωe −→ 0.

It follows that (kerϕ)e = 0, completing the proof.
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In particular, Theorem 9.9 has as a special case the result in [67] decomposing the
partial transformation module associated to a 0-transitive transformation inverse monoid.

Of course, we have the following analogue of Corollary 9.8.

Corollary 9.10. Under the same assumptions as Theorem 9.9 one has

top(K0Ω) ∼=

s⊕

i=1

miṼi

where K0Ωe =
⊕s

i=1miVi is the decomposition into simple KGe-modules. Moreover,∑s

i=1m
2
i is the rank of the permutation group (Ωe \ {0}, Ge).

10 Probabilities, Markov chains and Neumann’s

lemma

A partition {P1, . . . , Pr} on a finite set Ω is said to be uniform if all the blocks have the
same size, i.e., |P1| = · · · = |Pr|. Let’s consider a probabilistic generalization. Recall that
a probability distribution on Ω is a function µ : Ω −→ [0, 1] such that

∑
ω∈Ω µ(ω) = 1. The

support supp(µ) is the set of elements ω ∈ Ω with µ(ω) 6= 0. One can then view µ as a
probability measure on Ω by putting

µ(A) =
∑

ω∈A

µ(ω)

for a subset A ⊆ Ω. The uniform distribution U on Ω is defined by U(ω) = 1/|Ω| for
all ω ∈ Ω. Of course U(A) = |A|/|Ω|. Thus a partition is uniform if and only if each of
its blocks are equiprobable with respect to the uniform distribution. More generally, if
µ is a probability distribution on Ω, we shall say that the partition {P1, . . . , Pr} of Ω is
µ-uniform if µ(P1) = · · · = µ(Pr).

P. Neumann in his work on synchronizing groups [52] showed that if (Ω,M) is a finite
transformation monoid with transitive group of units G, then the kernel of each element
of I(M) is a uniform partition. In this section we consider a generalization of his result.
Our results can also be viewed as a generalization of a result of Friedman from [29].

We shall need to introduce a few more notions from probability theory. If f : Ω −→ R

is a random variable on Ω, that is a real-valued function, then the expected value of f
with respect to the probability distribution µ is

Eµ(f) =
∑

ω∈Ω

f(ω)µ(ω).

A Markov chain with state set Ω is given by a stochastic matrix

P : Ω × Ω −→ [0, 1]

the electronic journal of combinatorics 17 (2010), #R164 46



called the transition matrix of the chain. The adjective “stochastic” means that each row
is a probability distribution on Ω, i.e., for any fixed α ∈ Ω, one has

∑

ω∈Ω

P (α, ω) = 1.

Viewing probability distributions on Ω as row vectors, it follows that if µ is a probability
distribution, then so is µP where

µP (α) =
∑

ω∈Ω

µ(ω)P (ω, α).

In particular, if µ is an initial distribution on Ω, then µP k is the distribution at the
kth-step of the Markov chain. A distribution π is said to be stationary if πP = π.

To a Markov chain with state set Ω and transition matrix P one associates a digraph
(possibly with loop edges) by declaring (α, β) to be an edge if P (α, β) > 0. The Markov
chain is said to be irreducible if the associated digraph is strongly connected. The following
is a classical theorem in Markov chain theory.

Theorem 10.1. Let P be the transition matrix of an irreducible Markov chain with state
set Ω. Then P has a unique stationary distribution π, which moreover has support Ω.
Furthermore,

lim
k−→∞

1

k

k−1∑

i=0

P i = Π

where Π is the Ω × Ω matrix whose rows are all equal to π.

Let (Ω,M) be a finite transformation monoid and suppose that µ is a probability
distribution on M . Then we can define a Markov chain with state space Ω by putting

P (α, β) =
∑

αm=β

µ(m); (10.1)

so P (α, β) is the probability that an element m ∈ M chosen randomly according to µ
takes α to β. To see that P is stochastic, notice that

∑

β∈Ω

P (α, β) =
∑

β∈Ω

∑

αm=β

µ(m) =
∑

m∈M

∑

β=αm

µ(m) =
∑

m∈M

µ(m) = 1.

If N = 〈supp(µ)〉 is transitive on Ω, then P is the transition matrix of an irreducible
Markov chain. Indeed, the digraph associated to P is the underlying digraph of the
automaton with state set Ω and input alphabet supp(µ).

Observe that if ν is a probability distribution on Ω, we can identify it with the element

∑

ω∈Ω

ν(ω)ω ∈ RΩ.
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Similarly, we can identify µ with the element

∑

m∈M

µ(m)m ∈ RM.

Then one easily verifies that

νµ =
∑

ω∈Ω,m∈M

ν(ω)µ(m)ωm,

whereas the coefficient of β in νP is

∑

ω∈Ω

ν(ω)P (ω, β) =
∑

ω∈Ω,ωm=β

ν(ω)µ(m).

Thus under our identifications, we see that νµ = νP and hence νP k = νµk.
Our next result is an ergodic theorem in this context.

Theorem 10.2 (Ergodic theorem). Let (Ω,M) be a finite transformation monoid and
let ν be a probability distribution on Ω. Suppose that µ is a probability distribution on
M such that N = 〈supp(µ)〉 is transitive on Ω and let P be the transition matrix of the
irreducible Markov chain defined in (10.1). Denote by π the stationary distribution of P .
If f : Ω −→ R is a random variable such that

Eν(mf) = Eν(f)

for all m ∈ N , then the equality
Eπ(f) = Eν(f)

holds.

Proof. We use here the dual pairing of RΩ and RΩ. Notice that if θ is any probability
distribution on Ω, then viewing θ ∈ RΩ, we have

Eθ(f) =
∑

ω∈Ω

f(ω)θ(ω) = 〈θ, f〉.

Also observe that if λ is any probability distribution with support contained in N , then
Eν(λf) = Eν(f) where we view λ ∈ RM . Indeed, linearity of expectation implies that

Eν(λf) =
∑

m∈N

λ(m)Eν(mf) =
∑

m∈N

λ(m)Eν(f) = Eν(f).

A simple calculation reveals that νΠ = π and so applying Theorem 10.1 and the above
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observations (with λ = µi) yields

Eπ(f) = 〈π, f〉 = 〈νΠ, f〉 =

〈
ν lim
k−→∞

1

k

k−1∑

i=0

P i, f

〉

= lim
k−→∞

1

k

k−1∑

i=0

〈νµi, f〉 = lim
k−→∞

1

k

k−1∑

i=0

〈ν, µif〉

= lim
k−→∞

1

k

k−1∑

i=0

Eν(µ
if) = lim

k−→∞

1

k

k−1∑

i=0

Eν(f)

= Eν(f)

as required.

As a consequence, we obtain the following result.

Lemma 10.3. Let (Ω,M) be a finite transformation monoid and let µ be a probability
distribution on M such that N = 〈supp(µ)〉 is transitive. Let P be the stochastic matrix
(10.1) and let π be the stationary distribution of the irreducible Markov chain with tran-
sition matrix P . Suppose that B and S are subsets of Ω such that |S ∩Bm−1| = 1 for all
m ∈ N . Then |S| · π(B) = 1.

Proof. Observe that taking m = 1, we have |S ∩ B| = 1. Let ν be the probability
distribution on Ω given by IS/|S|. Then, for m ∈ N , we have

Eν(mIB) = Eν(IBm−1) = ν(Bm−1) = |S ∩ Bm−1|/|S| = 1/|S| = Eν(IB).

Thus the ergodic theorem yields

1/|S| = Eν(IB) = Eπ(IB) = π(B)

and so 1 = |S| · π(B) as required.

A particular example is the case that (Ω, G) is a transitive permutation group and µ
is the uniform distribution on G. One easily verifies that π is the uniform distribution
on Ω (since each element of G fixes the uniform distribution on Ω as an element of RΩ).
Thus the lemma says in this setting that if S,B are subsets of Ω with |S ∩ Bg| = 1 for
all g ∈ G, then |S| · |B| = |Ω|. This is a result of P. Neumann.

Theorem 10.4. Let (Ω,M) be a finite transformation monoid and let µ be a probability
distribution on M such that 〈supp(µ)〉 is transitive on Ω. Let P be the transition matrix
of the irreducible Markov chain defined in (10.1) and let π be the stationary distribution
of P . Let s ∈ I(M) and suppose that ker s = {B1, . . . , Br}. Then |Ωs| · π(Bi) = 1 for
i = 1, . . . , r. In particular, ker s is π-uniform.
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Proof. Observe that if m ∈ M , then Ωms = Ωs as all elements of I(M) have the same
rank. Hence if ωi = Bis (and so Bi = ωis

−1), for i = 1, . . . , r, then

kerms = {ω1(ms)
−1, . . . , ωr(ms)

−1} = {B1m
−1, . . . , Brm

−1}.

Proposition 3.10 now implies that |Ωs∩Bim
−1| = 1 for all 1 6 i 6 r. As m was arbitrary,

Lemma 10.3 yields |Ωs| · π(Bi) = 1 for i = 1, . . . , r.

As a consequence, we obtain Neumann’s lemma [52].

Corollary 10.5 (Neumann’s lemma). Let (Ω,M) be a finite transformation monoid with
a transitive group of units. Then kerm is a uniform partition for all m ∈ I(M).

Proof. Let G be the group of units ofM and let µ be the uniform distribution on G. Then,
as observed earlier, π is the uniform distribution on Ω. The result is now immediate from
Theorem 10.4.

We can now present Neumann’s proof [52] of a result of Pin [53]; it also can be deduced
from Theorem 7.10 since a transitive permutation group of prime degree is a QI-group,
cf. [7].

Proposition 10.6. Suppose that (Ω,M) is a transformation monoid with transitive group
of units and |Ω| is prime. Then either M is a group or M contains a rank 1 transformation
(i.e., a constant map).

Proof. The kernel of each element of I(M) is a uniform partition. Since |Ω| is prime, it
follows that either each element of I(M) is a permutation or each element of I(M) is a
constant map. In the former case, I(M) = M is a group; in the latter case M contains a
rank 1 map.

Neumann’s lemma can be generalized to transformation monoids containing an Eu-
lerian subset. Let (Ω,M) be a finite transformation monoid. Let us say that a subset
A ⊆M is Eulerian if 〈A〉 is transitive and, for each ω ∈ Ω, the equality

|A| =
∑

a∈A

|ωa−1| (10.2)

holds. The reason for this terminology is that if one considers the automaton with input
alphabet A, state set Ω and transition function Ω × A −→ Ω given by (ω, a) 7→ ωa,
then the underlying digraph of the automaton (with multiple edges allowed) contains
a directed Eulerian path precisely under the assumption that A is Eulerian. Eulerian
automata were considered by Kari in the context of the Road Coloring Problem and the
Černý conjecture [39]. Notice that if A consists of permutations and 〈A〉 is transitive on
Ω, then it is trivially Eulerian because each |ωa−1| = 1. Thus the following theorem is a
generalization of Neumann’s lemma.
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Theorem 10.7. Suppose that (Ω,M) is a finite transformation monoid containing an
Eulerian subset A. Then kerm is a uniform partition for all m ∈ I(M). In particular, if
|Ω| is prime, then either M is a group or M contains a rank 1 map.

Proof. Suppose that |A| = k. Define a probability distribution µ on M by putting µ =
(1/k)IA. Let P be the stochastic matrix (10.1). The corresponding Markov chain is
irreducible, let π be its stationary distribution. We claim that π is the uniform distribution
on Ω. Theorem 10.3 will then imply that kerm is uniform for each m ∈ I(M). It is well
known and easy to see that the uniform distribution is stationary for a Markov chain if
and only if the transition matrix P is doubly stochastic, meaning that the columns of P
also sum to 1. In our case, the sum of the entries of the column of P corresponding to
ω ∈ Ω is

∑

α∈Ω

P (α, ω) =
∑

α∈Ω

∑

αm=ω

µ(m) =
∑

m∈M

µ(m) · |ωm−1| =
1

k

∑

a∈A

|ωa−1| = 1

where we have used (10.2).
The final statement is proved exactly as in Proposition 10.6.

Theorem 10.7 holds more generally for any finite transformation monoid (Ω,M) such
that there is a probability distribution µ on M with 〈supp(µ)〉 transitive and the matrix
P from (10.1) doubly stochastic. It is not hard to construct transformation monoids
for which this occurs that do not contain Eulerian subsets. The corresponding class of
automata was termed pseudo-Eulerian by the author in [68].

10.1 A Burnside-type lemma

The classical Burnside lemma (which in fact was known to Cauchy and Frobenius) says
that the number of orbits of a permutation group equals the average number of fixed
points. The best we can say for transformation monoids is the following, where Fix(m)
is the fixed-point set of m ∈M and Stab(ω) is the stabilizer of ω ∈ Ω.

Lemma 10.8. Let (Ω,M) be a finite transformation monoid. Suppose that µ is a prob-
ability distribution of M and π is a probability distribution on Ω. Let F be the random
variable defined on M by F (m) = π(Fix(m)) and let S be the random variable defined on
Ω by S(ω) = µ(Stab(ω)). Then Eµ(F ) = Eπ(S).

Proof. This is a trivial computation:

Eµ(F ) =
∑

m∈M

π(Fix(m))µ(m) =
∑

ωm=ω

π(ω)µ(m) =
∑

ω∈Ω

µ(Stab(ω))π(ω)

= Eπ(S)

as required.
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The classical Burnside lemma is obtained by taking M to be a group G, µ to be the
uniform distribution on G and π to be the uniform distribution on Ω: one simply observes
that µ(Stab(ω)) = |Stab(ω)|/|G| = 1/|ω ·G|.

Suppose that |Ω| = n, M = TΩ and one takes µ and π to be uniform. Clearly
|Stab(ω)| = nn−1. Thus we have the well known result

1

|TΩ|

∑

f∈TΩ

|Fix(f)| =
1

nn

∑

ω∈Ω

|Stab(ω)| = 1

just as in the case of the symmetric group SΩ.
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