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Abstract

All generalized Hadamard matrices of order 18 over a group of order 3, H(6, 3),
are enumerated in two different ways: once, as class regular symmetric (6, 3)-nets,
or symmetric transversal designs on 54 points and 54 blocks with a group of order
3 acting semi-regularly on points and blocks, and secondly, as collections of full
weight vectors in quaternary Hermitian self-dual codes of length 18. The second
enumeration is based on the classification of Hermitian self-dual [18, 9] codes over
GF (4), completed in this paper. It is shown that up to monomial equivalence, there
are 85 generalized Hadamard matrices H(6, 3), and 245 inequivalent Hermitian self-
dual codes of length 18 over GF (4).

1 Introduction

A generalized Hadamard matrix H(µ, g) = (hij) of order n = gµ over a multiplicative
group G of order g is a gµ × gµ matrix with entries from G with the property that for
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every i, j, 1 ≤ i < j ≤ gµ, each of the multi-sets {hish
−1
js | 1 ≤ s ≤ gµ} contains every

element of G exactly µ times. It is known [12, Theorem 2.2] that if G is abelian then
H(µ, g)T is also a generalized Hadamard matrix, where H(µ, g)T denotes the transpose
of H(µ, g) (see also [5, Theorem 4.11]). This result does not generalize to non-abelian
groups, as shown by Craigen and de Launey [7].

If G is an additive group and the products hish
−1
js are replaced by differences his −hjs,

the resulting matrices are known as difference matrices [2], or difference schemes [10]. A
generalized Hadamard matrix over the multiplicative group of order two, G = {1,−1}, is
an ordinary Hadamard matrix.

Permuting rows or columns, as well as multiplying rows or columns of a given gener-
alized Hadamard matrix H over a group G with group elements changes H into another
generalized Hadamard matrix. Two generalized Hadamard matrices H ′, H ′′ of order n
over a group G are called monomially equivalent if H ′′ = PH ′Q for some monomial
matrices P , Q of order n with nonzero entries from G.

All generalized Hadamard matrices over a group of order 2, that is, ordinary Hadamard
matrices, have been classified up to (monomial) equivalence for all orders up to n = 28
[13], and all generalized Hadamard matrices over a group of order 4 (cyclic or elementary
abelian) have been classified up to monomial equivalence for all orders up to n = 16 [9]
(see also [8]).

We consider generalized Hadamard matrices over a group of order 3 in this paper. It is
easy to verify that generalized Hadamard matrices H(1, 3) of order 3, and H(2, 3) of order
6, exist and are unique up to monomial equivalence. There are two matrices H(3, 3) of
order 9 [16], and one H(4, 3) of order 12 up to monomial equivalence [17]. It is known [10,
Theorem 6.65] that an H(5, 3) of order 15 does not exist. Up to monomial equivalence,
at least 11 H(6, 3) of order 18 were previously known [1].

In this paper, we enumerate all generalized Hadamard matrices H(6, 3) of order 18,
up to monomial equivalence. We present two different enumerations, one based on combi-
natorial designs known as symmetric nets or transversal designs (Section 2), and a second
enumeration based on the classification of Hermitian self-dual codes of length 18 over
GF (4) completed in Section 4.

2 Symmetric nets, transversal designs and

generalized Hadamard matrices H(6, 3)

A symmetric (µ, g)-net is a 1-(g2µ, gµ, gµ) design D such that both D and its dual design
D∗ are affine resolvable [2]: the g2µ points of D are partitioned into gµ parallel classes, or
groups, each containing g points, so that any two points which belong to the same class
do not occur together in any block, while any two points which belong to different classes
occur together in exactly µ blocks. Similarly, the blocks are partitioned into gµ parallel
classes, each consisting of g pairwise disjoint blocks, and any two blocks which belong to
different parallel classes share exactly µ points. A symmetric (µ, g)-net is also known as a
symmetric transversal design, and denoted by STDµ(g), or TDµ(gµ, g) [2], or STDµ[gµ; g]
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[17]. A symmetric (µ, g)-net is class-regular if it admits a group of automorphisms G of
order g (called group of bitranslations) that acts transitively (and hence regularly) on
every point and block parallel class.

Every generalized Hadamard matrix H(µ, g) over a group G of order g determines a
class-regular symmetric (µ, g)-net with a group of bitranslations isomorphic to G, and
conversely, every class-regular (µ, g)-net with a group of bitranslations G gives rise to
a generalized Hadamard matrix H(µ, g) [2]. The g2µ × g2µ (0, 1)-incidence matrix of a
class-regular symmetric (µ, g)-net is obtained from a given generalized Hadamard matrix
H(µ, g) = (hij) over a group G of order g by replacing each entry hij of H(µ, g) with a
g × g permutation matrix representing hij ∈ G. This correspondence relates the task of
enumerating generalized Hadamard matrices over a group of order g to the enumeration of
1-(g2µ, gµ, gµ) designs with incidence matrices composed of g×g permutation submatrices.
This approach was used in [9] for the enumeration of all nonisomorphic class-regular
symmetric (4, 4)-nets over a group of order 4 and generalized Hadamard matrices H(4, 4).
In this paper, we use the same approach to enumerate all pairwise nonisomorphic class-
regular (6, 3)-nets, or equivalently, symmetric transversal designs STD6(3) with a group
of order 3 acting semiregularly on point and block parallel classes, and consequently, all
generalized Hadamard matrices H(6, 3). As in [9], the block design exploration package
BDX [14], developed by Larry Thiel, was used for the enumeration.

The results of this computation can be formulated as follows.

Theorem 1. Up to isomorphism, there are exactly 53 class-regular symmetric (6, 3)-nets,
or equivalently, 53 symmetric transversal designs STD6(3) with a group of order 3 acting
semiregularly on point and block parallel classes.

The information about the 53 (6, 3)-nets Di (i = 1, 2, . . . , 53) are listed in Table 1. In
the table, # Aut gives the size of the automorphism group of Di. The column D∗

i gives
the number j, where D∗

i is isomorphic to Dj. Incidence matrices of the 53 (6, 3)-nets are
available at http://www.math.mtu.edu/∼tonchev/sol.txt.

We note that 20 nonisomorphic STD6(3) were found by Akiyama, Ogawa, and Suetake
[1]. These twenty STD6(3) are denoted by D(Hi) (i = 1, 2, . . . , 11) and D(Hi)

d (i =
1, . . . , 5, 7, 8, 9, 10) in [1, Theorem 7.3]. When Di in Table 1 is isomorphic to one of the
twenty STD6(3) in [1], we list the STD6(3) in the column DAOS of the table.

Any generalized Hadamard matrix H(6, 3) over the group G = {1, ω, ω2 | ω3 = 1}
corresponds to the 54 × 54 (0, 1)-incidence matrix of a class-regular symmetric (6, 3)-
net obtained by replacing 1, ω and ω2 with 3 × 3 permutation matrices I, M3 and M2

3 ,
respectively, where I is the identity matrix and

M3 =





0 1 0
0 0 1
1 0 0



 .

We note that permuting rows or columns in H(6, 3) corresponds to permuting parallel
classes of points or blocks in the related symmetric net, while multiplying a row or column
of H(6, 3) with an element α of G, corresponds to a cyclic shift (if α = ω) or a double
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Table 1: Class-regular symmetric (6, 3)-nets and H(6, 3)’s

Di #Aut D∗

i
DAOS H(Di) Di #Aut D∗

i
DAOS H(Di)

1 96 1 yes 28 162 37 D(H1)
d yes

2 432 43 yes 29 54 22 no
3 864 5 yes 30 54 26 no
4 38880 4 D(H11) yes 31 432 17 no
5 864 3 yes 32 48 15 no
6 1296 19 yes 33 54 27 yes
7 3240 49 D(H10) no 34 162 53 D(H2) no
8 144 46 no 35 162 50 D(H4) no
9 324 44 D(H5) no 36 162 51 D(H3) no
10 1296 52 D(H7) no 37 162 28 D(H1) yes
11 180 45 no 38 1944 14 D(H9) yes
12 1296 42 D(H8) yes 39 972 39 D(H6) yes
13 216 20 yes 40 216 21 no
14 1944 38 D(H9)

d yes 41 216 16 no
15 48 32 no 42 1296 12 D(H8)

d yes
16 216 41 no 43 432 2 yes
17 432 31 no 44 324 9 D(H5)

d no
18 2160 23 yes 45 180 11 no
19 1296 6 yes 46 144 8 no
20 216 13 yes 47 108 24 no
21 216 40 no 48 1080 25 no
22 54 29 no 49 3240 7 D(H10)

d no
23 2160 18 yes 50 162 35 D(H4)

d no
24 108 47 no 51 162 36 D(H3)

d no
25 1080 48 no 52 1296 10 D(H7)

d no
26 54 30 no 53 162 34 D(H2)

d no
27 54 33 yes

cyclic shift (if α = ω2) of the three points or blocks of the corresponding parallel class
in the related symmetric (6, 3)-net. Thus, monomially equivalent generalized Hadamard
matrices H(6, 3) correspond to isomorphic symmetric (6, 3)-nets.

The inverse operation of replacing every element hij of a generalized Hadamard matrix
by its inverse h−1

ij also preserves the property of being a generalized Hadamard matrix.
That is, a generalized Hadamard matrix is also obtained by replacing I, M3 and M2

3

with 1, ω2 and ω, respectively. However, this is not considered a monomial equivalence
operation. As a symmetric net, this inverse operation corresponds to replacing M3 by
M2

3 and vice versa. The inverse operation is achievable by simulataneously interchanging
rows 2 and 3 and columns 2 and 3 of the matrices I, M3 and M2

3 . Thus, by simulataneous
interchanging points 2 and 3 and blocks 2 and 3 of every parallel class of points and blocks,
the inverse operator is an isomorphism operation of symmetric nets. Since the definition
of isomorphic symmetric nets and monomially equivalent generalized Hadamard matrices
differs only in the extra inverse operation, at most two generalized Hadamard matrices
which are not monomially equivalent can arise from a symmetric net. We note that for
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generalized Hadamard matrices over a cyclic group of order q, replacing every entry by
its i-th power, where gcd(i, q) = 1, may give a generalized Hadamard matrix which is not
monomially equivalent to the original; however, their corresponding symmetric nets are
isomorphic.

In order to find the number of generalized Hadamard matrices which are not mono-
mially equivalent, we first convert the 53 nonisomorphic symmetric nets into their corre-
sponding 53 generalized Hadamard matrices. We then create a list of 53 extra matrices by
applying the inverse operation. Amongst this list of 106 matrices, we found 85 generalized
Hadamard matrices H(6, 3) up to monomial equivalence. As expected, the remaining 21
matrices are monomially equivalent to their “parent” before the inverse operation.

Corollary 2. Up to monomial equivalence, there are exactly 85 generalized Hadamard
matrices H(6, 3).

In Table 1, the column H(Di) states whether the corresponding generalized Hadamard
matrix H(Di) is monomially equivalent to the generalized Hadamard matrix H(Di) ob-
tained by replacing all entries by their inverse. Thus, the set {H(Di), H(Dj) | i ∈ ∆, j ∈
∆ \ Γ} gives the 85 generalized Hadamard matrices, where ∆ = {1, 2, . . . , 53} and

Γ = {1, 2, 3, 4, 5, 6, 12, 13, 14, 18, 19, 20, 23, 27, 28, 33, 37, 38, 39, 42, 43}.

Concerning the next order, n = 21, several examples of STD7(3) and H(7, 3) are
known [1], [18]. Some STD7(3)’s and H(7, 3)’s were used in [19] as building blocks
for the construction of an infinite class of quasi-residual 2-designs. An estimate based
on preliminary computations with BDX suggests that it would take 500 CPU years to
enumerate all STD7(3)’s using one computer, or about a year of CPU if a network of 500
computers is employed.

3 Elementary divisors of generalized Hadamard ma-

trices and Hermitian self-dual codes

Let GF (4) = {0, 1, ω, ω} be the finite field of order four, where ω = ω2 = ω + 1. Codes
over GF (4) are often called quaternary. The Hermitian inner product of vectors x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ GF (4)n is defined as

x · y =
n

∑

i=1

xiyi
2. (1)

The Hermitian dual code C⊥ of a code C of length n is defined as C⊥ = {x ∈ GF (4)n |
x · c = 0 for all c ∈ C}. A code C is called Hermitian self-orthogonal if C ⊆ C⊥, and
Hermitian self-dual if C = C⊥. In this section, we show that the rows of any generalized
Hadamard matrix H(6, 3) span a Hermitian self-dual code of length 18 and minimum
weight d ≥ 4 (Theorem 5). A consequence of this result is that all H(6, 3)’s can be found
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as collections of vectors of full weight in Hermitian self-dual codes over GF (4). This
motivates us to classify all such codes as the second approach of the enumeration of all
H(6, 3)’s.

Let R be a unique factorization domain, and let p be a prime element of R. For a
nonzero element a ∈ R, we denote by νp(a) the largest non-negative integer e such that
pe divides a.

Lemma 3. Let R be a unique factorization domain. Suppose that the nonzero elements
a, b, c, d ∈ R satisfy ab = cd and gcd(a, b) = 1. Then

gcd(a, c) gcd(a, d) = a.

Proof. Let p be a prime element of R dividing a. Then p does not divide b, hence

νp(a) = νp(ab) = νp(c) + νp(d) ≥ max{νp(c), νp(d)}.

Thus

νp(gcd(a, c)) = min{νp(a), νp(c)} = νp(c),

νp(gcd(a, d)) = min{νp(a), νp(d)} = νp(d),

and hence νp(a) = νp(gcd(a, c) gcd(a, d)). Since p is arbitrary, we obtain the assertion.

Let ω = −1+
√−3
2

∈ C, where C denotes the complex number field. It is well known that
Z[ω] is a principal ideal domain. Thus we can consider elementary divisors of a matrix
over Z[ω]. Also, Z[ω] is a unique factorization domain, and 2 is a prime element. We note
that Z[ω]/2Z[ω] ∼= GF (4).

Lemma 4. Let H be an n × n matrix with entries in {1, ω, ω2}, satisfying HH
T

= nI,
where H denotes the complex conjugation. Let d1|d2| · · · |dn be the elementary divisors of
H over the ring Z[ω]. Then didn+1−i/n is a unit in Z[ω] for all i = 1, . . . , n.

Proof. Take P, Q ∈ GL(n, Z[ω]) so that PHQ = diag(d1, . . . , dn). Since HH
T

= nI, we
have

Q
−1

HTP
−1

= nQ
−1

H
−1

P
−1

= nPHQ
−1

= diag(n/d1, n/d2, . . . , n/dn).

This implies that n/dn, n/dn−1, . . . , n/d1 are also the elementary divisors of H . It follows
from the uniqueness of the elementary divisors that didn+i−i/n is a unit in Z[ω] for all
i = 1, . . . , n.

Theorem 5. Under the same assumptions as in Lemma 4, assume further that n ≡ 2
(mod 4). Then the rows of H span a Hermitian self-dual code over Z[ω]/2Z[ω] ∼= GF (4).
This Hermitian self-dual code has minimum weight at least 4.
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Proof. Let C be the code over Z[ω]/2Z[ω] spanned by the row vectors of H . Since HH
T
≡

0 (mod 2Z[ω]), the code C is Hermitian self-orthogonal (see also [20, Lemma 2]). Let
d1|d2| · · · |dn be the elementary divisors of H . Then

|C| = |(Z[ω]/2Z[ω])nH|

= |(Z[ω]/2Z[ω])n diag(d1, . . . , dn)|

=

n
∏

i=1

| gcd(2, di)Z[ω]/2Z[ω]|

=

n
∏

i=1

|Z[ω]/2Z[ω]|

|Z[ω]/ gcd(2, di)Z[ω]|

=
n

∏

i=1

4

| gcd(2, di)|2

=

n/2
∏

i=1

4

| gcd(2, di)|2

n
∏

i=n/2+1

4

| gcd(2, di)|2

=

n/2
∏

i=1

4

| gcd(2, di)|2

n
∏

i=n/2+1

4

| gcd(2, n/dn+1−i)|2
(by Lemma 4)

=

n/2
∏

i=1

4

| gcd(2, di)|2

n
∏

i=n/2+1

4

| gcd(2, n/dn+1−i)|2

=

n/2
∏

i=1

4

| gcd(2, di)|2

n/2
∏

i=1

4

| gcd(2, n/di)|2

=

n/2
∏

i=1

16

| gcd(2, di) gcd(2, n/di)|2

= 4n/2. (by Lemma 3 since n ≡ 2 (mod 4))

Thus, the dimension dim C is n/2 and C is self-dual.
If the dual code C⊥ had minimum weight 2, then there exist two columns of H , one

of which is a multiple by 1, ω, or ω of the other, in GF (4). But this implies that there
exists a column of H which is a multiple by 1, ω, or ω in C. This is impossible since H is
nonsingular. Hence the dual code C⊥ has minimum weight at least 3. Since C is self-dual
and even, C has minimum weight at least 4.

4 The classification of quaternary self-dual [18, 9] codes

Two codes C and C ′ over GF (4) are equivalent if there is a monomial matrix M over
GF (4) such that C ′ = CM = {cM | c ∈ C}. A monomial matrix which maps C to
itself is called an automorphism of C and the set of all automorphisms of C forms the
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automorphism group Aut(C) of C. The number of distinct Hermitian self-dual codes of
length n is given [15] by the formula:

N(n) =

n/2−1
∏

i=0

(22i+1 + 1). (2)

It was shown in [15] that the minimum weight d of a Hermitian self-dual code of length
n is bounded by d ≤ 2⌊n/6⌋ + 2. A Hermitian self-dual code of length n and minimum
weight d = 2⌊n/6⌋+2 is called extremal. The classification of all Hermitian self-dual codes
over GF (4) up to equivalence of length n ≤ 14 was completed by MacWilliams, Odlyzko,
Sloane and Ward [15], and the Hermitian self-dual codes of length 16 were classified by
Conway, Pless and Sloane [6]. For example, there are 55 inequivalent Hermitian self-dual
codes of length 16. For the next two lengths, 18 and 20, only partial classification was
previously known, namely, the extremal Hermitian self-dual [18, 9, 8] and [20, 10, 8] codes
were enumerated in [11] and Hermitian self-dual [18, 9, 6] codes were enumerated in [4]
under the weak equivalence defined at the end of this subsection.

We first consider decomposable Hermitian self-dual codes. By [15, Theorem 28], any
Hermitian self-dual code with minimum weight 2 is decomposable as C2⊕C16, where C2 is
the unique Hermitian self-dual code of length 2 and C16 is some Hermitian self-dual code
of length 16. Hence, there are 55 inequivalent Hermitian self-dual codes with minimum
weight 2 [6]. In the notation of Table 4, the following codes are decomposable Hermitian
self-dual codes with minimum weight 4:

E8 ⊕ E10, E8 ⊕ B10, E6 ⊕ E12, E6 ⊕ C12, E6 ⊕ D12, E6 ⊕ F12, E6 ⊕ 2E6,

and there is no decomposable Hermitian self-dual code with minimum weight d ≥ 6. In
Table 2, the number #dec of inequivalent decomposable Hermitian self-dual codes with
minimum weight d is given for each admissible value of d.

Table 2: Hermitian self-dual codes of length 18

d = 2 d = 4 d = 6 d = 8 Total

#dec 55 7 0 0 62
#indec 0 152 30 1 183

Total 55 159 30 1 245

We now consider indecomposable Hermitian self-dual codes. Two self-dual codes C
and C ′ of length n are called neighbors if the dimension of their intersection is n/2−1. An
extremal Hermitian self-dual code S18 of length 18 was given in [15] and it is generated
by

(1, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω, ω) 1

where the parentheses indicate that all cyclic shifts are to be used. Let Nei(C) denote the
set of inequivalent Hermitian self-dual neighbors with minimum weight d ≥ 4 of C. We
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found that the set Nei(S18) consists of 35 inequivalent Hermitian self-dual codes, one of
which is equivalent to S18, 17 codes have minimum weight 6, and 17 codes have minimum
weight 4. Within the set of codes

{S18} ∪ Nei(S18) ∪ N ∪
(

⋃

C∈N
Nei(C)

)

,

where N = ∪C∈Nei(S18) Nei(C), we found a set C18 of 190 inequivalent Hermitian self-dual
codes C1, . . . , C190 with minimum weight d ≥ 4 satisfying

∑

C∈C18∪D18

318 · 18!

# Aut(C)
= 4251538544610908358733563 = N(18), (3)

where D18 denotes the set of the 55 inequivalent Hermitian self-dual codes of length 18
and minimum weight 2. The orders of the automorphism groups of the 245 codes in
C18 ∪D18 are listed in Table 3. The mass formula (3) shows that the set C18 ∪D18 of codes
contains representatives of all equivalence classes of Hermitian self-dual codes of length
18. Thus, the classification is complete, and Theorem 6 holds.

Theorem 6. There are 245 inequivalent Hermitian self-dual codes of length 18. Of these,
one is extremal (minimum weight 8), 30 codes have minimum weight 6, 159 codes have
minimum weight 4, and 55 codes have minimum weight 2.

The software package Magma [3] was used in the computations. Generator matrices
of all Hermitian self-dual codes of length 18 can be obtained from
http://www.math.is.tohoku.ac.jp/∼munemasa/selfdualcodes.htm.

In Table 2, the number #indec of indecomposable Hermitian self-dual codes with min-
imum weight d is given. In Table 4, the number # of inequivalent Hermitian self-dual
codes of length n is given along with references. The largest minimum weight dmax among
Hermitian self-dual codes of length n and the number #max of inequivalent Hermitian
self-dual codes with minimum weight dmax are also listed along with references.

We list in Table 5 eleven Hermitian self-dual codes C10, C14, C15, C17, C30, C38,
C40, C83, C120, C147 and C190 of minimum weight at least 4, which are used in the next
subsection. Table 5 lists the dimension dim of S18 ∩ Ci, vectors v1, . . . , v9−dim such that

Ci = 〈S18 ∩ 〈v1, . . . , v9−dim〉
⊥, v1, . . . , v9−dim〉,

the numbers A4 and A6 of codewords of weights 4 and 6, and the order # Aut of the
automorphism group of Ci. By [15, Theorem 13], the weight enumerator of a Hermitian
self-dual code of length 18 and minimum weight at least 4 can be written as

1 + A4y
4 + A6y

6 + (2754 + 27A4 − 6A6)y
8 + (18360 − 106A4 + 15A6)y

10

+ (77112 + 119A4 − 20A6)y
12 + (110160 − 12A4 + 15A6)y

14

+ (50949 − 51A4 − 6A6)y
16 + (2808 + 22A4 + A6)y

18.

Thus, the weight enumerator is uniquely determined by A4 and A6.
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Table 3: Orders of the automorphism groups

d #Aut(C)
2 864, 864, 1152, 1728, 2160, 2304, 2592, 6048, 6912, 6912, 10368, 13824, 13824,

17280, 20736, 41472, 82944, 82944, 82944, 82944, 103680, 110592, 124416, 235872,
248832, 311040, 331776, 497664, 580608, 829440, 995328, 995328, 1327104,
2073600, 2177280, 2488320, 3110400, 4478976, 12192768, 13436928, 18662400,
37324800, 39191040, 69672960, 89579520, 92897280, 139968000, 179159040,
195084288, 313528320, 671846400, 3023308800, 3762339840, 36279705600,
3656994324480

4 24, 24, 24, 24, 24, 24, 24, 36, 48, 48, 48, 48, 72, 72, 72, 72, 72, 72, 96, 96, 96, 96,
96, 96, 96, 144, 144, 144, 144, 144, 192, 192, 192, 192, 192, 192, 192, 192, 192,
288, 288, 288, 288, 288, 288, 288, 288, 288, 384, 384, 384, 384, 384, 384, 432,
504, 576, 576, 576, 768, 768, 864, 864, 1152, 1152, 1152, 1152, 1152, 1152, 1152,
1152, 1152, 1152, 1152, 1152, 1536, 1728, 2304, 2304, 2304, 2304, 2304, 3072,
3456, 3456, 4608, 4608, 4608, 5760, 6144, 6912, 6912, 6912, 6912, 6912, 6912,
6912, 9216, 10368, 10368, 12960, 13824, 13824, 13824, 13824, 13824, 13824,
14040, 17280, 17280, 18432, 18432, 18432, 20736, 27648, 27648, 34560, 48384,
51840, 55296, 55296, 55296, 55296, 62208, 69120, 82944, 82944, 103680, 124416,
138240, 138240, 145152, 207360, 207360, 221184, 221184, 248832, 248832, 248832,
414720, 518400, 552960, 725760, 967680, 1105920, 1658880, 2032128, 3110400,
3732480, 4147200, 4147200, 11197440, 11664000, 23224320, 32659200, 74649600,
87091200, 278691840, 7558272000

6 6, 12, 12, 12, 12, 12, 18, 24, 24, 27, 36, 36, 36, 36, 36, 54, 54, 72, 96, 180, 180,
216, 216, 288, 648, 1080, 1152, 1296, 2916, 23328

8 24480

In the above classification, we employed monomial matrices over GF (4) in the def-
inition for equivalence of codes. To define a weaker equivalence, one could consider a
conjugation γ of GF (4) sending each element to its square in the definition of equiva-
lence, that is, two codes C and C ′ are weakly equivalent if there is a monomial matrix M
over GF (4) such that C ′ = CM or C ′ = CMγ (see [11]).

We have verified that the equivalence classes of self-dual codes of lengths up to 16 are
the same under both definitions. For length 18, there are 230 classes under the weaker
equivalence. More specifically, the following codes are weakly equivalent:

(C8, C9), (C10, C11), (C19, C20), (C24, C25), (C26, C27),

(C28, C29), (C30, C31), (C50, C51), (C56, C57), (C73, C74),

(C89, C90), (C92, C93), (C94, C95), (C113, C114), (C118, C119).

5 A classification of generalized Hadamard matrices

H(6, 3) based on codes

Let G = 〈ω〉 be the cyclic group of order 3 being the multiplicative group of GF (4).
Assume that H(6, 3) is a generalized Hadamard matrix of order 18 over G. By Theorem
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Table 4: Hermitian self-dual codes

n # References dmax #max References

2 1 [15] 2 1 C2 in [15]
4 1 [15] 2 1 2C2 in [15]
6 2 [15] 4 1 E6 in [15]
8 3 [15] 4 1 E8 in [15]
10 5 [15] 4 2 E10, B10 in [15]
12 10 [15] 4 5 E12, C12,D12, F12, 2E6 in [15]
14 21 [15] 6 1 [15]
16 55 [6] 6 4 [6]
18 245 Section 4 8 1 [11]
20 ? 8 2 [11]

5, the code C(H(6, 3)) generated by the rows of H(6, 3) is a Hermitian self-dual code over
GF (4) of length 18 and minimum weight at least 4.

Let C be a Hermitian self-dual code of length 18 and minimum weight at least 4. We
define a simple undirected graph Γ(C), whose set V of vertices is the set of codewords
x = (1, x2, . . . , x18) of weight 18 in C, with two vertices x, y ∈ V being adjacent if
(n1, nω, nω) = (6, 6, 6), where nα = #{i | xiy

2
i = α}.

The following statement was obtained by computations using Magma.

Lemma 7. Let C be a Hermitian self-dual code of length 18. The graph Γ(C) has a
18-clique if and only if C is equivalent to C10, C11, C14, C15, C17, C30, C31, C38, C40, C83,
C120, C147, or C190.

Note that the eleven codes other than C11, C31 can be found in Table 5, while the
codes C11 and C31 are obtained as C10γ and C30γ, respectively.

The 18-cliques in the graph Γ(C) are generalized Hadamard matrices H(6, 3). It is
clear that Aut(C) acts on the graph Γ(C) as a (not necessarily full) group of automor-
phisms. If two 18-cliques in Γ(C) are in the same Aut(C)-orbit of the set of 18-cliques in
Γ(C), then the two generalized Hadamard matrices corresponding to the two 18-cliques
are equivalent. Hence, we found generalized Hadamard matrices corresponding to repre-
sentatives of 18-cliques in Γ(C) up to the action of Aut(C). Then we verified whether
two generalized Hadamard matrices are equivalent by a method similar to that given in
Section 2. For each code Ci, we list in Table 6 the number # of generalized Hadamard
matrices H(6, 3) which are not monomially equivalent, obtained in this way. In Table 6,
we also list corresponding generalized Hadamard matrices given in Section 2. Therefore,
we have an alternative classification of the generalized Hadamard matrices H(6, 3), given
in Corollary 2.
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Table 5: The codes Ci (i = 10, 14, 15, 17, 30, 38, 40, 83, 120, 147, 190)

i dim v1, . . . , v9−dim A4 A6 #Aut
10 8 (1, 1, 1, ω, 1, 1, 1, 1, 1, ω, ω, ω, ω, ω, ω, ω, 0, 0) 0 45 180
14 8 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 0, 0, 0, 0, 0, 0) 0 27 2916
15 8 (1, ω, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 0, ω, 0, 1, ω, ω) 0 27 648
17 8 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ω, 0, ω, ω, ω, ω, ω, ω) 0 99 1080
30 8 (1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 0, ω, 0, 0, 0, 0, 0) 9 36 2304
38 7 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, ω, ω, ω, ω, ω, ω, ω) 0 108 23328

(1, ω, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, ω, 0, ω, 0, ω, ω)
40 7 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 1, 1, ω, 1, 1, 1) 0 72 216

(ω, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, ω, ω, 0, ω, 0, ω, 1)
83 7 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ω, 1, ω, 0, 0, 0) 9 72 62208

(ω, 1, 1, 1, 1, 1, 1, 1, 1, 0, ω, ω, ω, 0, ω, ω, 1, ω)
120 7 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, ω, ω, ω, 1, 1, 1) 27 18 248832

(ω, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ω, 0, 0, 1, ω, 1, ω)
147 7 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 0, ω, ω, ω, 1, 0) 45 90 273653

(ω, 1, 1, 1, 1, 1, 1, 1, 1, ω, ω, 1, ω, 0, 1, 1, ω, 0)
190 6 (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ω, 0, 0, ω, ω, 0, 0, 0) 135 54 21031053

(ω, 1, 1, 1, 1, 1, 1, 1, 1, 0, ω, ω, ω, ω, 1, 0, 0, 0)
(1, ω, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, ω, ω, 1, 0, ω)

Table 6: Generalized Hadamard matrices in Ci

i # generalized Hadamard matrices

10 1 H(D45)
11 1 H(D45)

14 4 H(Di),H(Di) (i = 44, 53)

15 3 H(D19), H(D21),H(D21)

17 8 H(D23), H(D27), H(Di),H(Di) (i = 24, 25, 26)

30 2 H(D32), H(D46)

31 2 H(D46), H(D32)

38 9 H(Di) (i = 37, 38, 39), H(Dj),H(Dj) (j = 34, 35, 36)

40 3 H(D20), H(D22),H(D22)

83 12 H(Di) (i = 28, 33, 42, 43), H(Dj),H(Dj) (j = 30, 31, 51, 52)

120 9 H(Di) (i = 1, 2, 3), H(Dj),H(Dj) (j = 15, 16, 17)

147 14 H(Di),H(Di) (i = 29, 40, 41, 47, 48, 49, 50)

190 17 H(Di) (i = 4, 5, 6, 12, 13, 14, 18), H(Dj),H(Dj) (j = 7, 8, 9, 10, 11)
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