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Abstract

We introduce a technique using linear programming that may be used to analyse
the worst-case performance of a class of greedy heuristics for certain optimisation
problems on regular graphs. We demonstrate the use of this technique on heuris-
tics for bounding the size of a minimum maximal matching (MMM), a minimum
connected dominating set (MCDS) and a minimum independent dominating set
(MIDS) in cubic graphs. We show that for n-vertex connected cubic graphs, the
size of an MMM is at most 9n/20 + O(1), which is a new result. We also show that
the size of an MCDS is at most 3n/4 + O(1) and the size of a MIDS is at most
29n/70 + O(1). These results are not new, but earlier proofs involved rather long
ad-hoc arguments. By contrast, our method is to a large extent automatic and can
apply to other problems as well. We also consider n-vertex connected cubic graphs
of girth at least 5 and for such graphs we show that the size of an MMM is at most
3n/7 + O(1), the size of an MCDS is at most 2n/3 + O(1) and the size of a MIDS
is at most 3n/8 + O(1).
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1 Introduction

Many NP-hard graph-theoretic optimisation problems remain NP-hard when the input is
restricted to graphs which are of bounded degree or regular of fixed degree. In some cases
this applies even to 3-regular graphs, for example, Maximum Independent Set [12, prob-
lem GT20] and Minimum Dominating Set [12, problem GT2] to name but two. (See, for
example, [1] for recent results on the complexity and approximability of these problems.)
In this paper, we introduce a technique that may be used to analyse the worst-case per-
formance of greedy algorithms on cubic (i.e. 3-regular) graphs. The technique uses linear
programming and may be applied to a variety of graph-theoretic optimisation problems.
Suitable problems would include those problems where, given a graph, we are required
to find a subset of the vertices (or edges) involving local conditions on the vertices and
(or) edges. These include problems such as Minimum Vertex Cover [12, problem GT1],
Maximum Induced Matching [6] and Maximum 2-Independent Set [24]. The technique
could also be applied to regular graphs of higher degree, but with dubious benefit as the
effort required would be much greater.

The technique we describe provides a method of comparing the performance of different
greedy algorithms for a particular optimisation problem, in some cases determining the
one with the best worst-case performance. In this way, we can also obtain lower or upper
bounds on the cardinality of the sets of vertices (or edges) of interest. Using this technique,
it is simple to modify the analysis in order to investigate the performance of an algorithm
when the input is restricted to (for example) cubic graphs of given girth or cubic graphs
with a forbidden subgraph.

Besides introducing a new general approach to giving bounds on the performance of
greedy algorithms using linear programming, we demonstrate how the linear program-
ming solution can sometimes lead to constructions that achieve the bounds obtained. In
these cases, the worst case performance of these particular algorithms is determined quite
precisely, even though the implied bound on the size of a the minimal or maximal subset
of edges or vertices is not sharp.

Throughout this paper, when discussing any cubic graph on n vertices, we assume n to
be even and we also assume the graph to contain no loops nor multiple edges. The cubic
graphs are assumed to be connected; for disconnected graphs, for each particular problem
under consideration, applying our algorithm for that problem in turn to each connected
component would, of course, cause the constant terms in our results to be multiplied by
the number of components.

In this paper, we present and analyse greedy algorithms for three problems related to
domination in a cubic graph G = (V, E). A (vertex) dominating set of G is a set D ⊆ V
such that for every vertex v ∈ V , either v ∈ D or v has a neighbour in D. An edge
dominating set is a set F ⊆ E such that for every edge e ∈ E, either e ∈ F or e shares a
common end-point with an edge of F . An independent set of G is a set I ⊆ V such that
no two vertices of I are joined by an edge of E. A matching of G is a set M ⊆ E such
that no two edges of M share a common end-vertex.

We now formally define the problems that we consider in this paper. An independent
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dominating set (IDS) of G is an independent set that is also dominating. A maximal
matching (MM) is a matching E for which every edge in E(G) \E shares at least one end-
vertex with an edge of E . Equivalently, it is an IDS of the line graph of G. A connected
dominating set (CDS) of G is a (vertex) dominating set that induces a connected subgraph.

For each of these types of sets, we consider such a set of minimum cardinality in G,
which we denote by prefixing the acronym with M. Thus an MMM is a minimum maximal
matching, and so on. Let MIDS, MMM and MCDS denote the problems of finding
a MIDS, an MMM and an MCDS of a graph, respectively. The algorithms we present in
this paper are only heuristics for these problems; they find small sets when the problem
asks for a minimum set.

Griggs, Kleitman and Shastri [13] showed that every n-vertex connected cubic graph
has a spanning tree with at least ⌈(n/4)+2⌉ leaves, implying (by deleting the leaves) that
such graphs have a CDS of size at most 3n/4. Lam, Shiu and Sun [20] showed that for
n ≥ 10, the size of a MIDS of n-vertex connected cubic graphs is at most 2n/5. Both these
results use rather complicated and elaborate arguments, so the extraction of an algorithm
from them can be difficult. By contrast, our approach is an attempt to automate the
proofs, greatly reducing the amount of ad hoc arguments by using computer calculations.

Note that, for n-vertex cubic graphs, it is simple to verify that the size of an MM is at
least 3n/10, the size of a CDS is at least (n− 2)/2 and the size of an IDS is at least n/4.
In this paper we prove that for n-vertex connected cubic graphs, the size of an MMM is
at most 9n/20 + O(1), the size of an MCDS is at most 3n/4 + O(1) and the size of a
MIDS is at most 29n/70 + O(1). ForMMM (as far as the authors are aware) no other
non-trivial approximation results were previously known for this problem when the input
is restricted to cubic graphs.

We also consider n-vertex connected cubic graphs of girth at least 5. For such graphs,
we show that the size of an MMM is at most 3n/7 + O(1), the size of an MCDS is at
most 2n/3 + O(1) and the size of a MIDS is at most 3n/8 + O(1). It turned out that for
cubic graphs of girth 4 (in relation to all problems that we consider in this paper) our
analysis gives no improved result than the unrestricted case. This line of investigation
was suggested by, for example, Denley [3] and Shearer [28, 29], who consider the similar
problem of maximum independent set size in graphs with restricted girth. Ever-increasing
bounds were obtained as the girth increases; see also [21]. For not-necessarily-independent
dominating sets there has been a recent flurry of activity including the upper bound of
0.3572n by Fisher, Fraughnaugh and Seager [9] for girth 5, upper bounds of (1/3 +
3/g2)n by Kostochka and Stodolsky [18] and (44/135 + 82/132g)n by Löwenstein and
Rautenbach [22] when the girth g of the graph is at least 5. These are above 0.4n for
g = 5. The most recent result for large girth is about 3n/10 + O(n/g) by Král, Škoda
and J. Volec [19]. Hoppen and Wormald have announced an unpublished upper bound of
0.2794n for a MIDS in a cubic graph of sufficiently large girth.

Our basic idea involves considering the set of operations involved in a greedy algorithm
for constructing the desired set of vertices or edges. The operations are classified in such a
way that an operation of a given type has a known effect on the number of vertices whose
neighbourhood intersects the set in a given way. There are restrictions on the numbers
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of times that the various operations can be performed, which leads to a linear program.
Due to the unique nature of the first step of the algorithm, our formulation of the linear
program requires a small adjustment to the constraints, which is analysed post-optimally.
We introduce prioritisation to the constraints in such a way that the solution of the linear
program can be improved; this and the proof of validity of the linear program, including
the post-optimal analysis, is the heart of our method.

The following section describes the type of greedy algorithms we will be using, and
sets up our analysis of their worst-case performance using linear programming. Our
algorithms (and their analysis) for MMM, MCDS and MIDS of cubic graphs are
given in Sections 3, 4 and 5 respectively. We conclude in Section 6 by mentioning some
of the other problems to which we have applied this technique.

The proofs in this paper involve the creation of linear programs which are defined by
a set of feasible operations in each case. The operations are determined by our proofs but
are not listed in detail. In the Appendix1 to this article, the operations actually used are
all listed for each problem, along with the the associated linear program and its solution.

2 Worst-Case Analysis and Linear Programs

In this section we discuss the type of greedy algorithms we will consider, and our method
of analysis. For this general description, let us call this algorithm ALG. One property
of ALG we will require, to be made precise shortly, is that it can be broken down into
repeated applications of a fixed set of operations. From these, we will derive an associated
linear program (LP) giving a bound on the result obtained by the algorithm. Then we
will describe how to improve the bound obtained by prioritising the operations.

In each of the problems that we consider in this paper, a graph is given and the task
is to find a subset of the vertices (or edges) of small cardinality that satisfies given local
conditions. ALG is a greedy algorithm based on selecting vertices (that have particular
properties) from an ever-shrinking subgraph of the input graph. It takes a series of steps.
In each step, a vertex called the target is chosen, then a vertex (or edge) near the target is
selected to be added to a growing set S, called the chosen set. Once this selection has been
made, a set of edges and vertices are deleted from the remaining graph. Then the next
step is performed, and so on until no vertices remain. The final output of each algorithm
is S. It is the appropriate choice of vertices and edges to delete in each step that will
guarantee that the final set S satisfies the required property (domination, independence,
etc.).

2.1 Operations

For our general method to be applicable to ALG, it must use a fixed set OPS of “op-
erations” such that each step of ALG can be expressed as the application of one of the
operations in OPS. Associated with each operation Op, there is a graph H . When Op

1Published on the same page as this article
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is applied, an induced subgraph H ′ of the main graph isomorphic to H is selected, one
or more elements (vertices or edges) of H ′ are added to the chosen set, and certain ver-
tices and edges of H ′ are deleted. Associated with Op we give a diagram showing which
elements are deleted and which are added to S.

For instance, consider MIDS in which S is an IDS. One step of the algorithm may
call for the target vertex v to be any vertex of degree 2 adjacent to precisely one vertex
of degree 1. The target vertex chosen might be the vertex 2 in Figure 1. The step of the
algorithm in this instance will be required to add the target vertex v to S, delete v and
its neighbouring vertices, and then to add to S any vertices that consequently become
isolated, and also to delete the latter from the graph. With the neighbourhood of the
target vertex as shown in this figure, vertex 5 is added to S and is also deleted. In figures
such as this, vertices added to the chosen set S are shown as black, and the dotted lines
indicate edges that are deleted. It is understood that all vertices that become isolated are
automatically deleted. In this way, the operation Op is defined by the figure.

3

1 2

4

5

6

Figure 1: An example operation

Each step of the algorithm can thus be re-expressed as choosing both an operation and
an induced subgraph of the graph to apply it to. (Strictly, in the above figure, the induced
subgraph has six vertices and the vertex 6 must have degree exactly three, as shown by
the incomplete edge leading to the right. All our figures should be read this way: any
incomplete edge represents an edge joining to any other vertex of the graph or to another
incomplete edge, thereby making a full edge. If there is more than one incomplete edge,
the figure can therefore represent any of several possible induced subgraphs.) Naturally,
this operation can only be applied if the target vertex lies in the appropriate induced
subgraph.

2.2 A linear program

The idea behind our approach derives from the following observation. For many greedy
algorithms, there are certain operations which will appear to be ‘wasteful’ in the sense
that they add a relatively large number of vertices to the chosen set S (which is supposed
to be kept small) and, at the same time, delete a relatively small number of vertices
of the graph (though, presumably more than were added to the chosen set). However,
such operations tend to create many vertices of some given degree, so there is a limit to
how many times the algorithm can use such an operation. To take advantage of this,
we classify the vertices of the graph according to their degree. In the case of MCDS,
we additionally classifying them according to their “colour,” which will be defined in the
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relevant section. Let V1, . . . , Vt denote the classes obtained by any such classification, and
let Yi denote |Vi| for 1 ≤ i ≤ t.

For each operation Op ∈ OPS, and for each i, we require that the net change in Yi

must be the same in each application of the operation. Let ∆Yi(Op) denote this constant.
In addition, the increase in the size of the chosen set must be a constant, denoted by
m(Op). For instance, with the operation given in Figure 1, the number of vertices of
degree 3 decreases by 4, one vertex of degree 1 is deleted but one is created, and so on.
Thus ∆Y3 = −4, ∆Y2 = −1, ∆Y1 = 0 and m = 2.

We assume that all vertices initially belong to the same class, which we may select as
Vt by definition. So, initially, Yt = n and Yi = 0 for all 1 ≤ i < t. Another assumption
we make, which is easy to verify for each instance of ALG we will use, is that at the end,
all vertices have been deleted, so Yi = 0 for 1 ≤ i ≤ t. This implies that the net change
in Yt over the execution of ALG is −n, and for 1 ≤ i < t, the net change in Yi is 0.
For an operation Op ∈ OPS, we use r(Op) to denote the number of times operation Op
is performed during the algorithm’s execution. Then the solution to the linear program
LP0 given in Figure 2 gives an upper bound on the size of the chosen set returned by the
algorithm. Here, Ci denotes the constraint imposed by the net change in Yi.

MAXIMISE :
∑

Op∈OPS

m(Op) r(Op)

SUBJECT TO : Ct :
∑

Op∈OPS

∆Yt(Op) r(Op) = −n

Ci :
∑

Op∈OPS

∆Yi(Op) r(Op) = 0 1 ≤ i < t

r(Op) ≥ 0 Op ∈ OPS

Figure 2: The linear program LP0

2.3 Prioritisation, and two more linear programs

In the examples we have examined, the upper bound obtained via LP0 is quite weak,
and can be improved by prioritising the operations, which will result in an LP with
more constraints. Before each operation, we may (implicitly or explicitly) define a list of
subsets S1, S2, . . . of the vertex set, called a priority list, where S1 has the priority index
1 (highest), S2 has priority index 2 (second-highest), and so on. For example, the priority
list for our algorithm forMIDS is as follows.

S1: vertices that have at least one neighbour of degree 1,

S2: vertices of degree 2 (and their neighbours) that have precisely one vertex at distance
2,
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S3: vertices of degree 2 (and their neighbours) that have precisely two vertices at distance
2,

S4: vertices of degree 2 (and their neighbours) that have precisely three vertices at
distance 2,

S5: vertices of degree 2 (and their neighbours) that have precisely four vertices at distance
2.

The priority index of a vertex v is defined to be min{i : v ∈ Si} (taking the minimum of
the empty set as ∞). We then impose the condition that vertices can be chosen as the
target only when no vertices of higher priority (i.e. smaller priority index) exist in the
graph at the time.

To analyse the effect of prioritisation, we consider the effect of an operation Op on a
set Vi as the simultaneous destruction of some vertices of Vi (by deleting them or changing
their degrees) and creation of new vertices of Vi. Denote by Y +

i (Op) the number of vertices
of Vi created, and by Y −

i (Op) the negative of the number of vertices of Vi destroyed. It
follows that Y +

i (Op) + Y −

i (Op) = ∆Yi(Op).
Prioritisation will lead to extra constraints, but first we examine the effect it has on

eliminating operations. Since the input graph is assumed to be connected, the first step
of ALG is unique in the sense that it is the only application of an operation where the
minimum degree of the vertices is 3. Thus, an operation is feasible to be applied as the first
step of ALG only if it belongs to the set OPS0 of operations Op satisfying Y −

i (Op) = 0
for all 1 ≤ i < t. The algorithms we consider will achieve good results by giving a higher
priority to all operations that destroy a vertex of degree less than 3. This will ensure that
no operation in OPS0 may be applied after the first step. By changing our focus to what
the algorithm does after the first step, we will be able to exclude the operations in OPS0

(and hence obtain an LP with a better objective function). This will be formalised below.
Prioritisation will also prevent certain other operations from ever occurring. Continu-

ing theMIDS example, consider the operations given in Figure 3 and assume that vertex
v has been selected to be added to S. The operation in Figure 3(a) is in OPS0. As the
algorithm prioritises the selection of a vertex with a neighbour of degree 1 over that of
any other vertex, operations such as that given in Figure 3(b) are excluded: an operation
adding the neighbour of the vertex of degree 1 to S will be used instead. When we restrict
the input to cubic graphs of girth at least 5, further operations are also excluded, such as
the example given in Figure 3(c).

In each of the algorithms and problems considered, we will define a set OPS1 of
operations such as these, that are excluded due to the prioritisation. We define OPS2 =
OPS \ (OPS0 ∪ OPS1), which contains all operations that can feasibly occur after the
first step.

We are about to define two new LP’s. For these, the variable r is redefined so as to
refer only to operations after the first one. Thus, for each excluded operation Op, we may
add the constraint r(Op) = 0 to the LP. In addition, further significant constraints result
from prioritisation. We assume (as will be true for each algorithm we consider) that there
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(c)(a) (b)

v v v

Figure 3: Excluded operations

will be a set Vγ, such that

(A) all vertices in Vγ have degree less than 3,

all operations Op with Y −

i (Op) < 0 have priority over all other operations, and, moreover,
when Yγ > 0, at least one such operation with Y −

i (Op) < 0 can be applied. It follows
that

(B) when Yγ > 0, the next operation Op applied must have Y −

γ (Op) < 0.

(Conversely, of course if Yγ = 0, the next operation Op must have Y −

γ (Op) = 0 since there
are no vertices in the class Vγ available in the graph.) Let K denote the range of nonzero
(hence negative) values taken by Y −

γ (Op) over all Op ∈ OPS2. For −k ∈ K, let

Sk = max(0, Yγ − k + 1),

i.e. the number of vertices in Vγ over and above k − 1 (if any).
We now bound from above the increase in Sk from an operation Op. From property

(B), if Y −

γ (Op) = 0, then Op cannot be performed due to the priority constraints unless
Yγ = 0. Thus, Sk increases by max(0, Y +

γ (Op)−k +1). If Y −

γ (Op) < 0 and ∆Yγ(Op) ≥ 0,
then Sk increases by at most ∆Yγ(Op), a bound which is valid for all operations. No other
operation can increase Sk. On the other hand, if Y −

γ (Op) ≤ −k and ∆Yγ(Op) < 0, then
Op must either decrease Sk by −∆Yγ(Op) (if that is smaller than Sk) or send Sk to 0. In
the latter case, note that by definition, Op requires at least k vertices in Vγ before it can
be applied, and so we may assume that

Yγ ≥ −Y −

γ (Op).

By assumption, −Y −

γ (Op) ≥ k, so Sk must equal Yγ − k + 1 before Op is performed.
Hence, the change in Sk due to Op in this case is exactly −(Yγ−k +1) ≤ Y −

γ (Op)+k−1
by the inequality above. Combining these cases, such an Op must subtract at least

mγ,k := min(−∆Yγ(Op),−Y −

γ (Op)− k + 1)

from Sk.
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The net increase in Sk throughout the algorithm, including the initial step, must be
0 since (A) implies that initially Yγ = 0, and of course at the end no vertices remain.
Let s = s(k, Opinit) denote the value of Sk after the first operation Opinit, and note that
all subsequent operations are in OPS2. The considerations above produce the following
constraint, which we call CPk

(s):
∑

Y
−
γ (Op)=0

Y
+
γ (Op)≥k

Op∈OPS2

(Y +

γ (Op)− k + 1)r(Op) +
∑

Y
−
γ (Op)<0

∆Yγ (Op)>0
Op∈OPS2

∆Yγ(Op)r(Op)

−
∑

Y
−
γ (Op)≤−k

∆Yγ (Op)<0
Op∈OPS2

mγ,kr(Op) ≥ −s.

We refer to these constraints, for each −k ∈ K, as priority constraints. Note that they
do not need to hold for every k and s, but for each k, in any application of the algorithm,
CPk

(s) must hold for some s which is a feasible value of Sk after the first operation.
With the same definition of s, we will also establish the following additional priority

constraint C′

Pk
(s) for each positive k:

∑

Y
−
γ (Op)=0

Op∈OPS2

⌊Y +

γ (Op)/k⌋r(Op) +
∑

Y
−
γ (Op)<0

∆Yγ (Op)>0
Op∈OPS2

⌈∆Yγ(Op)/k⌉r(Op)

−
∑

∆Yγ (Op)≤−k

Op∈OPS2

⌊−∆Yγ(Op)/k⌋r(Op) ≥ −s.

The justification for this constraint is as follows. Let Yγ,k = ⌊Yγ/k⌋. As before, the
net change in Yγ,k over the course of the whole algorithm is 0. The first two summations
provide an upper bound on the net increase in Yγ,k due to all operations with ∆Yγ(Op) > 0,
apart from the increase s due to the first operation. The operations in the first summation
can only be performed, in view of condition (B), when Yγ = 0, and so ⌊Y +

γ (Op)/k⌋
is the actual increase in Yγ,k due to such an operation. Any other operation Op with
∆Yγ(Op) > 0 must have Y −

γ (Op) < 0, and ⌈∆Yγ(Op)/k⌉ is the maximum possible increase
in Yγ,k in such a step, which yields the terms in the second summation. For any operation
Op with ∆Yγ(Op) < 0, the magnitude of the decrease in Yγ,k is at least ⌊−∆Yγ(Op)/k⌋.
The third summation, which is subtracted, is hence a lower bound on the net decrease in
Yγ,k due to such operations.

For any possible initial operation Opinit, consider the linear program obtained from
LP0 by altering the right hand side constants in the constraints Ci to represent the
part of the algorithm remaining after the first step, adding any prescribed set of the
priority constraints described above, with appropriate value of s as determined by Opinit,
and excluding the operations in {OPS0 ∪ OPS1} by adding the appropriate equations.
Solving this LP will again give an upper bound on the size of the set S. However, it gives
a different LP for each value of n, and we need to remove this dependence on n.
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First, scale all variables in the problem by 1/n (effectively, the only change is to
multiply the right hand side of the constraints by 1/n and, after solving, scale the solution
back up by a factor of n) and denote this linear program by LP1(Opinit). There are still
O(1/n) variations in the right hand side constants in the constraints, depending on n
and on the initial operation Opinit. To remove these, define the linear program LP2 from
LP1(Opinit) by setting the right hand side of all constraints (except Ct) to 0. LP2 is
then independent of Opinit and, apart from scaling by 1/n, differs from LP0 in that all
operations in {OPS0 ∪ OPS1} are excluded, and a set of priority constraints have been
added with s = 0 in all cases.

We now have the task of estimating the error in approximating LP1(Opinit) by LP2.
This can be done using the theory of post-optimal analysis of solutions of LP’s.

Lemma 1 If the solution of LP2 is finite, then for any fixed initial operation, the solutions
of LP1(Opinit) and LP2 differ by at most c/n for some constant c independent of n.

Proof: We may assume that the first constraint listed in LP2 is Ct, so the column
vector of the right hand sides of the constraints of LP2 is

b = [−1, 0, . . . , 0]T .

Let t′ denote the total number of constraints, including priority constraints, in LP1 and
hence also in LP2. For 1 ≤ i ≤ t′, let ∆bi be the change in the right hand side of the i-th
constraint in passing back from LP2 to LP1(Opinit). For example, if the j-th constraint
is one of the original constraints Ci of LP0, then −n∆bj is the change in Yi due to the
initial operation. The difference in the constant column vectors, between LP2 and LP1 =
LP1(Opinit), is now

∆b = [∆b1, . . . , ∆bt′ ]
T .

Each operation Opinit can alter the right hand sides of the constraints by at most a
constant before scaling. Hence, ∆bi = ci/n for some constant ci depending on i.

Let κi denote the optimum value of the objective function of the linear program LPi

and let y∗ be an optimum dual solution. By [27, equation (20), p. 126]), κ1 ≤ κ2 − y∗∆b
provided that both LP’s have finite optima. LP2 has a finite optimum by the assumption
of this theorem. That LP1(Opinit) has a finite optimum is shown below. Since ∆bi = ci/n
for some constant ci depending on i, the solutions to LP1 and LP2 differ by at most c/n
for some constant c.

It only remains to show that LP1(Opinit) has a finite optimum. We only need to show
that it is feasible (so the optimum is not −∞, under the interpretation in [27]) and that
the objective function is bounded above by the constraints. Feasibility follows by fact
that the constraints were built based on an argument that r(OP ) represents the number
of operations in the algorithm ALG. We assumed explicitly near the start of Section 2.2
that ALG can always process the graph and terminate with all vertices deleted. Hence, all
constraints must be satisfied in any one run of ALG, which proves that there is a feasible
solution. �
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Note that, when we use an LP solver to find a solution, we use one that also gives a
solution to the dual. The duality theorem of linear programming then gives us a simple
way to check the claimed upper bound on the solution given by the primal LP.

One of the themes of this work is that instead of developing ad hoc arguments for
each problem of this type, the same general argument can be used and to some extent
automated. For the present work, our elimination of operations that cannot occur in LP2

due to prioritisation is simply by inspection, but this too could presumably be automated.
(We did use a degree of automation in generating the possible operations and the LP
constraints.) One could conceivably construct a program for which the input is a list of
priorities in some form, and the output is an upper or lower bound from LP2.

Apart from giving an upper bound on the size of the set of interest, often, the solution
to the linear program may also be used to construct a subgraph of a cubic graph for which
the given algorithm has a worst case indicated by the solution to the linear program.
In several cases, by chaining multiple copies of this subgraph together, we are able to
construct an infinite family of cubic graphs for which the worst case performance of the
given algorithm is equal to that indicated by the solution of the LP, to within a constant
number of vertices. In this way, we show that the upper bound given by the LP is
essentially sharp.

For a given algorithm, we sometimes impose additional priorities on operations in
order to cut down on the number of operations that can possibly occur in the solution.
No extra constraints need to be added but this permits us to exclude certain operations.
This can result in reducing the number of operation variables r(OP ) that have non-zero
value in the solution of the LP. We found no case where this reduced the value of the
solution, but it did lead to simpler example graphs.

Figure 4 represents one of the many possible ways to form these example graphs. Each
shaded diamond (and an incident edge) represents a copy of the repeating subgraph. If
this is done in a suitable way, it can be argued that the black vertex can be selected
to be added to the set by the initial operation of the algorithm, and that each repeated
subgraph in the chains is then processed in turn until the last operation is performed.

...

...

...

...

Figure 4: Forming a cubic graph
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3 Small Maximal Matchings

Yannakakis and Gavril [31] showed that the size of a smallest edge dominating set of a
graph is the same as the size of a smallest maximal matching (MM) and that the problem
of finding a minimum maximal matching (MMM) is NP-hard even when restricted to
planar or bipartite graphs of maximum degree 3. In the same paper they also gave a
polynomial time algorithm that finds an MMM of trees. Horton and Kilakos [16] showed
that the problem of finding an MMM remains NP-hard for planar bipartite graphs and
planar cubic graphs. They also gave a polynomial time algorithm that finds an MMM for
various classes of chordal graphs. More recently, Zito [32], extended these NP-hardness
results to include bipartite (ks, 3s)-graphs for every integer s > 0 and for k ∈ {1, 2}. (A
(∆, δ)-graph is a graph with maximum degree ∆ and minimum degree δ.) It is simple
to verify that, for cubic graphs, the problem of finding an MMM is approximable within
the ratio 5/3. Zito [33] showed that for a random n-vertex cubic graph G, the size of an
MMM of G, β(G), asymptotically almost surely (a.a.s. i.e. with probability tending to 1
as n goes to infinity) satisfies 0.3158n < β(G) < 0.47653n. This upper bound has since
been improved to 0.34622n [4].

In this section, we present an algorithm that finds a small MM of cubic graphs. We
analyse the worst-case performance of this algorithm using the linear programming tech-
nique outlined in Section 2 and show that for n-vertex connected cubic graphs, the al-
gorithm returns an MM of size at most 9n/20 + O(1). We also show that there exist
infinitely many n-vertex cubic graphs that have no MM of size less than 3n/8. When we
restrict the input to be n-vertex connected cubic graphs of girth at least 5, the algorithm
returns an MM of size at most 3n/7 + O(1).

3.1 Algorithm Edge Greedy

We describe a greedy algorithm, Edge Greedy, that is based on selecting edges which
have an end-point that has a neighbour of minimum degree and finds a small MM, E , of
an n-vertex cubic graph G. In order to guarantee that the matching chosen is indeed a
matching and maximal, once an edge e is chosen to be added to the matching, all edges
incident with the end-points of e are deleted and any isolated edges created due to the
deletion of these edges are added to the matching. We categorise the vertices of the graph
at any stage of the algorithm by their current degree so that for 1 ≤ i ≤ 3, Vi denotes
the set of vertices of degree i. Define τ(e) to be the ratio of the increase in the size of the
matching to the number of edges deleted when an operation is performed after selecting
the edge e to be added to the matching.

Figure 5 shows an example of an operation for this algorithm. The edge e has been
chosen to be added to the matching and deleted edges are indicated by dotted lines.
The edge e′ is isolated as a consequence of deleting these edges and is also added to the
matching.

The operation in Figure 5 has ∆Y3 = −4, ∆Y2 = 0, ∆Y1 = 0 and m(Op) = 2 (as the
edges incident with the vertices 1, 2, 4 and 5 are deleted, vertices 3 and 6 are changed
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21
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Figure 5: An example operation for Edge Greedy

from vertices of degree 3 to vertices of degree 2 and the size of the matching is increased
by 2 due to this operation). For this operation τ(e) = 1/3. Note that in this operation,
it is assumed that the current minimum degree in G is 2, therefore no other edges may
be isolated by this operation.

For a given set of vertices S, let (S, ∗) denote the set of all edges incident with the
vertices of S. The algorithm Edge Greedy is given in Figure 6. For this we must define
the function MinN(T ) which, given a set of vertices T , returns an edge e for which τ(e) is
the minimum of all edges incident with the vertices of T . The function Add Isolates()
involves the process of adding any isolated edges to the matching and deleting them from
G.

e = (u, v)← MinN (V );
E ← {e};
delete ({u, v}, ∗);
Add Isolates();

while ({V1 ∪ V2} 6= ∅)
do

S ← {v | {{N(v) ∩ V1} 6= ∅}};
if (S = ∅) S ← {v | {{N(v) ∩ V2} 6= ∅}};
e = (u, v)← MinN (S);
E ← E ∪ {e};
delete ({u, v}, ∗);
Add Isolates();

od

Figure 6: Algorithm Edge Greedy

3.2 Edge Greedy Analysis

The initial operation of the algorithm selects the first edge to be added to the matching
and deletes the necessary edges. Subsequently, edges are repeatedly selected to be added
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to the matching based on the minimum degree of the vertices available. At each iteration,
we use the following priority list to choose a target vertex.

S1: vertices that have at least one neighbour of degree 1,
S2: vertices that have at least one neighbour of degree 2.

As a further restriction, we choose an edge e to add to the matching for which τ(e) is
the minimum of all edges incident with the vertices of Si. Should there exist two edges
in T , say e and e′, for which τ(e) = τ(e′), the function returns the edge with the fewest
vertices neighbouring its endpoints. Any further ties are broken arbitrarily. We now
analyse the worst-case performance of Edge Greedy and in this way prove the following
theorem.

Theorem 1 Given a connected, n-vertex, cubic graph, algorithm Edge Greedy returns a
maximal matching of size at most 9n/20 + O(1).

Proof: We form the linear program LP2 as outlined in Section 2. From the set OPS1

of all operations that may occur after the initial operation, we exclude those that may
not be performed due to the priorities of the algorithm. (See the Appendix for the list of
operations not excluded.) As we prioritise the selection of a vertex with a neighbour of
degree 1 over the selection of any other vertex when Y1 = 0, we have γ = 1. So for each k
such that V −

1 (Op) = k, we add the constraints CPk
(0) and C ′

Pk
(0). (In the case of C ′

Pk
(0),

the choice of which k to use is rather arbitrary; all choices produce valid results.)
Using an exact linear program solver (in Maple), we solve LP2 (see the Appendix).

The solution is shown in Figure 7. Maple also returns a dual solution, which can be
substituted directly into the problem to give a simple proof that the upper bound on the
solution is correct. By Lemma 1 this shows that for n-vertex cubic graphs, algorithm
Edge Greedy returns an MM of size at most 9n/20 + O(1).

Op1 Op2 Op3 Solution
1

8

1

10

1

10

9

20

Figure 7: A solution to the LP for Edge Greedy

The operations Opi (for i ∈ {1, 2, 3}) are shown in Figure 8. For each operation, the
edge e is selected by the algorithm to be added to the matching. Edges added to the
matching are indicated by heavier lines and deleted edges are indicated by dotted lines.

Op2 Op3Op1

e e e

Figure 8: Operations in the LP solution for Edge Greedy
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A subgraph that forms part of a cubic graph that realises the solution of the linear
program is shown in Figure 9. For each component (which has forty vertices), eighteen
of the sixty edges are chosen to be added to the matching in the numbered order. Edges
labelled 1,4,7 and 10 are each added by an Op2, those labelled 2,5,8 and 12 are each added
by an Op3 and the remaining edges are added in pairs, each pair by an Op1. An edge

13

2

3

3*

5

6

6*

8

9
9*

10

7

11 11*

12

4

1
13*

Figure 9: Repeating component

i∗ denotes that this edge was isolated and added to the matching in the same operation
that the edge i was chosen for addition. Connecting a number of these subgraphs by
identifying vertices in adjacent components and adding a subgraph to represent the first
and last operations of the algorithm gives a family of cubic graphs for which the algorithm
returns an MM of size at most 9n/20 + O(1).

Having considered an upper bound on the size of an MMM of a cubic graph, we now
consider the maximum, over all n-vertex cubic graphs, of the the size of an MMM. The
graph of Figure 10 represents a family of cubic graphs. As each component of eight
vertices must contribute at least three edges to any MM, this shows that there exists
infinitely many n-vertex cubic graphs with no MM of size less than 3n/8.

Figure 10: No MM of size less than 3n/8

3.3 Cubic Graphs with Girth at least 5

For graphs with girth 4, the introduction of more priorities of selection into the algorithm
gives no better result than the unrestricted case. We now restrict the input to graphs of
girth at least 5. Algorithm Edge Greedy5 takes as input an n-vertex cubic graph of girth
at least 5, G, and returns an MM, E , of G.
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Theorem 2 Given a connected, n-vertex, cubic graph of girth at least 5, the algorithm
Edge Greedy5 returns a maximal matching of size at most 3n/7 + O(1).

Proof: This is the same as the proof of Theorem 1 except that there are less operations
to consider as we may remove those involving any cycles of length less than 5. The solution
is shown in Figure 11.

Op1 Op2 Op3 Op4 Solution
1

14

1

14

1

14

1

14

3

7

Figure 11: Edge Greedy5 solution

The operations Opi (for i ∈ {1, 2, 3, 4, 5}) are shown in Figure 12.

e

Op1 Op2

e e e

Op4Op3

Figure 12: Operations in the LP solution for Edge Greedy5

�

4 Small Connected Dominating Sets

The problem of finding an MCDS is a well known NP-hard optimisation problem [12] and
is polynomially equivalent to the Maximum Leaf Spanning Tree problem (MLST ). A
spanning tree of a graph G = (V, E) is a connected spanning subgraph T = (V, E ′) which
does not contain a cycle. Vertices of degree 1 in T are called leaves and we are interested
in finding a spanning tree with a large number of leaves. The non-leaf vertices of T form
a CDS.

Solis-Oba [30] showed that MLST is approximable with approximation ratio 2, im-
proving the previous best known approximation ratio of 3 by Lu and Ravi [23]. Galbiati,
Maffioli and Morzenti [11] showed that when restricted to cubic graphs, this problem is
APX-Complete (i.e. there exists a constant c such that it is NP-hard to approximate
MLST within c). It is simple to verify that, for cubic graphs, MCDS is approximable
with asymptotic approximation ratio 2. Griggs, Kleitman and Shastri [13] showed that
every n-vertex connected cubic graph has a spanning tree with at least ⌈(n/4)+2⌉ leaves.
Duckworth [5] showed that the size of the smallest CDS of a random n-vertex cubic graph
is a.a.s. less than 0.5854n.

In this section we present a greedy version of the algorithm introduced by Guha
and Khuller [14] that “grows a tree”. The idea behind the algorithm of [14] is given in
Figure 13.
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Start out with all vertices marked “white”
Select an initial vertex v to add to T (colour it “black”)
Add all edges incident with v to T
Colour all neighbours of v “grey”
While there are still “white” vertices

Add a “grey” vertex v to T (colour it “black”)
Add all edges incident with v and a “white” vertex to T
Colour all “white” neighbours of v “grey”

Figure 13: Guha and Khuller’s Algorithm

At the end of this algorithm, the set of “black” vertices forms a CDS. We analyse
this algorithm using the linear programming technique and show that n-vertex connected
cubic graphs have an MCDS of size at most 3n/4 + O(1) which gives a new derivation,
to within a constant number of vertices, of the main result of [13]. When the input is
restricted to n-vertex connected cubic graphs of girth at least 5, a modified algorithm
returns a CDS of size at most 2n/3+O(1). We also show that there exist infinitely many
n-vertex cubic graphs of girth 5 that have no CDS of size less than 4n/7.

4.1 Algorithm Build Tree

In our greedy version of the algorithm of [14], Build Tree, after each operation we delete
any edges that connect two “grey” vertices. Note that all “white” vertices have degree
3 and all “grey” vertices have degree 1 or 2. Each “grey” vertex then has one or two
“white” neighbours and we assign a priority to selecting “grey” vertices of degree 2 over
selecting “grey” vertices of degree 1. The input graph is assumed to be connected and so
after the initial operation and before the completion of the algorithm there always exists
a “grey” vertex with at least one “white” neighbour.

We distinguish vertices by means of their colour and their number of “white” neigh-
bours so that the cardinalities of the sets of vertices in Figure 14 may characterise the
graph at any stage of the algorithm.

Set Colour No white neighbours Set Colour No white neighbours
V0 grey 1 V3 white 1
V1 grey 2 V4 white 2
V2 white 0 V5 white 3

Figure 14: CDS categories

An example operation for Build Tree is given in Figure 15. Vertex 1 is selected to be
added to the CDS and deleted along with its incident edges. The neighbours of vertex
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1 are coloured “grey” and the edges (2,4) and (3,4) are deleted since all their end-points
are now “grey”. The set of equations associated with the example operation of Figure 15
is ∆Y0 = 2, ∆Y1 = −2, ∆Y2 = 0, ∆Y3 = −1, ∆Y4 = 0, ∆Y5 = −1 and m(Op) = 1.

1

2

3 5

4

1

2

3 5

4

Figure 15: An example operation for Build Tree

Recall that for a set of vertices S, (S, ∗) denotes all edges incident with the vertices
of S. Algorithm Build Tree in Figure 16 takes an n-vertex cubic graph G as input and
returns a connected dominating set C of G.

Select v from V (G)
C ← {v};
colour N(v) “grey”;
delete (v, ∗);
while ({V2 ∪ V3 ∪ V4 ∪ V5} 6= ∅)
do

delete all edges incident with two “grey” vertices;
if (V1 6= ∅) select v from V1;
else select v from V0;
C ← C ∪ {v};
colour N(v) “grey”;
delete (v, ∗);

od

Figure 16: Algorithm Build Tree

For each operation we select a “grey” vertex to add to C and vertices are repeatedly
selected until no “white” vertices remain. After each operation we delete all edges that
are incident with two “grey” vertices.

4.2 Build Tree Analysis

We now analyse the worst-case performance of Build Tree and in this way prove the
following theorem.

Theorem 3 Given a connected, n-vertex, cubic graph, algorithm Build Tree returns a
connected dominating set of size at most 3n/4 + O(1).
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Proof: As we prioritise the selection of a vertex from V1 over the selection of a vertex
from V0, we have γ = 1. The rest of the proof is as for Theorem 1, again using both
priority constraints for each k such that V −

1 (Op) = k. The solution to LP2 and the
non-zero variables in the solution are shown in Figure 17.

Op1 Op2 Op3 Solution
1

4

1

4

1

4

3

4

Figure 17: Build Tree LP solution

The operations Opi (for i ∈ {1, 2, 3}) are shown in Figure 18. For each operation,
the grey vertex v is selected by the algorithm to be added to the CDS. Deleted edges are
indicated by dotted lines.

v

v

Op3

Op1

v

Op2

Figure 18: Operations in the LP solution for Build Tree

�

The subgraph that forms part of a cubic graph that realises the solution of the linear
program is shown in Figure 19.

1
3

2

Figure 19: Repeating component

For each component, the algorithm adds three of the four vertices to the CDS in
the numbered order. Connecting a number of these subgraphs by identifying vertices in
consecutive subgraphs and adding a subgraph to represent the initial operation of the
algorithm gives a family of cubic graphs for which the algorithm returns a CDS of size at
most 3n/4 + O(1).
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The tightness of this bound was demonstrated in [13] using the example given in
Figure 20. The graph consists of multiple copies of “K4 minus an edge”. Adjacent copies
are connected together in a chain by an edge and the final copy in the chain is connected
back to the first as indicated. Since each component of four vertices must contribute at

Figure 20: No CDS of size less than 3n/4

least three vertices to any CDS, this shows that there exist infinitely many n-vertex cubic
graphs with no CDS of size less than 3n/4.

4.3 Cubic Graphs with Girth at least 5

When we restrict the input to cubic graphs of girth at least 5, we add more priorities to the
selection of “grey” vertices of degree 1 and, in some instances, add more than one vertex
to the CDS per operation. The modified algorithm, Build Tree5, given in Figure 21.

The algorithm takes as input an n-vertex cubic graph G of girth at least 5 and returns
a CDS C of G. As before, the selection of a “grey” vertex of degree 2 has priority over
the selection of a “grey” vertex of degree 1.

The priority list to describe the priorities of selection of a vertex from V0 is as follows:
S1: vertices in V0 that have a neighbour u in V4

S2: vertices in V0 that have a neighbour u in V3

S3: vertices in V0 that have a neighbour u in V2.
In the instance where S3 is the highest priority non-empty set, we add the vertex v to

the CDS, colour all neighbours of v “grey” and delete all edges incident with v. In the
instance where S1 is the highest priority non-empty set, we add u and v to the CDS, colour
the neighbours of u “grey” and delete all edges incident with u and v. In the instance
where S2 is the highest priority non-empty set we add u, v and the “white” neighbour w
of u to the CDS, colour all neighbours of w “grey” and delete all edges incident with u,
v and w.

Theorem 4 Given a connected, n-vertex, cubic graph of girth at least 5, the algorithm
Build Tree5 returns a connected dominating set of size at most 2n/3 + O(1).

Proof: This is as for the proof of Theorem 3, but excluding operations based on the
condition that the input graph has girth at least 5, and taking note of operations that
cannot occur due to the prioritisation. The equations associated with the operations Opi

(for i ∈ {1, 2, 3}) may be derived from Figure 22. For each operation, black vertices are
added to the CDS and deleted edges are indicated by dotted lines.

The solution to LP2 and the non-zero variables in the solution are shown in Figure 23.
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Select v from V (G);
C ← {v};
colour N(v) “grey”; delete (v, ∗);
while ({V2 ∪ V3 ∪ V4 ∪ V5} 6= ∅)
do

delete all edges incident with two “grey” vertices;
if (V1 6= ∅) select v from V1;
else S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V4} 6= ∅}};

if (S = ∅)S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V3} 6= ∅}};
if (S = ∅)S ← {v | {{v ∈ V0} ∧ {N(v) ∩ V2} 6= ∅}};
select u from S;
if (N(u) ∈ V2) v ← u;
else if (N(u) ∈ V4) v ← N(u);

C ← C ∪ {u};
delete (u, ∗);

else w ← N(u);
C ← C ∪ {u};
delete (u, ∗);
v ← {N(w) ∩ {V2 ∪ V3 ∪ V4 ∪ V5}};
C ← C ∪ {w}
delete (w, ∗);

C ← C ∪ {v}; colour N(v) “grey”; delete (v, ∗);
od

Figure 21: Algorithm Build Tree5

�

Now consider the maximum, over all n-vertex cubic graphs of girth 5, of the the size
of an MCDS. The graph of Figure 24 represents a family of cubic graphs which contain a
chain of k repeating components. Each component has fourteen vertices indicating that
the entire graph has n = 14k vertices. Adjacent components are chained together by an
edge and the last component in the chain is connected back to the first as indicated. This
graph has girth 5. As each component must contribute at least eight vertices to any CDS,
this shows the existence of a family of n-vertex cubic graphs of girth 5 with no CDS of
size less than 4n/7.

5 Small Independent Dominating Sets

The problem of finding a MIDS is one of the core NP-hard optimisation problems in
graph theory [12]. Halldórsson [15] showed that for general graphs, this problem is not
approximable within n1−ǫ for any ǫ > 0. Kann [17] showed that when restricted to graphs
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Figure 22: Operations in the LP solution for Build Tree5

Op1 Op2 Op3 Solution
1

24

1

8

1

6

2

3

Figure 23: Build Tree5 LP solution

of maximum degree at least 3, the problem is APX-Complete. Lam, Shiu and Sun [20]
showed that for n ≥ 10, the size of an IDS of n-vertex connected cubic graphs is at most
2n/5. They also give an example of a cubic graph on ten vertices with no IDS of size less
than four.

The algorithm we present is simple to implement and, for n-vertex connected cubic
graphs, ensures that the size of the IDS returned is at most 29n/70+O(1). We also show
that there exist infinitely many n-vertex connected cubic graphs which have no IDS of
size less than 3n/8. This obviously does not rule out the possibility that there exists an
alternative algorithm that always returns an IDS of size at most 3n/8. Restricting the
input to n-vertex connected cubic graphs of girth at least 5, a modified algorithm returns
an IDS of size at most 3n/8 + O(1).

Suppose we relax the independence constraint on the dominating set. Reed [26] showed
that the size of a minimum dominating set of n-vertex connected cubic graphs is at most
3n/8. He also gave an example of a cubic graph on eight vertices with no dominating set
of size less than three, demonstrating the tightness of this bound. Molloy and Reed [25]
showed that the the size of the smallest dominating set D(G) of a random cubic graph G
on n vertices, a.a.s. satisfies 0.2636n ≤ |D(G)| ≤ 0.3126n. Duckworth and Wormald [7]
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Figure 24: No CDS of size less than 4n/7

tightened these bounds by showing that the size of a MIDS, D, of a random cubic graph,
a.a.s. satisfies 0.2641n ≤ |D| ≤ 0.2794n.

5.1 Algorithm Min Ratio

We describe a greedy algorithm based on selecting vertices of minimum degree that finds a
small independent dominating set I of an n-vertex cubic graph G. In order to guarantee
that I is indeed independent and dominating, once a vertex is chosen to be added to
I, it is deleted along with all its neighbours and the edges incident with each of those
neighbours. The only other vertices that are added to I are those which are isolated by
such an operation of the algorithm. At any stage of our algorithm we characterise the
vertices of the input graph based on their current degree so that Vi for 1 ≤ i ≤ 3 denotes
the set of vertices of degree i.

For any particular operation performed by the algorithm, a number of vertices are
deleted and a subset of these are added to I. We define ρ(v) to be the ratio of the
increase in size of I to the number of vertices deleted when an operation is performed by
selecting vertex v to be added to I. The algorithm, Min Ratio, is given in Figure 25.

In the algorithm, Q(v) denotes the number of vertices at minimum distance 2 from v.
The function MinR(T ) operates on the given set of vertices T and returns an element
u ∈ T for which ρ(u) is the minimum of all vertices in T . Should there exist two vertices
{v, v′} ∈ T such that ρ(v) = ρ(v′) (and ρ(v) is the minimum of all vertices in T ) a vertex is
selected arbitrarily from {v, v′}. The function Add isolates() adds any isolated vertices
created in V (G) to I.

After the initial operation of the algorithm, vertices are repeatedly selected to be
added to I based upon the minimum degree of the vertices available and the number of
vertices at minimum distance 2 from these vertices, until no vertices remain.

The priority list for this algorithm is the one given in Section 2.

5.2 Min Ratio Analysis

Theorem 5 Given a connected, n-vertex, cubic graph, algorithm Min Ratio returns an
independent dominating set of size at most 29n/70 + O(1).

Proof: As we prioritise the selection of a vertex of degree 1 over the selection of a
vertex of degree 2, we have γ = 1. The rest of the proof of Theorem 1 is then followed.
The solution to the LP is shown in Figure 26.

the electronic journal of combinatorics 17 (2010), #R177 23



v ← MinR(V );
I ← {v};
delete (N(v), ∗);
Add isolates();
while ({V1 ∪ V2} 6= ∅)
do

S ← {v | {{N(v) ∩ V1} 6= ∅}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 1}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 2}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 3}};
if (S = ∅) S ← {{{v} ∪N(v)} | {v ∈ V2 ∧Q(v) = 4}};
u← MinR(S);
I ← I ∪ {u};
delete (N(u), ∗);
Add isolates ();

od

Figure 25: Algorithm Min Ratio

Op1 Op2 Op3 Solution
2

35

1

14

1

10

29

70

Figure 26: Min Ratio solution

The operations Opi (for i ∈ {1, 2, 3}) are as shown in Figure 27.For each operation,
the black vertex v is selected by the algorithm to be added to the IDS. In each case,
vertices may be isolated and these are also coloured black to indicate their addition to
the IDS. Deleted edges are indicated by dotted lines.

Op1
v v v

Op2 Op3

Figure 27: Operations performed in the worst case

�

The subgraph that forms part of a cubic graph that realises the solution of the linear
program is shown in Figure 28. For each component, the algorithm selects 29 of the 70
vertices to be added to I in the numbered order. A vertex labeled i∗ indicates that this
vertex was isolated after the vertex labeled i was added to I and was subsequently added
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Figure 28: Repeating component

to I. Connecting a number of these subgraphs by identifying vertices in consecutive com-
ponents and adding a subgraph to represent the first and last operations of the algorithm
gives a family of cubic graphs for which the algorithm returns an IDS of size at most
29n/70 + O(1).

Now consider sharpness of the result. The graph of Figure 29 represents a family of
cubic graphs which contain a chain of k repeating components. Each component has eight
vertices indicating that the entire graph has n = 8k vertices.

A component is connected to the next component in the chain by one edge and the final
component in the chain is connected back to the first as indicated. As each component
must contribute at least three vertices to any IDS, this shows the existence of a family of
n-vertex cubic graphs with no IDS of size less than 3n/8.

Figure 29: No independent dominating set of size less than 3n/8

5.3 Cubic graphs with Girth at least 5

Restricting the input to n-vertex cubic graphs of girth at least 5, we apply a modified
algorithm that is based on selecting vertices of minimum degree, using operations that
remove the fewest edges and combining this with selecting vertices that give a minimal
ratio.

The algorithm, which we call Min Deg One, is essentially the same as the algorithm
Min Ratio except that for each of the sets in the priority list, should there exist two
vertices v and v′ for which ρ(v) = ρ(v′) (and ρ(v) is the minimum of all vertices in the
set), we choose the operation that deletes the fewest edges.
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Theorem 6 Given a connected, n-vertex, cubic graph of girth at least 5, the algorithm
Min Deg One returns an independent dominating set of size at most 3n/8 + O(1).

Proof: The linear program LP2 is formed in the same way as that for Min Ratio. Due
to the restriction in girth for the input, this linear program has approximately one third
the number of variables. The solution is of the form shown in Figure 30.

Op1 Op2 Op3 Op4 Op5 Op6 Solution
1

70

1

70

1

28

3

56

1

42

1

14

3

8

Figure 30: Min Deg One solution

The operations Opi (for i ∈ {1, 2, 3, 4, 5, 6}) represent the operations shown in Fig-
ure 31.

Op1 Op2 Op3

Op4 Op5 Op6

Figure 31: Operations performed in the worst case

�

Regarding sharpness, the graph of Figure 32 represents a family of cubic graphs which
contain a chain of k repeating components. Each component has eighteen vertices indi-

v v v v

Figure 32: No IDS of size less than n/3

cating that the entire graph has n = 18k vertices. Components are connected by a cycle
of k edges passing through the vertex labeled v in each component as indicated. This
graph has girth 5. As each component must contribute at least six vertices to any IDS,
this shows the existence of a family of n-vertex cubic graphs of girth 5 with no IDS of
size less than n/3.
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6 Remarks

In joint work with Zito [8], we used our linear programming technique to find a large
induced matching of a (2, 3)-regular bipartite graph as a means of approximating the
sparsest 2-spanner problem on 4-connected planar triangulations.

The technique has also been used to find a large induced matching of a cubic graph but
a simpler analysis may be used to achieve the same result. The technique was used in [6]
to find families of cubic graphs for which an algorithm has its worst case performance.

We have also used this technique to find a large 2-independent set and a small vertex
cover of a cubic graph. In both cases, while a result was achieved, the same result is
relatively easily obtained by means of a simpler analysis.

Acknowledgments The authors would like to thank anonymous referees whose thought-
ful comments led us to correct some errors and improve the presentation.
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[15] M.M. Halldórsson, Approximating the minimum maximal independence number, In-
formation Processing Letters, 46(4) (1993) 169–172.

[16] J.D. Horton and K. Kilakos, Minimum edge dominating sets, SIAM Journal on Dis-
crete Mathematics, 6(3) (1993) 375–387.

[17] V. Kann, On the Approximability of NP-Complete Optimisation Problems, Doctoral
Thesis, Department of Numerical Analysis, Royal Institute of Technology, Stockholm,
1992.

[18] A.V. Kostochka and B.Y. Stodolsky. An upper bound on the domination number of
n-vertex connected cubic graphs, Discrete Math., 309 (2009) 1142–1162.
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