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Abstract

We develop a theory of factorisation of snarks — cubic graphs with edge-chroma-
tic number 4 — based on the classical concept of the dot product. Our main concern
are irreducible snarks, those where the removal of every nontrivial edge-cut yields a
3-edge-colourable graph. We show that if an irreducible snark can be expressed as
a dot product of two smaller snarks, then both of them are irreducible. This result
constitutes the first step towards the proof of the following “unique-factorisation”
theorem:

Every irreducible snark G can be factorised into a collection {H1, . . . ,Hn} of

cyclically 5-connected irreducible snarks such that G can be reconstructed from them

by iterated dot products. Moreover, such a collection is unique up to isomorphism

and ordering of the factors regardless of the way in which the decomposition was

performed.

The result is best possible in the sense that it fails for snarks that are close
to being irreducible but themselves are not irreducible. Besides this theorem, a
number of other results are proved. For example, the unique-factorisation theorem
is extended to the case of factorisation with respect to a preassigned subgraph K

which is required to stay intact during the whole factorisation process. We show
that if K has order at least 3, then the theorem holds, but is false when K has
order 2.

1 Introduction

In the study of various important and difficult problems in graph theory (such as the Cycle
Double Cover Conjecture and the 5-Flow Conjecture) one encounters an interesting but
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somewhat mysterious variety of graphs called snarks. In spite of their simple definition
— a snark is just a “nontrivial” cubic graph with edge-chromatic number 4 — and over
a century long investigation, their properties and structure are largely unknown.

Since their first occurrence in the 19th century [10, 13] much attention has been paid to
developing constructive methods of investigation of snarks (see [15]). This approach has
resulted in such fundamental concepts as the dot product [6] and superposition [7], among
others. Our paper follows a different line of research, one which grows from the ideas of
Goldberg [4] and Cameron, Chetwynd and Watkins [2] and focuses on the composite
structure of snarks.

Our study is closely related to the problem of nontriviality of snarks, a phenomenon
which has been recurring since the very outset of their study. It is based on the observation
that there are some situations in which a snark can naturally be regarded trivial and hence
uninteresting. The simplest instance of this situation appears to be the occurrence of a
bridge in a snark, that is, the existence of a 1-edge-cut, for there is no cubic graph with
a bridge that can be 3-edge-coloured. However, this is not the only case. Snarks with
independent edge-cuts of size 2 or 3 can be split into two smaller graphs, at least one of
which cannot be 3-edge-coloured. Since these cuts are all cycle-separating, a “nontrivial”
snark should be at least cyclically 4-edge-connected.

Besides having small cycle-separating cuts there may be other features that make a
snark trivial. A snark should also be considered trivial when it is merely a “simple varia-
tion” of another smaller snark. For instance, adding or removing a digon or a triangle from
a snark does not change its uncolourable property. The same holds when a quadrilateral
is replaced with two suitable edges. This suggests that a “nontrivial” snark should have
girth at least 5. It has therefore become customary to define a snark as an uncolourable
cubic cyclically 4-edge-connected graph with girth at least 5 (see [15], for example).

Fig. 1. Proper k-reductions for k = 2 and k = 3

Fig. 2. Proper 4-reduction

Nevertheless, it is possible to view a snark as a “simple variation” of another snark
in much more general situations [9]. To see this, consider a snark G which contains an
induced subgraph H such that H is not 3-edge-colourable while G−H is. Then G−H does
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not contribute to the uncolourability of G, and therefore can be removed. The remaining
subgraph H can be converted into a snark H ′ by adding at most one vertex. Thus G
arises from a less trivial snark H ′ by adding a certain number of unimportant vertices.
A digon, a triangle, and a quadrilateral are examples of configurations of vertices which
bring nothing essential to the uncolourability of a snark and therefore can be removed in
the above sense. The operation which transforms the snark G to the snark H — that is,
the operation of removal of unimportant vertices — is a reduction of G. Reductions can
be classified into k-reductions according to how many edges are cut in the process. It is
also natural to restrict to proper reductions, those where the resulting snark has strictly
smaller order than the original one. The removal of a digon, triangle or quadrilateral are
thus proper k-reductions for k = 2, 3, 4, respectively (see Fig. 1 and Fig. 2).

These considerations suggest that for understanding the substance of nontriviality of
snarks it is important to deal with snarks that admit no m-reductions for all positive
integers m smaller than a given number k. Such snarks are called k-irreducible.

It may seem that by introducing k-irreducible snarks we have obtained infinitely many
classes of irreducibility, that is, infinitely many approximations of what a nontrivial snark
should be. Surprisingly, this is not true (see [9, Theorem 4.4]):

Fig. 3. The dumbbell graph Db

For 1 6 k 6 4, a snark is k-irreducible if and only if it is either cyclically k-edge-
connected or the dumbbell graph (see Fig. 3). For k ∈ {5, 6}, a snark is k-irreducible if
and only if it is critical in the following sense: the suppression of every edge, indicated in
Fig. 4, results in a 3-edge-colourable graph. Equivalently, a snark is critical whenever the
removal of any two adjacent vertices produces a 3-edge-colourable graph. For k > 7, a
snark is k-irreducible if and only if it is critical and the removal of any two non-adjacent
vertices yields a 3-edge-colouring. Such snarks are called bicritical or irreducible because
they are k-irreducible for each k.

Fig. 4. Suppression of an edge e from a graph G

Thus there are only six irreducibility classes, with the highest two being formed by the
critical and bicritical snarks, respectively. As bicritical snarks admit no proper reductions,
it is natural to expect a nontrivial snark to be (at least) bicritical. Observe that the latter
requirement fully complies with the classical girth-and-connectivity condition on snarks
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for it has been proved [9] that each critical snark is cyclically 4-connected and has girth
at least 5.

For reaching the elusive ideal of a nontrivial snark, however, reductions alone are not
sufficient. There are still other transformations of snarks that produce simpler snarks
from a more complicated one, namely decompositions. It has been proved in [9] that
there exists a function κ(k) with the following property: If G is any snark and S is
any k-edge-cut in G which yields components H1 and H2, both 3-edge-colourable, then
it is possible to complete each Hi to a snark Gi by adding at most κ(k) vertices. In
other words, it is possible to decompose G into snarks G1 and G2. The pair {G1, G2} is
called a k-decomposition of G since k edges have been involved. As with reductions, a
decomposition is said to be proper if both G1 and G2 have order smaller than G.

Fig. 5. Snarks G and H , and their dot product G · H

In order to be able to handle k-decompositions, the value of κ(k) has to be determined.
While k-decompositions with k 6 3 are trivial, the only further known values are κ(4) = 2
and κ(5) = 5. The first interesting case is therefore k = 4. It is well known [2, 4, 9] that
any 4-decomposition is, essentially, the reverse to the dot product operation. By a dot
product G · H of two snarks G and H we mean a cubic graph which is constructed as
follows. We select two distinct edges e and f in G and two adjacent vertices u and v in
H and form G · H from G − {e, f} and H − {u, v} by joining the resulting vertices of
valency 2 in the way depicted in Fig. 5. It is easy to show that the dot product of two
snarks is again a snark. A 4-decomposition is thus an operation transforming a snark G
into a pair of two (simpler) snarks {G1, G2}, the factors of G, such that G = G1 · G2.

The present paper is devoted to a detailed treatment of 4-decompositions of snarks in
terms of dot products and to their interplay with k-reductions.

One can readily verify that the dot product of two k-irreducible snarks where k 6 3
is again cyclically k-irreducible. In contrast to this, higher irreducibility classes have
a different behaviour. Examples can easily be found to show that the dot product of
critical snarks need not be critical, and the same is true for bicritical snarks. The reverse
direction — decomposition — is even more interesting (and more difficult). While a 4-
decomposition of a cyclically k-connected snark where 2 6 k 6 4 can result in decreasing
the cyclic connectivity and hence the irreducibility class of the constituent factors, for
the two highest irreducibility classes this is, essentially, not the case. As we shall see, a
4-decomposition of a bicritical snark yields two smaller bicritical snarks, and a similar but
slightly weaker property holds for critical snarks. In the latter case we can even prove the
following characterisation result.
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Theorem A. Let G and H be snarks different from the dumbbell graph. Then G · H is
critical if and only if H is critical, G is nearly critical, and the pair of edges of G involved
in this dot product is essential in G.

By a nearly critical snark we mean one where all the edges are non-suppressible except
perhaps those involved in the dot product. The property of being essential is a rather
technical local property which will be explained later.

In contrast to critical snarks, for bicritical snarks we only have a partial result, nev-
ertheless, one of crucial importance. Its essence is the fact that the class of irreducible
snarks is closed under 4-decompositions.

Theorem B. Let G and H be snarks different from the dumbbell graph. If G · H is
bicritical, then both G and H are bicritical. Moreover, the pair of edges of G involved in
this dot product is essential in G.

One naturally asks whether the necessary condition stated in Theorem B is also suffi-
cient. From Theorem A we know that the dot product of irreducible snarks performed by
employing an essential pair of edges is certainly critical. Unfortunately, this is not enough:
there exist cyclically 4-connected strictly critical snarks, snarks that are critical but not
bicritical. With the help of a theory based on Theorem A we construct an infinite family
of such snarks and show that there exists a strictly critical snark of order n if and only if
n is an even integer greater than 30. It should be mentioned that an ad hoc construction
of strictly critical snarks has been independently given by Steffen and Grünewald [12, 5],
but strictly critical snarks were constructed at the same time by the first author of this
paper in his Master’s Thesis. Our method brings a deeper insight into what makes a
snark strictly critical. The construction from [12] is actually covered by our theory. None
of these examples, though, excludes the possibility that Theorem B could be reversed.

Theorem B has important consequences. Given an irreducible snark G 6= Db which is
not cyclically 5-connected, we can decompose it into a dot product G = G1 · G2 of two
smaller snarks. By the previous theorem, both G1 and G2 are irreducible and different
from Db. If one of these is again not cyclically 5-connected, we can repeat the process.
After a finite number of steps we eventually obtain a collection H1, H2, . . . , Hr of cyclically
5-connected irreducible snarks which cannot be further properly 4-decomposed. Let us
call this collection a composition chain for G.

Clearly, G can be reconstructed from its composition chain by a successive use of the
dot product operation. Unfortunately, the decomposition process, and hence the resulting
composition chain, is far from being uniquely determined. The edge-cuts used on our way
to a composition chain may intersect in a very complicated fashion, and by choosing one
particular 4-edge-cut we may exclude the use of other cuts, including those which do
not exist in the original snark but might be created during the decomposition process
(note that each 4-decomposition adds two new vertices and one new edge). Moreover,
each individual 4-decomposition involves an ordering of the resulting factors, because the
two snarks play different roles in the dot product. This may lead to a situation that
in different composition chains the same composition factor will play different roles. It
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comes therefore as a surprise that regardless of the way in which a given irreducible
snark is decomposed, we eventually arrive at essentially the same collection of cyclically
5-connected irreducible snarks. More precisely, any two composition chains contain, up
to isomorphism and ordering, exactly the same composition factors. This fact suggests
that cyclically 5-connected irreducible snarks can be viewed as basic building blocks of
all snarks, and that their role can be compared to the role of prime numbers in the
factorisation of integers.

Theorem C. Every irreducible snark G different from the dumbbell graph can be decom-
posed into a collection {H1, . . . , Hn} of cyclically 5-connected irreducible snarks such that
G can be reconstructed from them by repeated dot products. Moreover, such a collection
is unique up to isomorphism and ordering of the factors.

We remark that the assumption of a snark G to be irreducible is essential for Theo-
rem C: as we shall see in Section 12, there exist critical snarks that admit non-isomorphic
composition chains.

It is natural to ask how the decomposition process of an irreducible snark G 6= Db will
be affected if we exclude certain 4-edge-cuts from the decomposition in advance. In this
case we will proceed with decomposing as long as permitted edge-cuts are available. By
Theorem B, we will again reach a collection H1, H2, . . . , Hr of irreducible snarks which
cannot be further properly 4-decomposed by using permitted 4-edge-cuts. For example,
given a subgraph K of G, we may require that K must remain intact in each decomposition
step. This means that K will eventually become a subgraph of one of the resulting factors
Hi. Will then the collection H1, H2, . . . , Hr, called a K-relative composition chain for G,
be still unique? The answer is again surprising.

Theorem D. Let G be an irreducible snark different from the dumbbell graph, and let K be
a fixed subgraph of G of order different from 2. Then G has a K-relative composition chain
{H1, H2, . . . , Hn} with K ⊆ Hi for some i, and such a chain is unique up to isomorphism
and ordering.

The case where the subgraph K has order 2 is exceptional. Examples in Section 11
show that we may indeed obtain two non-isomorphic K-relative composition chains, de-
pending on the way in which the 4-decompositions are performed.

Our paper is organised as follows. In the next section we collect the basic definitions
and give an overview of useful results and techniques to be used later. Section 3 is devoted
to a description of colourings of 4-poles that can arise from snarks. Theorems A and B
are established in Section 4. Several ideas related to these theorems are further developed
in Sections 5 and 6. In particular, we examine the distribution of essential pairs of edges
in a snark and construct strictly critical snarks of all possible orders. The last six sections
are devoted to factorisation of irreducible snarks. In Sections 7–9 we analyse structural
elements of cubic graphs known as atoms and study the properties of edge-cuts associated
with them. Theorems C and D are proved in Sections 10 and 11, respectively, and the
paper closes with a discussion of various aspects of the results proved in this paper.
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2 Background

It is convenient to extend the usual definition of a graph by allowing “dangling” and
“isolated” edges. These more general objects, often with some additional structure on
the set of “free ends” of edges, will be called multipoles. To be more precise, a multipole
is a pair M = (V (M), E(M)) of disjoint finite sets, the vertex-set V (M) and the edge-set
E(M) of M . The size of V (M), denoted by |M |, is the the order of M . Every edge
e ∈ E(M) has two ends and every end of e may or may not be incident with a vertex.
If the ends of e are incident with two distinct vertices, then e is a link. If both ends are
incident with the same vertex, then e is a loop. Both loops and links are proper edges of
a multipole. If one end of e is incident with some vertex but the other not, then e is a
dangling edge. If no end of e is incident with a vertex, then e is an isolated edge. An end
of an edge which is incident with no vertex is called a semiedge.

All multipoles considered in this paper will be 3-valent — that is, every vertex will
have valency three — and ordered — that is, the set of semiedges of the multipole will
be endowed with a linear order. A multipole with k semiedges (k > 0) is called a k-pole.
Note that a 0-pole is nothing but a cubic graph. An ordered k-pole M with semiedges
e1, e2, . . . , ek will be denoted by M(e1, e2, . . . , ek).

In this paper it is very important to make a clear distinction between identical and
isomorphic multipoles as the issue of uniqueness is central to this paper, in particular to
Theorems C and D. We therefore assume that the vertices of a graph or a multipole have
a fixed labelling and that this labelling is global. By this we mean that the label of a vertex
is unique not only within a multipole containing it but also within all multipoles which
we will be dealing with. If an operation is performed on a multipole, the vertices retain
their labels even if moved to another multipole. If a new vertex is added to a multipole,
the label of that vertex exists in advance, so technically it does matter which vertex is
used for this addition. On the other hand, we will often find it useful to ignore a specific
labelling and instead to speak about an isomorphism. What kind of an isomorphism is
suitable — that is, what level of abstraction is appropriate — depends on a particular
situation. For instance, the global discrimination of vertices is important in the proofs of
Lemmas 10.1 and 11.6 and underlies the concept of heredity in Section 9.

As opposed to vertices, no labels are necessary for edges as their identity derives
from the identity of their respective end-vertices. The rare case of multiple edges will, if
necessary, be handled separately.

There are several operations that can be performed on multipoles. Let M be a mul-
tipole and let e and f be two edges of M , not necessarily distinct. Assume that e has a
semiedge e′ and f has a semiedge f ′, and that e′ 6= f ′. Then we can perform the junction
of e′ and f ′ and obtain a new multipole M ′ as follows:

• If e 6= f , we discard e and f from E(M) and replace them by a new edge g whose ends
are the other end of e and the other end of f . Thus E(M ′) = (E(M)−{e, f})∪{g}
and g in fact arises from e and f by the identification of e′ and f ′.

• If e = f , then e is an isolated edge. To avoid creating an “isolated loop”, we cancel
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the edge e and set E(M ′) = E(M) − {e}.

The reverse of the junction operation is the disconnection of an edge; it produces two
new semiedges from any given edge. This operation applies to dangling and isolated edges
as well as to links and loops.

Let M = M(e1, e2, . . . , ek) and N = N(f1, f2, . . . , fk) be two (ordered) k-poles. Then
the junction M ∗ N of M and N is the cubic graph which arises from the disjoint union
M ∪ N by performing the junction ei ∗ fi of ei and fi for each i = 1, 2, . . . , k. If there
are no isolated edges in either M or N , then the set of edges ei ∗ fi in M ∗ N forms a
k-edge-cut.

The standard notions of graph theory, such as subgraph inclusion extend obviously
from graphs to multipoles. In addition to the obvious cases we set M ⊆ N also if the
multipole N arises from the multipole M by the junction of some semiedges.

For the sake of clarity we explain how we understand the operations of removal of a
vertex and that of an edge from a multipole. When removing a vertex, the edges incident
with it are not removed. Instead, the ends of edges originally incident with the removed
vertex become semiedges. Similarly, when removing an edge, the vertices incident with
it are not removed. It follows that to remove a subgraph from a multipole one simply
removes all its vertices and edges.

When an edge is removed from a multipole we usually smooth any resulting 2-valent
vertices as we want to avoid other than 3-valent multipoles. We denote the operation of
smoothing of a 2-valent vertex v of the multipole M by M ∼ v. Further, we define the
operation of suppression of a link e = uv in a cubic graph G as follows. We remove e
from G and subsequently we smooth the 2-valent vertices u and v created by the removal.
The resulting graph will be denoted by G ∼ e (see Fig. 4).

We proceed to cycles and cuts in multipoles. An easy counting argument shows that
there are no acyclic 0-poles and 1-poles, the only acyclic 2-pole is an isolated edge, and
the only acyclic 3-pole is a vertex with three dangling edges (a claw). There are exactly
two acyclic 4-poles, denoted throughout the paper by L and R (see Fig. 6).

Fig. 6.

An edge-cut S in a connected cubic graph G is said to be cycle-separating if at least
two components of G − S contain cycles. A cubic graph is called cyclically k-connected
if it has no cycle-separating m-edge-cut for every m < k. The largest integer k such that
G is cyclically k-connected, provided that it exists, is called the cyclic connectivity of G.
There are only three cubic graphs (namely K4, K3,3 and θ2 — the graph consisting of two
vertices connected by three parallel edges) for which cyclic connectivity is not defined in
the above sense. For these we set the cyclic connectivity to be equal to their cycle rank
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(see [8]). Note that the cyclic connectivity of any cubic graph is bounded above by its
girth, the length of a shortest cycle.

Any minimum cycle-separating edge-cut S in a cubic graph is clearly independent.
Indeed, if S contained two adjacent edges (say e and f), let h be the third edge adjacent to
both e and f . Then (S−{e, f})∪{h} is a cycle-separating edge-cut, too, contradicting the
minimality of S. On the other hand, an independent edge-cut separates induced subgraphs
with minimum valency at least 2 which means that they must be cyclic. Therefore the
study of cycle-separating edge-cuts in cubic graphs is in fact the study of independent
edge-cuts.

A 3-edge-colouring, or simply a colouring of a multipole is a mapping which assigns
colours 1, 2 and 3 to the edges of the multipole so that adjacent edges (more precisely,
adjacent ends) receive distinct colours. A multipole is called colourable if it admits a
colouring, otherwise it is called uncolourable. An uncolourable cubic graph is called a
snark. We thus leave the notion of a snark as broad as possible.

The following lemma (usually stated for edge-cuts in cubic graphs) is well-known.

Lemma 2.1 (Parity Lemma). In a k-pole that has been coloured with three colours 1, 2
and 3, let ki be the number of semiedges coloured with colour i. Then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

This result implies, in particular, that a 1-pole is never colourable and that in a 3-pole
every colouring assigns three different colours to its three dangling edges.

We often transform a multipole into a snark by adding a few vertices and edges. The
following definition makes this idea precise. For k 6= 1, we say that a k-pole M extends
to a snark, if there exists a colourable multipole N such that M ∗ N is a snark. Such
M ∗N will be called a snark extension of M . In the special case where k = 1 we say that
a 1-pole M extends to a snark by definition, since there is no colourable 1-pole. A snark
extension with minimum order will be called a snark completion.

Let G be a snark which can be expressed as a junction M ∗N of two k-poles M and N ,
k > 0. If one of M and N , say M , is uncolourable, then M can be extended to a snark
M̃ ⊇ M of order |M̃ | 6 |G| by adding at most 1 vertex (in the worst case we can take
M̃ = G). We call M̃ a k-reduction of G. This means that the “uncolourable core” of G
and M̃ (that is, the multipole M) is the same, but M̃ may be smaller.

A k-reduction M̃ of G is proper if |M̃ | < |G|. A snark is k-irreducible if it has no
proper m-reduction for each m < k. A snark is irreducible if it is k-irreducible for every
k > 0, that is, if it admits no proper reductions at all. Observe that a k-irreducible snark
is also r-irreducible for every r 6 k; in particular, it is 1-irreducible and hence connected.

A set of vertices or edges of a snark is said to be removable if its removal leaves an
uncolourable multipole; otherwise it is called non-removable. A link of a snark is sup-
pressible if its suppression leaves an uncolourable graph; otherwise it is non-suppressible.
(Note: Our terminology aims to reflect which operations may be performed on a snark
without affecting its uncolourability.)

From the Parity Lemma it immediately follows that a set consisting of a single vertex
or a single edge is always removable from a snark. Therefore non-removable sets consist of
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at least two vertices or edges. Those with exactly two elements are therefore particularly
interesting. (Throughout the paper, the term pair will automatically be meant to contain
two distinct objects; degenerate pairs containing the same element twice are excluded.)

Suppressible links and removable pairs of adjacent vertices are closely related. In fact,
the following holds.

Proposition 2.2. [9] A link is suppressible from a snark G if and only if the pair of its
end-vertices is removable from G.

In view of this proposition, we will use the above stated terms as synonyms, always
choosing the one that appears to be more suitable for the particular purpose.

We define a snark to be critical, if all pairs of its distinct adjacent vertices are non-
removable. By Proposition 2.2, this is equivalent to the condition that all its links are
non-suppressible. Similarly, we say that a snark is cocritical, if all pairs of its distinct non-
adjacent vertices are non-removable. If a snark is both critical and cocritical, then we say
that it is bicritical. The following theorem characterises various degrees of irreducibility
in terms of non-removability.

Theorem 2.3. [9] Let G be a snark. Then the following statements hold true.

(a) If 1 6 k 6 4, then G is k-irreducible if and only if it is either cyclically k-connected
or the dumbbell graph.

(b) If k ∈ {5, 6}, then G is k-irreducible if and only if it is critical.
(c) If k > 7, then G is k-irreducible if and only if it is bicritical.

In particular, the previous theorem shows that irreducible snarks coincide with bicrit-
ical ones. These two terms will therefore be used interchangeably.

The standard notion of a snark (cf. [4], for example) requires it to have girth at least
5 and to be cyclically 4-connected. The following proposition shows that critical (and
hence also irreducible) snarks are snarks in this traditional sense.

Proposition 2.4. [9] A critical snark other than the dumbbell graph is cyclically 4-con-
nected and has girth at least 5. Both values are best possible.

Fig. 7. The multipole Y

There is a well-known infinite family of snarks constructed by Isaacs [6] called flower
snarks and denoted by In. They can be constructed as follows. Let Y be the 6-pole
shown in Fig. 7; it is obtained from K3,3 by the removal of two non-adjacent vertices.
Then In is the cubic graph that arises from the disjoint union of n copies Yi of Y by
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identifying the semiedge yj in Yi with the semiedge xj in Yi+1 where j = 1, 2, 3 and the
indices i ∈ {1, 2, . . . , n} are taken modulo n. For odd n > 3 the graph In is a snark, and
for n > 7 it is cyclically 6-connected. The flower snarks I3 and I5 are displayed in Fig. 8.
Moreover, the following is true.

Fig. 8. The flower snarks I3 and I5

Proposition 2.5. [9, 11] The flower snark In is irreducible for each odd n > 5.

Our paper focuses on irreducible snarks of cyclic connectivity 4. The fundamental
operation for construction of such snarks is the operation of a dot product. It can be
defined as follows. Let G and H be cubic graphs. Take two distinct edges e and f in G
and disconnect them into semiedges e1, e2 and f1, f2, respectively. Denote the resulting
multipole by GL. In H , take a link x with end-vertices u and v and remove x together

Fig. 9.

with its end-vertices. The resulting 4-pole HR has four semiedges xu
1 , xu

2 , and xv
1, xv

2,
respectively, the former two being originally incident with u in H − x, and the latter two

Fig. 10.

being originally incident with v in H − x. By joining ei to xu
i and fi to xv

i (i = 1, 2) we
obtain a cubic graph GL ∗HR, commonly denoted by G ·H and called a dot product of G
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and H . In terms of multipoles, if G = GL ∗ R and H = L ∗ HR, then G · H = GL ∗ HR.
We will employ this useful multipole notation of a dot product throughout the paper.

Of course, the symbol G ·H does not determine the dot product uniquely, but in each
particular case the precise meaning will be clear from the context. We refer to the graphs
G and H as to the left and right factor of G ·H , respectively. We also say that the edges
e, f , and x (= uv) and the vertices u and v are involved in the dot product. Note that
the edges e and f are only required to be distinct; that is, they can be adjacent. Our
definition of the dot product is therefore less restrictive than the usual one.

If there is no loop at either u or v in H and there is no multiple adjacency between
these two vertices, then the four newly established edges between G and H form a 4-edge-
cut which will be called the bond of G ·H . The edges of the bond naturally split into two
couples, the first consisting of the edges arising from the junction of the semiedges ei and
xu

i (i = 1, 2) and the other one consisting of the remaining two edges.
It is well known and easy to see that the dot product of two snarks is a snark; moreover,

if both factors are cyclically 4-connected and have girth at least 5, and if the edges e and
f from the left factor are non-adjacent, then the dot product is also cyclically 4-connected
and has girth at least 5 [2, 4, 6]. Note that the dot product operation has the unique left
and right identity element, the dumbbell graph Db, but the operation is not commutative
in general.

The dot product operation can be extended to multipoles in the obvious way (see
Fig. 11). Thus, if M is an m-pole and N is an n-pole, we can select two distinct edges
of M and one link of N which will be involved in the dot product. By appropriate
transformations we obtain an (m+4)-pole ML and an (n+4)-pole NR such that ML ∗R =
M and L∗NR = N . The dot product M ·N of M and N is then the (m+n)-pole obtained
by the partial junction of ML and NR.

Fig. 11. Dot product of multipoles

Note that the semiedges of ML can naturally be partitioned into two groups called
connectors. These connectors are formed by the original semiedges of M and the four
new semiedges of ML, respectively. Therefore we can say that ML is an (m, 4)-pole and
similarly, NR is a (4, n)-pole. A multipole with precisely two connectors, such as ML and
NR, for example, will be called a dipole.

3 Colour-open 4-poles

In order to analyse the dot product operation in a greater detail we need to look at
colourings that can be induced on the semiedges of a 4-pole. Given a k-pole M =
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M(e1, e2, . . . , ek) we define the colouring set of M to be the set

Col(M) =
{(

ϕ(e1), ϕ(e2), . . . , ϕ(ek)
)

; ϕ is a colouring of M
}

.

As the colourings “inside” a multipole can usually be neglected, we define two multipoles
M and N to be colour-equivalent if Col(M) = Col(N).

Any colouring of a colourable multipole can be changed to a different colouring by
simply permuting the colours in use. In order to describe all admissible colourings of a
multipole it is therefore sufficient to know which semiedges are coloured with the same
colour and which are coloured with distinct colours. By doing this we actually define the
type of a colouring. Technically speaking, the type of a colouring ϕ of a multipole M is
the lexicographically smallest sequence of colours assigned to the semiedges of M which
can be obtained from ϕ by permuting the colours. Thus, by the Parity Lemma (2.1), each
colouring of a 4-pole has one of the following types: 1111, 1122, 1212, and 1221.

Any colourable 4-pole admits at least two different types of colourings. Indeed, we
can start with any colouring and take an arbitrary Kempe chain — an alternating chain
which begins and ends with a semiedge — and interchange the colours on it to obtain a
colouring of another type. Colourable 4-poles thus can have two, three, or four different
types of colourings. Those attaining the minimum of precisely two types are of special
importance for the study of snarks as will become clear from Proposition 3.4 below; we
call them colour-open 4-poles (in contrast to colour-closed multipoles discussed in [9]).

Colour-open 4-poles occur in two varieties — isochromatic and heterochromatic 4-
poles.

• A 4-pole M will be called isochromatic if its semiedges can be partitioned into two
pairs such that in every colouring of M the semiedges within each pair are coloured
by the same colour. (Example: multipole R).

• A 4-pole M will be called heterochromatic of its semiedges can be partitioned into
two pairs such that in every colouring of M the semiedges within each pair are
coloured by distinct colours. (Example: multipole L).

The pairs of semiedges of an isochromatic or a heterochromatic 4-pole mentioned above
will be called couples. No confusion should arise between the couples of semiedges in a
multipole and the couples of edges in a bond of a dot product since (as we shall see later)
they correspond to each other.

Observe that each colour-open 4-pole has one of
(

4
2

)

= 6 possible combinations of
colouring types. By checking all these combinations we obtain the following two results.

Proposition 3.1. Every colour-open 4-pole is either isochromatic or heterochromatic, but
not both. Moreover, it is isochromatic if and only if it admits a colouring of type 1111.

Proposition 3.2. Every colour-open 4-pole can be extended to a snark by adding at most
two vertices, and such an extension is unique up to isomorphism. A heterochromatic
multipole is extended by joining the semiedges in each couple, that is, by adding no new
vertex. An isochromatic multipole is extended by attaching the semiedges in each couple
to a new vertex, and by connecting these two vertices with a new edge.

the electronic journal of combinatorics 17 (2010), #R32 13



The extensions described in the preceding proposition are, in fact, completions. Thus
every colour-open 4-pole has a completion to a snark which is unique up to isomorphism.

Definition 3.3. For a colour-open 4-pole M its isomorphically unique completion will be
denoted by M̃ .

The next result shows that the completion operator M 7→ M̃ does not extend to a
wider class of 4-poles.

Proposition 3.4. A colourable 4-pole extends to a snark if and only if it is colour-open.

Proof. The sufficient condition follows from Proposition 3.2. We prove the necessity.
Assume that a colourable 4-pole M extends to a snark. Then there is a colourable 4-pole
N such that M ∗ N is a snark. Each of M and N admits at least two different types
of colourings. However, they cannot have a colouring type in common since a suitable
permutation of colours would yield a colouring of M ∗ N , which is a contradiction. As
there are only four admissible types altogether, each of M and N must admit precisely
two of them. In particular, M must be colour-open.

Having characterised colour-open 4-poles we can now proceed deeper into the structure
of snarks which can be expressed as a junction of two such 4-poles.

Proposition 3.5. If M and N are colourable 4-poles such that M ∗N is a snark, then one
of them is isochromatic and the other one is heterochromatic. Moreover, the semiedges
belonging to the same couple in M are joined with the semiedges belonging to the same
couple in N .

Proof. By Proposition 3.4, each of M = M(e1, e2, e3, e4) and N = N(f1, f2, f3, f4) is
colour-open and hence, by Proposition 3.1, either isochromatic or heterochromatic. Since
there are only four admissible colouring types, and the multipoles cannot have a colouring
type in common, exactly one of them, say M , allows the type 1111. Proposition 3.1 now
implies that M is isochromatic and N is heterochromatic.

Along with 1111, M contains one of the remaining three colouring types. Assume that
M admits the type 1212 (for 1122 and 1221 the consideration is similar). Then N has
types 1221 and 1122, and we see that the couples of M are {e1, e3} and {e2, e4} while
those of N are {f1, f3} and {f2, f4}. Thus the couples are joined correspondingly.

As a corollary of the previous proposition we get:

Proposition 3.6. Let K be a snark which can be expressed as a dot product K = G · H
of snarks G and H. If GL is colourable, then it is colour-equivalent to L and hence hete-
rochromatic. If HR is colourable, then it is colour-equivalent to R and hence isochromatic.

Proof. Since GL is colourable and G = GL ∗R, Proposition 3.4 implies that GL is colour-
open. It cannot be isochromatic, for otherwise Proposition 3.1 would yield a colouring
of type 1111 and G would be colourable. Hence, it is heterochromatic. By a direct
verification we deduce that the only possibility for the distribution of colouring types on
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the semiedges of GL not contradicting the uncolourability of G is the one equivalent to
L. Moreover, the couples of semiedges of GL as a heterochromatic multipole are precisely
the dot product couples of K = G · H = GL ∗ HR.

The proof of the second part is similar.

As we have just seen, the dot product couples and the couples of colour-open multipoles
coincide. This coincidence is important for the proof of the next theorem which shows
that the dot product operation can sometimes be reversed in a unique way.

Theorem 3.7. (cf. [2, 4, 9]) Every 4-edge-cut S in a critical snark G separates G into two
colour-open multipoles M and N , one isochromatic and one heterochromatic. Moreover,
G can be expressed as a dot product of their respective completions M̃ and Ñ in such a
way that S is the bond. This expression is unique up to isomorphism.

Proof. As above, let M and N be the 4-poles resulting from the disconnection of S.
Obviously, both of them have at least two vertices and must be colourable. If, say, M
were uncolourable, it could be extended to a snark without adding a single vertex, and
this snark would then be a proper 4-reduction of G. Therefore, both M and N are
colour-open. Since G = M ∗N , from Proposition 3.5 we deduce that one of these 4-poles
(say M) is heterochromatic and the other one (say N) is isochromatic, with the couples
being mutually joined. It follows that Ñ arises from N by joining the semiedges of each
couple to a new vertex and adding an edge between the new pair of vertices, whereas
M̃ is obtained from M by joining the semiedges of each couple to each other. Since the
couples in M and N match, we see that G = M̃ · Ñ and that S is the bond of this dot
product.

We have just shown that, given a critical snark G and a 4-edge-cut S in G, there is
a unique way of decomposing G along S into a dot product of two snarks with S being
the bond. These two snarks will be called the S-factors of G, or the direct factors of G,
if no cut has been explicitly specified. We also allow the trivial factorisation of G in the
form G = G ·Db = Db ·G, although in this case the direct factors need not be necessarily
determined by a 4-edge-cut.

The uniqueness of M̃ and Ñ stated in Theorem 3.7 depends on the chosen cut and
therefore is only local, in contrast to the global uniqueness of Theorem C. Theorem 3.7
constitutes the first major step towards Theorem C, nevertheless it does not imply the
global uniqueness in general. As we shall see in Section 12, there exist critical snarks
which admit two essentially different ways of factorisation although each factorisation
step produced a unique pair of factors.

4 Critical and bicritical snarks

In this section we establish conditions under which a dot product of two snarks becomes
critical or bicritical. Our aim is to prove the first two main results of this paper, Theorem A
and Theorem B.
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Theorem 3.7 implies that all critical snarks of cyclic connectivity 4 can be constructed
from smaller snarks by using a repeated dot product. It is therefore possible to characterise
all critical snarks of cyclic connectivity 4 by finding necessary and sufficient conditions for a
dot product of two snarks to be critical. Analogously, to characterise all irreducible snarks
of cyclic connectivity 4 it is sufficient to find necessary and sufficient conditions for a dot
product of two snarks to be irreducible. In order to make such characterisations possible,
we first develop a simple idea of replacing a colour-open 4-pole by a smaller colour-
equivalent 4-pole. In fact, we have already used this idea in the proof of Proposition 3.6.

Let M1 and M2 be colour-equivalent m-poles, and let N be an arbitrary (m, n)-dipole.
Consider the multipoles M1 ∗ N and M2 ∗ N . In these partial junctions the m-connector
of N is joined to the multipole M1 or M2, respectively. The semiedges of the n-connector
of N are not involved in these partial junctions and are therefore the semiedges of both
M1 ∗N and M2 ∗N . Obviously, the multipoles M1 ∗N and M2 ∗N are colour-equivalent.
This situation can be conveniently seen as a substitution of the sub-multipole M1 in M1∗N
by a colour-equivalent multipole M2. In other words, we have the following result.

Lemma 4.1 (Substitution Lemma). Substitution of a sub-multipole in a multipole M by
a colour-equivalent multipole results in a multipole that is colour-equivalent to M .

Actually, we can view the dot product as an instance of substitution: If G and H
are snarks such that the multipoles GL and HR obtained by cutting the bond of G · H
are colourable, then Proposition 3.6 implies that GL and HR are colour-equivalent to the
multipoles L and R, respectively. Thus G · H can be regarded both as a substitution of
R in G by HR, and as a substitution of L in H by GL. With the help of Theorem 3.7 this
point of view can be reversed as the following remark shows.

Remark 4.2. Snark completions M̃ and Ñ in Theorem 3.7 can be interpreted in terms
of substitution. The snark M̃ arises from G by substituting N with that one of L and R
which is colour-equivalent to N , while Ñ arises by substituting M by the other one, the
couples being matched. Thus each 4-decomposition of a critical snark into a dot product
of snarks can be regarded as a pair of colour-equivalent substitutions.

The following result uses the Substitution Lemma.

Proposition 4.3. Let K be a snark which can be expressed as a dot product K = G ·H of
snarks G and H such that both GL and HR are colourable. Then a pair of distinct vertices
of GL (respectively, of HR) is non-removable from G ·H if and only if it is non-removable
from G (respectively, from H).

Proof. Let {u, v} be a pair of distinct vertices of GL. By removing u and v from G and
from G · H we obtain multipoles M and M · H , respectively. The pair {u, v} is non-
removable from G if and only if M is colourable, and it is non-removable from G · H if
and only if M · H is colourable. By Proposition 3.6, the assumption of colourability of
HR implies that HR is colour-equivalent to R. One thus obtains M · H from M by a
substitution of R with HR. The Substitution Lemma now implies that M ·H and M are
colour-equivalent, as our statement claims.

The proof of the second part is similar.
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We continue with a detailed analysis of suppressible edges in a dot product G · H of
two snarks G and H . Proposition 4.3 implies that if an edge e = uv already exists in G
or in H , then it is suppressible from G ·H if and only if it is suppressible from the factor
containing it, provided that both GL and HR are colourable. However, G · H contains
four new edges originally present in neither G nor H — namely the edges of the bond.
To handle these edges we introduce the following concept.

Definition 4.4. A pair of distinct edges {e, f} of a snark G is essential if it is non-
removable and for every 2-valent vertex v of G − {e, f} the graph (G − {e, f}) ∼ v is
colourable.

This definition can be restated as follows. For an ordered m-pole M without isolated
edges, m > 1, let M(i) denote the (m−1)-pole obtained from M by removing its i-th dan-
gling edge and by suppressing the resulting 2-valent vertex. Furthermore, put M(0) = M .
Now, let M be the 4-pole obtained from a snark G by disconnecting a pair of edges. Then
a necessary and sufficient condition for the pair in question to be essential is: any of the
five multipoles M(i), i ∈ {0, 1, 2, 3, 4}, is colourable.

Observe that in any snark G a non-removable pair of edges is independent. Indeed,
if the edges e and f shared a common vertex v, then the 4-pole M constructed from G
by disconnecting e and f would contain the 3-pole M ′ obtained from G (or from M) by
removing v. By the Parity Lemma (2.1), M ′ is uncolourable, so the same must be true for
M ⊇ M ′. As this is in contradiction with the definition of non-removability, we deduce
that the edges in an essential pair are non-adjacent.

Definition 4.4 does not confine itself to pairs of links, so G − {e, f} can contain fewer
than four 2-valent vertices. For example, the only pair of non-adjacent edges in the
dumbbell graph is essential although both edges of this pair are loops.

The following lemma examines the dot product of an arbitrary snark with a critical
snark.

Proposition 4.5. Let G·H be a dot product of snarks where H is a critical snark different
from the dumbbell graph and the pair of edges {e, f} of G involved in the dot product is
essential. Then the following hold.

(a) Every suppressible link of G different from e and f is a suppressible edge of G · H.
(b) Every suppressible link of G · H is a suppressible edge of G.

In other words, the suppressible links of G · H are those inherited from G.

Proof. First of all, observe that both GL and HR are colourable. The former follows
from the assumption that {e, f} is an essential pair of edges of G while the latter is a
consequence of the fact that H is critical.

To prove (a), let x 6= e, f be a suppressible edge of G which is not a loop. Then x is
a proper edge of GL and hence it is an edge of G · H . The conclusion now follows from
Proposition 4.3. (The edges e and f have to be excluded since they are destroyed by the
dot product operation and hence do not exist in G · H .)
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For the froof of (b), let ai (i = 1, 2, 3, 4) denote the edge of G · H obtained by the
junction of the i-th semiedge of GL with that of HR. Furthermore let u and v be the
end-vertices of the edge of H involved in the dot product G · H .

Consider a suppressible link x of G · H . Since H is critical, it follows from Proposi-
tion 4.3 that x cannot be a proper edge of HR. Thus x is either an edge of the bond or
an edge of GL.

Assume that x = ai for some i ∈ {1, 2, 3, 4}. As H is critical and different from Db,
Proposition 2.4 implies that it is cyclically 4-connected; in particular, it contains no
parallel edges and loops. Thus there are four pairwise distinct edges in H adjacent to
either u or v other than uv. Denote these edges by xi (i = 1, 2, 3, 4) so that their numbering
agrees with the numbering of the edges ai. In this situation the edges ai cannot be loops
in G · H .

Consider the graph H ∼ xi. The suppression of xi destroys exactly one of the vertices
u and v. Without loss of generality assume that the destroyed vertex is u. Since H is
critical, H ∼ xi is colourable, and hence the removal of the other vertex (that is, v)
produces a colourable 3-pole (H ∼ xi) − v. Of course, the semiedges of this 3-pole must
be coloured by three distinct colours. On the other hand, the pair {e, f} is essential in
G. Hence the 3-pole (GL)(i) is colourable, too, and its semiedges will, again, be coloured
by different colours. By applying a suitable permutation of colours we obtain a colouring
of the junction (GL)(i) ∗ ((H ∼ xi) − v). However, this graph is nothing but (G · H) ∼ ai

which means that ai = x is a non-suppressible edge of G · H . We have arrived at a
contradiction.

There is only one possibility left, namely that x is a proper edge of GL. But in this
case x is an edge of G different from e and f . By Proposition 4.3, it is a suppressible edge
of G.

Now we are ready to prove Theorem A.

Theorem 4.6. Let G and H be snarks, H 6= Db. Further, let {e, f} be the pair of edges of
G involved in the dot product G ·H. Then G ·H is critical if and only if H is critical, the
pair {e, f} is essential in G, and every link of G different from e and f is non-suppressible
from G.

Roughly speaking, the result says that the right factor of a critical dot product must
be critical, but the left factor only has to be “nearly” critical. The theorem also explains
the background of the term essential : such a pair of edges is essential for a dot product
to be critical.

Proof. (⇐) Let G and H satisfy the assumptions of the theorem. If G ·H had a suppress-
ible edge, by Proposition 4.5 it would have to be a suppressible link of GL. Since there
are no such edges, G · H is critical.

(⇒) Let G ·H be a critical snark, and let u and v be the end-vertices of the edge of H
involved in G · H . As above, denote by ai (i = 1, 2, 3, 4) the edge of G · H obtained by
the junction of the i-th semiedge of GL with that of HR.
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Clearly, |GL| = |G| > 1. Furthermore, the assumption that H 6= Db implies that
|HR| > 1. By Theorem 3.7, the multipoles GL and HR are colourable and we may use
Proposition 4.3 to conclude that all links of G different from e and f are non-suppressible
from G. This is exactly what we need to know about G.

We show that H is critical. First of all, Proposition 4.3 implies that all links of HR are
non-suppressible from H . Moreover, the pair {u, v} of adjacent vertices is non-removable
from H because HR is colourable. Let us look closer at the edges of H incident with
u or v. As H 6= Db, at most one of these two vertices is incident with a loop. The
existence of a loop at just one of these vertices would lead to a cycle-separating 2-edge-
cut in G · H . But since G · H is critical, it is cyclically 4-connected or the dumbbell
graph, as Proposition 2.4 claims. The latter possibility would imply G = H = Db, which
contradicts the assumption. Therefore, there are no loops at u and v in H . Moreover,
there is no edge parallel to uv in H for otherwise the colouring of HR would directly
extend to a colouring of H . Thus, in addition to uv, there are exactly four pairwise
distinct edges in H incident with u or v. Denote these edges by xi (i = 1, 2, 3, 4) so that
their numbering agrees with that of the edges ai.

To show that H is critical it remains to prove that all the graphs H ∼ xi are colourable.
Since there are no loops at both u and v in H and the edge uv has no parallel counterpart,
the end-vertices of each ai are one in GL and the other in HR. As G · H is critical,
(G · H) ∼ ai is colourable. By disconecting the remaining three edges of the original
dot product 4-edge cut in (G · H) ∼ ai we obtain two 3-poles: (GL)(i) on the side of G,
and another one on the side of H . The three semiedges of the latter 3-pole are, by the
Parity Lemma, always coloured by three distinct colours. Hence by joining them to a new
vertex we obtain a colourable graph. It is obvious from the construction that this graph
is exactly H ∼ xi. Thus H is critical.

The only thing left is to verify that the pair {e, f} is essential in G. We have already
seen that each (G · H) ∼ ai is a colourable graph. Therefore the multipole (GL)(i) is
colourable for i = 1, 2, 3, 4. As (GL)(0) = GL is colourable, too, the pair {e, f} is essential,
as required. This completes the proof.

The following straightforward corollary shows that in a critical dot product we can
substitute the right factor (which is necessarily critical) by any other critical snark different
from the dumbbell graph.

Corollary 4.7. Let G ·H be a critical snark arising from snarks G and H, H 6= Db, and
let H ′ 6= Db be any other critical snark. Then G · H ′ is critical provided that the pair of
edges of G involved in G · H ′ is the same as that involved in G · H.

We proceed to Theorem B.

Theorem 4.8. Let G and H be snarks. If G · H is irreducible, then both G and H are
irreducible. Moreover, the pair of edges of G involved in this dot product is essential in G.

Proof. Assume that G · H is irreducible. From Proposition 4.3 we already know that a
pair of distinct vertices of G is removable from G if and only if it is removable from G ·H .
As G · H is irreducible, it follows that so is G.
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Since G · H is critical, from Theorem 4.6 we deduce that H is critical and the pair
of edges of G involved in this dot product is essential in G. Thus it remains to show
that H is cocritical. In order to do so, we need to verify that an arbitrary pair {x, y} of
distinct non-adjacent vertices of H is non-removable from H . We distinguish two cases
with respect to the mutual position of {x, y} and the pair {u, v} of vertices involved in
the dot product G · H .

Case 1. The pairs {x, y} and {u, v} are disjoint. This means that {x, y} is contained
in HR. Again, we may use Proposition 4.3 to conclude that the pair {x, y} is non-
removable from H .

Case 2. The pairs {x, y} and {u, v} have exactly one vertex in common. Without
loss of generality we can assume that x = u and y 6= v. Observe that the vertex u is
incident in H with two of the semiedges of HR. Denote these two semiedges arbitrarily
by f1 and f2, and the other two semiedges, also arbitrarily, by f3 and f4. Furthermore,
denote the semiedges of GL by e1, e2, e3, and e4 consistently with the ordering of the
semiedges in HR, that is, in such a way that G · H is obtained by the junction of ei with
fi, 1 6 i 6 4. In turn, denote the four resulting edges by ai.

Now let w be the end-vertex of the dangling edge corresponding to e1 in GL and take
the multipole M = (G · H) − {w, y}. Since G · H is irreducible and w 6= y, we see
that M is colourable. We claim that in any colouring of M , the edges a3 and a4 receive
distinct colours. To see this, observe that M can be expressed as a partial junction of
M = (GL−w) and (HR−y) where ei is joined to fi for i = 2, 3, 4, and the other semiedges
of GL−w and HR−y remain free. Now, if the edges a3 and a4 were coloured with the same
colour, the colouring of GL −w could be extended to a colouring of G−w by performing
the junction of e3 and e4. Since G − w is a 3-pole, its semiedges must be coloured with
three distinct colours and such a colouring can further be extended to a colouring of G,
which is impossible.

From the fact that the edges a3 and a4 must in M be coloured with distinct colours
we conclude that the colours of f3 and f4 in HR − y ⊆ M must also be distinct. Hence,
HR − y has a colouring that can be extended to a colouring of H − {u, y} by attaching
the vertex v to the semiedges f3 and f4. This means that the pair of vertices {u, y} is
non-removable from H .

Summing up, we have shown that any pair of distinct non-adjacent vertices of H is non-
removable from H ; thus H is cocritical and hence irreducible. The proof is complete.

5 Essential pairs of edges

Theorem 4.6 and Theorem 4.8 indicate that essential pairs of edges play a crucial role in
the study of snarks of cyclic connectivity 4. We now explore their distribution in snarks
along with the effect of the dot product on them. We start with two corollaries of the
Substitution Lemma 4.1.

Lemma 5.1. Let G be a snark and let N be an m-pole (m > 1) without isolated edges.
Assume that the pair of edges of G involved in the dot product G · N is essential in G.
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Then for each i ∈ {0, 1, . . . , m} the multipole (G · N)(i) is colour-equivalent to N(i).

Proof. Let {u, v} be the pair of distinct vertices of N involved in the dot product G · N .
For i = 0 we clearly have that (G ·N)(i) = G ·N(i). The same also holds for i = 1, 2, . . . , m
provided that the end-vertex of the i-th dangling edge of N is different from both u
and v. Indeed, the multipole G · N(i) arises from N(i) by substituting its sub-multipole
L, determined by the vertices u and v, with GL. Since these two multipoles are colour-
equivalent by Proposition 3.6, our claim follows from the Substitution Lemma 4.1.

We are thus left with the case where i 6= 0 and the end-vertex of the i-th dangling
edge of N is one of u or v, say u. Note that G · N = GL ∗ NR. In this situation the i-th
semiedge of NR is the semiedge of an isolated edge in NR. Let N ′ be the (3, m−1)-dipole
obtained by removing this edge from NR. Then (G · N)(i) = (GL)(i) ∗ N ′.

Since the pair of edges of G involved in the dot product G · N is essential, it follows
that (GL)(i) is colourable. The semiedges of this 3-pole must be coloured by three distinct
colours. This means that (GL)(i) is colour-equivalent to the claw C, that is, to three dan-
gling edges incident with one vertex. Therefore, by the Substitution Lemma, (GL)(i) ∗ N ′

is colour-equivalent to C ∗ N ′ = N(i), as required.

Lemma 5.2. Let H be a snark and let M be an m-pole (m > 1) without isolated edges.
Assume that the edge of H involved in the dot product M ·H is non-suppressible from H.
Then the following statements hold:

(a) The multipoles (M · H)(0) and M(0) are colour-equivalent.
(b) For i = 1, 2, . . . , m, if the i-th dangling edge of M is none of the edges involved in

the dot product M · H, then multipole (M · H)(i) is colour-equivalent to M(i).

Proof. Under the conditions stated in parts (a) and (b) of the lemma we have that
(M · H)(i) = M(i) · H . However, the multipole M(i) · H arises from M(i) by substitut-
ing its sub-multipole R with the colour-equivalent multipole HR. Our claim now follows
from the Substitution Lemma.

The following two theorems are the main results of this section.

Theorem 5.3. Let G and H be snarks. Assume that the pair of edges involved in the
dot product G · H is essential in G and that the edge of H involved in this dot product is
non-suppressible from H. Then the following statements hold:

(a) A pair of distinct edges of G neither of which is involved in the dot product G ·H is
essential in G · H if and only if it is essential in G.

(b) A pair of distinct edges of H neither of which is involved in the dot product G · H
is essential in G · H if and only if it is essential in H.

Proof. Let {e, f} be the pair of edges of G and let {u, v} be the pair of vertices of H that
are involved in the dot product G · H .

To prove (a) consider a pair {x, y} of edges of G neither of which is involved in the
dot product G ·H . Thus {x, y} is disjoint from {e, f}. Let M denote the 4-pole obtained
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from G by disconnecting both x and y. By disconnecting the same edges in G · H we
obtain M · H . From Lemma 5.2 we obtain that M and M · H are colour-equivalent, and
so will be M(i) and (M ·H)(i) for each i = 0, 1, 2, 3, 4. Therefore {x, y} is essential in G if
and only if it is essential in G · H .

The proof of part (b) uses Lemma 5.1 and is otherwise similar to the proof of part (a).

Theorem 5.4. Let G and H be snarks, H 6= Db, and let G ·H be a critical snark. Then
the following statements hold:

(a) A pair of edges in the bond of G ·H belonging to the same couple is removable from
G · H, and hence not essential.

(b) A pair of edges in the bond of G · H belonging to different couples is essential in
G · H.

Proof. Let {u, v} be the pair of vertices involved in this dot product. Let us express G ·H
as the junction GL ∗ HR of the ordered multipoles GL(e1, e2, e3, e4) and HR(f1, f2, f3, f4)
in such a way that G is obtained from GL by joining e1 to e2 and e3 to e4, and H is
obtained from HR by adding two adjacent vertices u and v and attaching f1 and f2 to u,
and f3 and f4 to v. For i ∈ {1, 2, 3, 4} let ai denote the edge arising from the junction of
ei to fi in G · H . Then {a1, a2} is the first couple of the bond and {a3, a4} is the second
one. The edges ai are pairwise distinct and have one end-vertex in GL and the other one
in HR because G · H is cyclically 4-connected and H 6= Db.

We first prove (a). Without loss of generality consider the pair {a1, a2}. By discon-
necting both a1 and a2 in GL ∗ HR we obtain a 4-pole which is a partial junction of
GL(e1, e2, e3, e4) and HR(f1, f2, f3, f4) where e3 is joined to f3 and e4 to f4, the other four
semiedges remaining free. Denote this 4-pole by S (see Fig. 12). Note that S cannot be
colourable, since, by Proposition 3.6, the edges a3 and a4 would have to be coloured with
the same colour and at the same time with two distinct colours. It follows that the pair
{a1, a2} is removable from G · H .

Fig. 12.

We proceed to part (b). Without loss of generality consider the pair {a1, a3}. By
disconnecting both a1 and a3 in GL ∗HR we obtain a 4-pole which is a partial junction of
GL(e1, e2, e3, e4) and HR(f1, f2, f3, f4) where e2 is joined to f2 and e4 to f4 and the other
four semiedges remain free. Denote this 4-pole by T (see Fig. 12). We need to prove that
the multipoles T(i) (i = 0, 1, 2, 3, 4) are all colourable.
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Clearly, |GL| = |G| > 1 and |HR| > 1. Moreover, by Theorem 3.7, both GL and HR

are colourable. Proposition 3.6 further implies that GL has a colouring of type 1212 and
HR has a colouring of type 1111. These colourings can easily be combined into a colouring
of T ; hence T(0) = T is colourable.

Now let i 6= 0. The semiedges of T are of two kinds: those belonging to GL and those
belonging to HR. First consider the semiedges of T belonging to GL. Without loss of
generality, let T(i) be obtained from T by the removal of the dangling edge with semiedge
e1 and by the subsequent suppression of the resulting 2-valent vertex. Then T(i) is a partial
junction of (GL)(1)(e2, e3, e4) and HR(f1, f2, f3, f4) where e2 is joined to f2 and e4 to f4, the
other three semiedges remaining free. Since G ·H is critical, Theorem 4.6 implies that the
pair of edges of G involved in this dot product is essential; hence (GL)(1) is colourable. The
Parity Lemma (2.1) forces the semiedges of (GL)(1) to be coloured differently, therefore
the colours of e2 and e4 are distinct, say 1 and 2. In view of Proposition 3.6, HR has a
colouring of type 1122. It follows that the colourings of (GL)(1) and HR can be extended
to a colouring of T(i).

Now consider the semiedges of T belonging to HR. Without loss of generality, let T(i)

arise from T by the removal of the dangling edge with semiedge f1 and by the subsequent
suppression of the resulting 2-valent vertex. Denote this vertex by w. Then T(i) is a
partial junction of GL(e1, e2, e3, e4) and (HR)(1)(f2, f3, f4) where e2 is joined to f2 and e4

to f4, the other three semiedges remaining free.
The multipole (HR)(1) arises from the graph H ∼ uw by removing v. Since H is

critical by Theorem 4.6, H ∼ uw is colourable, so the same must be true for (HR)(1). By
the Parity Lemma, the semiedges of (HR)(1) must be coloured by three distinct colours.
Let f2 be coloured by 2 and f4 by 1. By Proposition 3.6, GL has a colouring of type 1221.
It follows that the colourings of GL and (HR)(1) can be extended to a colouring of T(i).
The proof is complete.

Fig. 13. Different drawings of the Petersen graph Ps

Example 5.5. Let us examine essential pairs of edges in Isaacs’ flower snarks. We claim
that each pair of non-adjacent edges of the flower snark In, n > 5 odd, is essential. To
prove this we employ induction with respect to n. The validity of the statement for n = 5
and n = 7 has been verified by using a computer. Let n > 9 and let Nk denote the
6-pole arising from the union of k copies Yi of the multipole Y (Fig. 7) by identifying
the semiedge yj in Yi with the semiedge xj in Yi+1 for j = 1, 2, 3 and i = 1, 2, . . . , k − 1.
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Taking into account the colouring properties of Y it can easily be checked that N2m is
colour-equivalent to N2 for every m > 1.

Select a pair of non-adjacent edges in In and form a 4-pole M from In by disconnecting
both of them. We have to verify that each of the multipoles M(i), i = 0, 1, 2, 3, 4, is
colourable. It is easy to see that, regardless of the choice of such a pair, the multipole
M(i) contains a copy of N4. By replacing this copy of N4 with a copy of N2 we obtain a
similar multipole arising from In−2. The latter multipole is colourable by the induction
hypothesis. Since N4 is colour-equivalent to N2, the Substitution Lemma implies that
M(i) is colour-equivalent to the corresponding multipole obtained from In−2. Hence, M(i)

is colourable, too. This proves that any pair of non-adjacent edges in a flower snark is
essential.

It is worth of mentioning that both the Petersen graph (Fig. 13) and the double-star
snark Ds (Fig. 14) have the property that every pair of non-adjacent edges is essential.

Fig. 14. The double-star snark Ds

Our description of essential pairs of edges in critical snarks of cyclic connectivity 4
stated in Theorems 5.3 and 5.4 is incomplete since it only covers pairs of edges in the
same factor or in the bond of a dot product. Additional essential pairs are provided by
the next theorem.

Theorem 5.6. Any pair of edges of a critical snark at distance 1 is essential.

Proof. Let G be a critical snark and let {e, f} be a pair of edges of G such that there is
an edge g connecting an end-vertex u of e to and end-vertex v of f . Let x be the third
edge at u and let y be the third edge at v.

Let us form the dot product H = G · Ps which involves the pair {e, f} on the side
of G. Since both G and Ps are critical, Theorem 4.6 yields that H is critical if and only
if the pair {e, f} is essential. It is therefore sufficient to show that H is critical.

Let ai, i = 1, 2, 3, 4, be the edges of the bond of H labelled in such a way that a2

is incident with u and a3 is incident with v; thus {a1, a2} and {a3, a4} are the couples
of the bond. Since the edges e and f have distance 1, the set R = {a1, x, y, a4} is a
cycle-separating 4-edge-cut, too. (This observation anticipates the situation studied in
Section 8 where similar pairs of cuts are termed atomic and quasiatomic cuts, respectively.)
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By Theorem 3.7, the latter cut gives rise to a decomposition of H into a dot product of
two smaller snarks. It is easy to see that in this case H is expressed as Ps ·G where the
pair vertices of G involved in the dot product is just {u, v}. On the side of Ps the pair of
edges involved in this dot product has distance 1, and it is easy to see that such a pair is
essential (cf. end of Example 5.5). It follows that the snark H = Ps ·G = G ·Ps is critical,
and consequently that the pair {e, f} is essential in G.

Recall that every essential pair of edges of a snark is non-removable. Although the
technical definition of an essential pair of edges requires far more, it is not clear whether
the resulting concept is indeed stronger. It is therefore desirable to provide an example
of a critical snark which has a non-removable pair of edges that is not essential. Such a
snark indeed exists. It is constructed in Section 6 and shown in Fig. 16. The required
non-removable pair of edges that is not essential consists of the edges x and y indicated
in the figure. The fact that the pair {x, y} is not essential has been checked by using a
computer.

The snark from Fig. 16, however, is not irreducible. In fact, we have not been able
to find any irreducible snark containing a non-removable pair of edges that would not be
essential. If such an irreducible snark exists, then it certainly has more than 30 vertices
(verified by checking the catalogue of snarks [1]). This suggests to the following problem:

Problem 5.7. Is any non-removable pair of edges of an irreducible snark essential?

6 Strictly critical snarks

Results of Sections 4 and 5 offer a fairly general method of constructing cyclically 4-
connected strictly critical snarks, snarks that are critical but not bicritical. Strictly criti-
cal snarks have previously been constructed by Steffen [12] and by Grünwald and Steffen
[5] using a different approach. Our construction is a substantial generalisation of Steffen’s
method and covers all examples supplied by [12]. Moreover, it provides a tool for gener-
ating interesting examples related to Theorems A-D some of which will be given later in
this paper.

Our point of departure is the observation that Theorem 4.6 allows the existence of a
critical snark G = H · K where only K is critical, but not H . For instance, assume that
we have found a non-critical snark H which contains an essential pair of edges {e, f} such
that each suppressible edge of H (and there must be one) is one of e and f . If we perform
the dot product of H as the left factor with an arbitrary critical snark different from the
dumbbell graph using the pair {e, f}, we obtain a snark which is critical (because it fulfils
the sufficient condition of Theorem 4.6), but is not bicritical (because it fails to fulfil the
necessary condition of Theorem 4.8). All that remains is to find such a snark H .

To do this, we start with a non-critical snark H0, even one which is not cyclically 4-
connected. It is very likely that H0 will contain many suppressible edges. We supplement
them by some other edges and distribute all these edges into disjoint essential pairs, if
possible. If such a distribution in H0 has been possible, we take one of these pairs and use
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it for the dot product of H0, as the left factor, with an arbitrary critical snark different
from the dumbbell graph. Let H1 be the resulting snark. By Proposition 4.5, H1 has
the same suppressible edges as H0 had, with the exception of those involved in the dot
product. Moreover, by Theorem 5.3, all essential pairs of edges, except for those involved
in the dot product, remain essential. This means that with H1 we are in the same position
as we have previously been with H0, but now there are fewer undesirable edges, because
the dot product has absorbed those two which are involved in it. If we continue in this
way, we finally obtain a snark Hn = H with the required property, and by an additional
dot product we obtain a strictly critical snark G.

Fig. 15. The snark Z

For the just described procedure we employ the flower snark I3 as the starting graph
H0. It has three pairwise adjacent suppressible edges e1, e2 and e3 constituting its central
triangle. We supplement each of ei by the edge fi indicated in Fig. 8. It can be shown

Fig. 16. The strictly critical snark Sc

that the pairs {e1, f1}, {e2, f2}, {e3, f3} are essential in I3. Then, starting with I3, we
perform three dot products, each time taking the Petersen graph as the right factor and
using one of the selected pairs of edges in the left factor. We thus construct the snarks
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H0 = I3, H1 = H0 · Ps , H2 = H1 · Ps , and G = H2 · Ps . As the only suppressible edge of
H2 is e3, G is a strictly critical snark. We denote H2 by Z (Fig. 15) and G by Sc (Fig. 16);
the order of Sc is 36.

It can easily be seen from the way in which Sc was constructed that any pair formed
from the three vertices of Sc originally constituting the central triangle in I3 is removable
from Sc. In fact, there are no other removable pairs of vertices in Sc.

Instead of the Petersen graph as the right factor we could have used any other critical
snark different from the dumbbell graph. Since by Theorem 2.5 there are infinitely many
irreducible snarks, it follows that there are infinitely many cyclically 4-connected strictly
critical snarks. With a little bit more care we can determine all possible orders of strictly
critical snarks.

Theorem 6.1. There exists a strictly critical snark of each even order n > 32. There are
no strictly critical snarks of order n 6 30.

Before proving this theorem we need the following:

Proposition 6.2. There exist critical snarks of orders 2, 10 and each even order n > 18
except n = 24. There are no critical snarks of other orders.

Proof. The dumbbell graph Db (Fig. 3), the Petersen graph Ps (Fig. 13), the Blanuša
snarks B1 and B2 (Fig. 17), the flower snark I5 (Fig. 8), and the Goldberg-Loupekine
snarks GL1 and GL2 (Fig. 18) are critical snarks of orders 2, 10, 18, 20, and 22, respectively.
Note that all these snarks are even irreducible.

Fig. 17. The Blanuša snarks B1 and B2

Fig. 18. The Goldberg-Loupekine snarks GL1 and GL2

There are also critical snarks of orders 28, 30, and 32, for example the flower snark I7,
the double-star snark Ds (Fig. 14), and S32 (Fig. 19), respectively. These snarks are
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irreducible, too. To indicate the order in the notation, we denote the first two of them by
S28 and S30, respectively, and both of the Blanuša snarks by S18.

Now, we perform a k-fold dot product of the Petersen graph as the left factor with Si

(i ∈ {18, 28, 30, 32}) as the right factor to obtain snarks

Psk ·Si = Ps ·
(

· · ·
(

Ps ·(Ps ·Si)
)

)

of orders 8k + i, respectively. Since, by Example 5.5, any pair of non-adjacent edges of
the Petersen graph is essential, the snarks Psk ·Si are critical by Theorem 4.6. It follows
that there is a critical snark of order n for every even n > 26.

Fig. 19. The snark S32

There are no critical snarks of orders 4, 6, 8, 12, 14, 16, and 24; see [1, 9] for a
discussion of this topic.

Proof of Theorem 6.1. The nonexistence of strictly critical snarks of orders smaller than
32 has been verified by Brinkmann and Steffen [1] by exhaustive computer search. We
now show that for each even n > 32 there exists at least one strictly critical snark of
order n.

A strictly critical snark of order 32 has been constructed by Steffen in [12]. By employ-
ing our method such a snark can be constructed as follows. Take the Goldberg-Loupekine
snark GL1 shown in Fig. 18, subdivide the edges denoted x and y with one 2-valent vertex
each, and join the vertices with a new edge e. Since {x, y} is a removable pair of edges
(as easily seen from Goldberg’s construction [4]), the resulting graph GL′

1 is a snark with
e being a suppressible edge. In fact, e is the only such edge because GL1 is irreducible.
Moreover, e can be supplemented by the edge f indicated in Fig. 18 in the original GL1

to obtain an essential pair of edges. Thus in our construction of a strictly critical snark
of the form G = H ·K we can take H = GL′

1 and K = Ps . The result is a strictly critical
snark of order 32. Note that another such snark arises from GL2 as a dot product of GL′

2

(defined analogously) and Ps .
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If we replace Ps in the dot product GL′

1 ·Ps by any other critical snark different from
Db, we get a strictly critical snark as long as the same essential pair of edges {e, f} of GL′

1

is used for the dot product. Since there exists a critical snark of each even order n > 18
except n = 24 (Proposition 6.2), we deduce that there exists a strictly critical snark of
each even order n > 40 except possibly n = 46.

We have already constructed a strictly critical snark of order 36 in the form Z · Ps
where Z is the snark of order 28 shown in Fig. 15. By replacing Ps with I5 we obtain a
strictly critical snark of order n = 46. Thus it remains to construct strictly critical snarks
of orders 34 and 38.

A strictly critical snark of order 34 can be constructed as follows. We start again with
GL1, but this time we add two edges: the edge e across x and y (as above), and an edge
g across the edges z and t which are indicated in Fig. 18. Since e and g are the only
suppressible edges of the resulting snark GL′′

1 and they form an essential pair, we obtain
a strictly critical snark of order 34 by a suitable dot product of GL′′

1 with Ps .
Finally, to construct a strictly critical snark of order 38 take the flower snark I3, select

a vertex at distance 2 from its central triangle (see Fig. 8), and expand this vertex into a
triangle. The resulting graph is a snark of order 14 whose suppressible edges are exactly
those lying on the triangles. Since each pair consisting of edges from different triangles can
be shown to be essential, we can distribute the six suppressible edges into three disjoint
essential pairs. By performing three dot products, each time using one of the essential
pairs in the left factor and the Petersen graph as the right factor, we obtain a strictly
critical snark of the required order.

Strictly critical snarks are closely related not only to Theorem A but also to Theo-
rem B. According to the latter theorem, every bicritical snark of cyclic connectivity 4
is a dot product of two smaller bicritical snarks such that the pair of edges of the left
factor involved in the dot product is essential. It is natural to ask whether Theorem B
can be reversed and used to construct bicritical snarks, that is, whether any dot product
of two bicritical snarks involving an essential pair of edges will necessarily be bicritical. If
this is not true, then by Theorem A any counterexample will be a strictly critical snark,
moreover, one which decomposes into a dot product of two bicritical snarks. Recall that
the very basic idea behind strictly critical snarks constructed in the present section is that
they are formed by a dot product of a non-critical snark with a critical snark. Thus the
potential counterexamples to the converse of Theorem B will have to be strictly critical
snarks of a fundamentally different nature and therefore probably difficult to find.

In addition, the following problem is open.

Problem 6.3. Do there exist cyclically 6-connected strictly critical snarks?

7 Factorisation chains and atoms

This section starts our preparations for the proofs of Theorems C and D and introduces
their main technical ingredients. First of all we revisit Theorem 3.7 and note that with
the help of Theorem B (4.8) it can be strengthened as follows:
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Theorem 7.1. Every 4-edge-cut S in an irreducible snark G separates G into two colour-
open multipoles M and N , one isochromatic and one heterochromatic. Their respective
completions M̃ and Ñ are irreducible snarks, and G can be expressed as a dot product of
M̃ and Ñ in such a way that S is the bond. Moreover, this expression is unique up to
isomorphism.

In other words, Theorem 7.1 asserts that each 4-edge-cut S in an irreducible snark G
gives rise to a decomposition of G into a dot product of two other irreducible snarks, the
S-factors of G. It is follows from Propositions 3.2 and 3.5 that the factor M̃ uniquely
determines the factor Ñ , and vice versa. More formally, if G is expressed as H · K1 =
H · K2, then K1 coincides with K2 up to the the identity of the added vertices and
edges; if H1 · K = H2 · K, the same holds for H1 and H2. Thus, for an irreducible snark
G = H ·K these cancellation rules justify the definition of a quotient snark as G/H = K
and G/K = H . In particular, G = H · (G/H) and G = (G/K) · K.

Note that our notation ignores the difference between the “right” and the “left” quo-
tient of a snark although such quotients could be introduced. In fact, this ambiguity will
later prove to be very convenient.

Consider an arbitrary irreducible snark G different from Db. If G has a cycle-separating
4-edge-cut, we can decompose G into a dot product of two smaller snarks. Since direct
factors of G are again irreducible, we can repeat the process with any 4-edge-cut in either
direct factor and continue in this manner as long as we like. At each stage we obtain
a sequence of snarks called a factorisation chain. The following definition extends this
concept to all snarks.

Let G be a snark.

• The single-term sequence (G) is a factorisation chain of G.

• If (G1, G2, . . . , Gm) is a factorisation chain of G, and one of its members Gj can be
expressed as a dot product Gj = K1 · K2 of snarks K1 and K2, then (G1, . . . , Gj−1,
K1, K2, Gj+1, . . . , Gm) is again a factorisation chain of G. The latter chain is an
elementary refinement of the former one.

The number m of members in a factorisation chain F = (G1, G2, . . . , Gm) will be called
the length of F and will be denoted by |F|.

Although each factorisation chain is inherently ordered, it is sometimes useful to ignore
this ordering and regard it as a set (or even a multiset, when necessary). In such a case we
will write {G1, G2, . . . , Gm} instead of (G1, G2, . . . , Gm). Graphs which occur as members
of factorisation chains of a snark G will be called subsnarks of G. The fact that a snark H
is a subsnark of G will be denoted by H 6 G. A subsnark different from G will be called
a proper subsnark. Because of the trivial factorisation, a factorisation chain may contain
the dumbbell graph as a member arbitrarily many times. In order to avoid such situations
we define a factorisation chain to be clean if it does not contain the dumbbell graph as a
member, or if it is just (Db). A clean factorisation chain with no clean refinements will be
called a composition chain and its members will be composition factors. A composition
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chain is thus the final product of successive refinement of any factorisation chain. By
Theorem B, composition factors of an irreducible snark different from Db are cyclically
5-connected irreducible snarks, and therefore have no proper subsnarks other than Db
(which, of course, is a subsnark of any snark).

Given two factorisation chains F and G we set F < G and say that F is a refinement
of G if there exists a sequence of factorisation chains F = Gr,Gr−1, . . . ,G0 = G (r > 0)
such that Gi is an elementary refinement of Gi−1 for i = 1, 2, . . . , r. The relation “<”
endows the set of all clean factorisation chains of a snark G with a partial order which has
a single minimal element (G) and, as a rule, many maximal elements, the composition
chains.

The structure of composition chains of a snark can be very complicated in general.
Although Theorem 7.1 claims that in an irreducible snark each particular 4-decomposition
produces uniquely determined direct factors, this local uniqueness hints nothing about
global properties of composition chains. For example, at this moment we do not even
know whether any two composition chains of an irreducible snark have the same length.
This question is relevant since there are strictly critical snarks having composition chains
with different lengths (see Section 12). Our ultimate aim, though, is to prove a much
stronger result: any two composition chains of an irreducible snark can be obtained from
each other by reordering the elements and replacing any member by an isomorphic copy.
Such factorisation chains will be called equivalent.

The fundamental device which we utilise for establishing the relationship between
different composition chains of a snark is the concept of an atom, a building block of the
connectivity structure of a cubic graph. For an induced subgraph F of a cubic graph G
let ∂F denote the set of all edges of G with exactly one end in F ; whenever a reference to
G is necessary, the symbol ∂GF will be used. Clearly, ∂F is an edge-cut provided that F
is nonempty and different from G. If ∂F is a mininum cycle-separating edge-cut, we will
call F a cyclic fragment of G (in [8] the term cyclic part was used). A cyclic fragment
minimal under inclusion is an atom.

Note that an atom is not a cubic graph but can be easily converted to a cubic multipole:
it is sufficient to attach the appropriate number of dangling edges to all vertices with
valency smaller than 3. When this operation is performed on a graph H with maximum
valency 3, the resulting multipole will be denoted by H#. Of course, H# = H ∪ ∂H .

If F is a cyclic fragment of an irreducible snark G of cyclic connectivity 4, then G−F#

is a cyclic fragment, too. According to Theorem 7.1, the multipoles F# and G − F have
isomorphically unique completions to irreducible snarks whose dot product is G. To
simplify the notation, in similar situations we will always denote the snark completion of
F# by F̃ . With this notation, the direct factors of G resulting from the choice of F are
F̃ and G/F̃ .

The distribution of atoms provides a useful insight into the internal structure of a cubic
graph. In a general setting, the distribution of atoms can be intricate with regard to both
the mutual position of two atoms and to the position of an atom and a minimum cycle-
separating edge-cut. Things become much simpler when cyclic connectivity is strictly
smaller than girth.
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Theorem 7.2. [8] Let G be a connected cubic graph whose cyclic connectivity is strictly
smaller than its girth. Then any atom of G is disjoint from any minimum cycle-separating
edge-cut, and any two distinct atoms are disjoint.

By Proposition 2.4, critical and hence irreducible snarks of cyclic connectivity 4 satisfy
the assumption of Theorem 7.2. Thus we have:

Corollary 7.3. In an irreducible snark of cyclic connectivity 4, any two distinct atoms
are disjoint and any atom is disjoint from any cycle-separating 4-edge-cut.

In contrast to atoms, two minimum cycle-separating edge-cuts need not be disjoint at
all. Therefore a closer look at the mutual position of such cuts will be necessary.

8 Edge-cuts associated with atoms

Let A be an atom in a cubic graph G of cyclic connectivity k. Then ∂A is the cycle-
separating k-edge-cut which separates A from the rest of G. This cut will be called the
atomic cut associated with A. Besides the atomic cut, there may be other related edge-
cuts associated with A. Since the edges in ∂A are independent, k of their end-vertices
are in G − A. Let us call them v1, . . . , vk. It may happen that two of these vertices,
say v1 and v2, are adjacent and that the edge-cut separating the subgraph H induced
by A ∪ {v1, v2} is again a minimum cycle-separating edge-cut in G. This latter cut will
be called a quasiatomic cut and the subgraph H will be called a quasiatom associated
with A. The pair {v1, v2} of vertices lying “between” the atomic and a quasiatomic cut
will be called a quasiatomic pair of vertices. Any atom A thus gives rise to one atomic
and several quasiatomic cuts, in general at most k/2, but possibly none.

For irreducible snarks of cyclic connectivity 4 the situation is more specific.

Proposition 8.1. In an irreducible snark of cyclic connectivity 4 each atom gives rise to
at most one quasiatom and to at most one quasiatomic cut.

Proof. Assume to the contrary that an atom A in a snark G of cyclic connectivity 4
has two associated quasiatomic cuts S and T with quasiatomic pairs of vertices {v1, v2}
and {w1, w2}, respectively. Then S (as well as T ) separates {v1, v2} from {w1, w2}. By
verifying a few simple cases one can easily see that the isochromatic S-factor always
contains a cycle of size at most 4, contradicting the fact that irreducible snarks have girth
at least 5 (Proposition 2.4).

In view of Proposition 8.1, we can unambiguously denote the quasiatomic cut and
the quasiatom associated with an atom A of an irreducible snark G by ∂ ′A and A′,
respectively; in particular, ∂A′ = ∂ ′A.

Next we show that in the factorisation process atomic and quasiatomic cuts play
essentially the same role.

Proposition 8.2. Let G be an irreducible snark G of cyclic connectivity 4 and let A be
an atom of G. Then Ã′ ∼= Ã and G/Ã′ ∼= G/Ã.
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Proof. Assume that G contains the quasiatomic cut ∂ ′A associated with A. Then G can
be expressed as a dot product of Ã′ and G/Ã′. In this dot product, Ã′ cannot act as the
right factor. To see this, we identify (A′)# with the multipole obtained from A# by a
partial junction with the 4-pole L employing a pair of non-adjacent semiedges of L. Denote
the semiedges of A# by a1, a2, a3, a4 and those of L by l1, l2, l3, l4, where l1 is adjacent to l2
and l3 is adjacent to l4 (cf. Fig. 6 and Fig. 20). Without loss of generality we may assume
that the partial junction of A# and L joins a1 to l2, and a2 to l3, so that the semiedges
of (A′)# are l1, l4, a3, and a4. Now, if Ã′ was the right factor of the dot product, then
l1 and one of the remaining three semideges would have to be incident with a common
vertex. However, l4 is excluded since M̃ would contain a triangle, and both a3 and a4 are
excluded because M̃ would then contain a quadrilateral, contradicting Proposition 2.4.
It follows that Ã′ acts as a left factor, and hence can be obtained from (A′)# by joining
the semiedges in each couple of (A′)#. However, it is now easy to see that Ã′ can also
be obtained directly from A# by adding two adjacent vertices. By Proposition 3.2, the
latter can be done uniquely up to isomorphism. Therefore Ã′ ∼= Ã, and consequently
G̃/Ã′ ∼= G/Ã.

Fig. 20. The quasiatomic cut associated with A

It follows from Proposition 8.2 that the factorisation chain {Ã, G/Ã} resulting from
the use of the atomic cut ∂A is equivalent to the chain {Ã′, G/Ã′} which arises from the
quasiatomic cut ∂ ′A. Besides the identity of the newly added vertices and edges the main
difference between these two chains consists in the position of the original quasiatomic
pair of vertices. While in the former chain the quasiatomic pair is “moved” to G/Ã (and
two new vertices are used for the other factor Ã), in the latter chain the quasiatomic pair
stays with A (and new vertices are used for the other factor G/Ã′). In other words, the
isomorphisms Ã′ ∼= Ã and G/Ã′ ∼= G/Ã substitute the quasiatomic pair for the pair of
new vertices and vice versa. The same fact causes the exchange of roles between the left
and right factor of the respective dot products.

9 Heredity of atoms and cuts

In this section we deal with the situation when an atom A and a cycle-separating 4-edge-
cut S not associated with A are given in an irreducible snark G. The atom A and the
cut S offer two possibilities to decompose G into a dot product of two smaller irreducible
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snarks. Our aim is to show that in either case the object not used for the decomposition
is inherited into one of the resulting factors.

We need two lemmas.

Lemma 9.1. Let G be an irreducible snark of cyclic connectivity 4 and let A be an atom
in G. Then for any cycle-separating 4-edge-cut S in G we have

|S ∩ ∂A| 6= 3.

Proof. Assume, to the contrary, that a cycle-separating edge-cut S with |S∩∂A| = 3 does
exist. Let ∂A = {a1, a2, a3, a4} and S = {a1, a2, a3, e}, where e 6= ai for i = 1, 2, 3, 4. By
Corollary 7.3, A contains no edge of S; in particular, e does not belong to A. Therefore G
can be split into three induced subgraphs, H , K and A, such that ∂A∩∂H = {a1, a2, a3},
∂A ∩ ∂K = {a4}, and ∂H ∩ ∂K = {e}; see Fig. 21.

Fig. 21. S-cut with |S ∩ ∂A| = 3

However, K# is a 2-pole distinct from an isolated edge, so it must be cyclic. As A# is
cyclic, too, it follows that {a4, e} is a cycle-separating 2-edge-cut in G, contradicting our
assumption about G. This establishes the lemma.

Lemma 9.2. Let G be an irreducible snark of cyclic connectivity 4 and let A be an atom
in G. Then for any cycle-separating 4-edge-cut S in G with |S ∩ ∂A| = 2 the edges in
S ∩ ∂A do not form a couple of S.

Recall that any cycle-separating 4-edge-cut S can serve as the bond of a dot product
and that its couples correspond to the couples of the colour-open 4-poles arising from the
disconnection of S.

Proof. By way of contradiction, assume that G contains a cycle-separating edge-cut S
which intersects the atomic cut ∂A in two edges forming a couple of S. Let ∂A =
{a1, a2, a3, a4} and S = {a1, a2, e1, e2} where ai 6= ej for i = 1, 2, 3, 4 and j = 1, 2, and
e1 6= e2, and where {a1, a2} forms a couple in S.

Since A is an atom, Corollary 7.3 implies that A∩S = ∅, so the edges e1 and e2 cannot
belong to A. It follows that G can be split into three induced subgraphs, H , K and A, in
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such a way that ∂A ∩ ∂H = {a1, a2}, ∂A ∩ ∂K = {a3, a4}, and ∂H ∩ ∂K = {e1, e2}; see
Fig. 22.

By disconnecting the cut S we obtain two 4-poles, one of which is H# = M . Let N
be the other one. By Proposition 3.5, one of M and N is heterochromatic and the other
one is isochromatic. Moreover, by Theorem 7.1, the snark G = M ∗ N can be obtained
as a dot product of the snark completions M̃ and Ñ . At this moment, however, it is not
clear which of M̃ and Ñ serves as the left S-factor and which as the right one.

Fig. 22. S-cut with |S ∩ ∂A| = 2

Obviously, if N is isochromatic, then G = M̃ · Ñ and if N is heterochromatic, then
G = Ñ · M̃ . In either case Ñ must be irreducible and different from Db (because the
edge-cut S is cycle-separating). We now discuss these two cases in detail.

Case 1. First suppose that N is heterochromatic. By Proposition 3.2, the snark Ñ
is obtained from N by joining the semiedges of each couple of N . It follows that {a3, a4}
is an edge-cut in Ñ that separates A with one edge added and K with one edge added.
As this cut is clearly cycle-separating, we get a contradiction with Proposition 2.4.

Case 2. Now suppose that N is isochromatic. By Proposition 3.2, the snark Ñ
is obtained from N by attaching the semiedges in each couple to a new vertex and by
connecting these vertices with a new edge. Denote this new edge by f . Now it is clear
that the edges in {a3, a4, f} form an independent 3-edge-cut in Ñ . Again, this contradicts
Proposition 2.4.

Proposition 9.3. Let G be an irreducible snark of cyclic connectivity 4 and let A be an
atom of G. Further let S be a cycle-separating 4-edge-cut in G not associated with A.
Then one of the S-factors of G has cyclic connectivity 4 and contains A as an atom.

Proof. Let H and K be the S-factors of G. By Corollary 7.3, A is disjoint from S and
hence a subgraph of one of H and K, say H . We show that A is, in fact, an induced
subgraph of H . To see this, first observe that |S ∩ ∂GA| 6 2. Indeed, |S ∩ ∂GA| < 4 for
S is not the atomic cut associated with A, and |S ∩ ∂GA| 6= 3 due to Lemma 9.1. Now,
if A were not an induced subgraph of H , then the completion which creates H from a
component of G− S would have to add a new edge between two vertices of A in H . This
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could only happen when H was the left factor of this dot product. As |S ∩ ∂GA| 6 2, we
would get that |S ∩ ∂GA| = 2, and the edges of S ∩ ∂GA would necessarily form a couple
in S, contrary to Lemma 9.2. Therefore A is indeed an induced subgraph of H .

We want to prove that ∂HA is a cycle-separating cut in H , or equivalently, that H−A
contains a cycle. Suppose, to the contrary, that H − A is acyclic. Since A is an induced
subgraph of H , H − A has no isolated edges, and hence |H − A| > 2. Thus H − A is
isomorphic to L with possibly permuted semiedges. At this point we have to distinguish
two cases depending on whether H is the left or the right factor of the dot product.

First assume that H is the right factor. The only way H can be involved in this dot
product subject to the restriction that A has to “survive” the operation and become an
induced subgraph of H is that the vertices of H − A are involved in the dot product.
However, the bond of G = K · H , the cut S, then coincides with ∂GA, contradicting our
assumption.

Now let H be the left factor. If A has to “survive” the dot product and become an
induced subgraph of H , then two edges of ∂HA non-adjacent in H must be involved in
the dot product. In this case the the bond of G = H · K will be the quasiatomic cut
associated with A, which contradicts our assumption again.

Thus ∂HA is a cycle-separating 4-edge-cut in H . Since H = A# ∗ (H − A) is an
irreducible snark, it is cyclically 4-connected. It follows that the cyclic connectivity of H
is 4 and that A is a cyclic fragment of H . To prove that A is in fact an atom of H , we
need to verify that A is minimal under inclusion. However, this is obvious: if there existed
a cyclic fragment F in H such that F $ A, then F would also be a cyclic fragment in G,
contradicting the fact that A is an atom of G. Thus there is no such F and hence A is
an atom in H . This completes the proof.

Given an atom A in an irreducible snark G of cyclic connectivity 4 and a cycle-
separating 4-edge-cut S not associated with A, one of the S-factors inherits A as an
atom. Our next aim is to show that if the cut ∂A is used instead, then S will be inherited
in some way into one of the ∂A-factors. The latter situation, however, requires a careful
preparation because the correspondence is less straightforward.

Recall that by disconnecting the atomic cut ∂A we obtain two 4-poles A# and G−A
such that A# ∗ (G − A) = G. At the same time, G can be expressed as a dot product of
Ã and G/Ã, the respective completions of the latter 4-poles. We now establish a natural
correspondence between the edges of G − A and those of G/Ã by defining a mapping
pA: E(G − A) → E(G/Ã), a projection, as follows:

Each edge e of G −A with both end-vertices in G −A is inherited into G/Ã directly,
and we set pA(e) = e in this case.

For the edges of ∂GA the definition differs according to whether A# is isochromatic
or heterochromatic. Let ∂GA = {a1, a2, a3, a4}. By disconnecting the edges ai in G we
obtain the 4-poles A# and G − A with dangling edges denoted correspondingly by aA

i in
A# and aG−A

i in G − A (i = 1, 2, 3, 4).

• Let A# be heterochromatic. Then Ã is the left and G/Ã the right factor of the dot
product. By Proposition 3.2, G/Ã arises from G − A by adding two new vertices
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joined by a new edge. Therefore we set pA(ai) = aG−A
i .

• Let A# be isochromatic. Then Ã is the right factor and G/Ã is the left one. By
Proposition 3.2, G/Ã is obtained from M by joining the semiedges in each couple.
Without loss of generality, if the couples are {aG−A

1 , aG−A
2 } and {aG−A

3 , aG−A
4 } and the

newly created edges are e and f (for the first and the second couple, respectively),
we define pA(ai) = e for i = 1, 2 and pA(ai) = f for i = 3, 4.

Let S be an arbitrary cycle-separating 4-edge-cut in G. By Corollary 7.3, S is disjoint
from the atom A. Hence S ⊆ G − A, and so the projection pA(e) is defined for all
edges e ∈ S. We proceed to show that if S is not associated with A, then pA(S) is a
cycle-separating 4-edge-cut in G/Ã. The cut pA(S) will be referred to as the cut of G/Ã
corresponding to the cut S of G.

Proposition 9.4. Let G be an irreducible snark of cyclic connectivity 4 and let A be an
atom of G. Further let S be a cycle-separating 4-edge-cut in G not associated with A.
Then pA(S) is a cycle-separating 4-edge-cut in G/Ã.

Proof. It is sufficient to show that pA(S) is an independent 4-edge-cut in G/Ã. We will
separately treat the cases when the 4-pole A# is isochromatic or heterochromatic.

Case 1. If A# is heterochromatic, then pA is injective on its domain of definition;
hence |pA(S)| = 4. Moreover, the edges of G with both end-vertices in G−A are directly
inherited into G/Ã together with their end-vertices. Any edge of ∂GA has exactly one
vertex in G −A. As the edges in S are independent, the only way for the edges in pA(S)
to become adjacent is that one of the couples of edges in ∂GA is present in S. This is
because pA maps such a pair of originally non-adjacent edges to a pair of adjacent edges.
To show that this does not occur assume the contrary. Then |S ∩ ∂GA| > 2 and a couple
of ∂GA is contained in S ∩ ∂GA. However, by Lemma 9.2, the size of this intersection
cannot be 2 and, by Lemma 9.1, it cannot be 3. It follows that |S ∩ ∂GA| = 4 in which
case S = ∂GA, contradicting our assumption. Therefore pA(S) is an independent set of
edges. In fact, pA(S) is an edge-cut in G/Ã separating components which are formed from
the components of G separated by S by substituting the 4-pole A# (which is connected)
with the 4-pole L (which is also connected) in the appropriate way (cf. Remark 4.2).

Case 2. We now assume that A# is isochromatic. In this case the situation is more
complicated because the mapping pA is not injective anymore.

First of all, we have that |pA(S)| = 4. Otherwise S would have to contain a couple of
edges of ∂GA, and by similar arguments as in Case 1 we could derive a contradiction by
showing that S is the atomic cut associated with A.

Next we show that pA(S) is an edge-cut in G/Ã. Since S is disjoint from A, G/Ã arises
from G by substituting A# (which is connected) with the 4-pole R (which is disconnected).
The components of (G/Ã)−pA(S) thus arise from those of G−S by the same substitution
(cf. Remark 4.2). Denote the component of G− S containing A# by K. Then |K| > |A|,
since S 6= ∂GA, so K will not vanish by replacing A# with R. The resulting 4-pole either
remains connected or splits into more components, as R is disconnected. In either case,
(G/Ã) − pA(S) is disconnected which means that pA(S) is an edge-cut in G/Ã.

the electronic journal of combinatorics 17 (2010), #R32 37



It remains to show that the edges in pA(S) are independent. In the general case, the
edges of G − A are directly inherited into G/Ã together with their original end-vertices.
Hence non-adjacent edges are mapped onto non-adjacent edges; so pA(S) is independent.
There is however one exception: an edge x independent from a bond edge ai ∈ ∂GA in G
can become adjacent to the corresponding edge pA(ai) in G/Ã.

To see this, assume that the edges of ∂GA = {a1, a2, a3, a4} are ordered in such a
way that {a1, a2} and {a3, a4} form the couples. Let e and f be the new edges of G/Ã
created by joining a1 to a2 and a3 to a4, respectively. Thus pA(a1) = pA(a2) = e and
pA(a3) = pA(a4) = f . Let v1, v2, v3, and v4 be the respective end-vertices in G − A of the
edges ai. Thus e joins v1 to v2 and f joins v3 to v4 in G/Ã. Of course, these four vertices
are pairwise distinct, since ∂GA was an independent edge-cut in G (cf. Fig. 23).

Fig. 23. Case 2 of the proof of Proposition 9.4

Pick an edge x of G/Ã (and of G) incident with some vi, say v1, other than e or f .
Obviously, x is not incident with v2 (neither in G nor in G/Ã), otherwise the edges x and
e would form a digon in G/Ã which is impossible. Then x and a2 are non-adjacent in G
while pA(x) = x and pA(a2) = e are adjacent in G/Ã.

To finish the proof, it remains to show that, without loss of generality, S does not
contain the edges a2 and x at the same time. Assume it does. Besides a1 and x there is the
third edge y incident with v1 in G. As S is independent, necessarily y /∈ S. Furthermore
we see that y /∈ pA(S) because x and y are inherited from G to G/Ã. Nevertheless,
x = pA(x) and e = pA(a2) are adjacent in G/Ã. Since pA(S) is an edge-cut in G/Ã, so is
(pA(S)−{e, x})∪ {y}. However, this is a 3-edge-cut in an irreducible snark G/Ã, so it is
not cycle-separating, and hence it must separate some vertex v from the rest of G/Ã.

Since S is independent, the two edges in S−{a2, x} are non-adjacent in G. In contrast,
the edges in pA(S − {a2, x}) = pA(S)− {e, x} are adjacent in G/Ã, their common vertex
being v. Should both edges of S − {a2, x} be directly inherited from G to G/Ã, their
independence would be preserved. Therefore S contains one of a1, a3, or a4. However,
a1 /∈ S because |pA(S)| = 4, so S contains a3 or a4, and v is necessarily one of v3 and
v4. This means that S is the quasiatomic cut in G associated with A, contradicting our
assumptions.

In either case pA(S) is an independent 4-edge-cut in G/Ã.
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The above results enable us to observe the position of a fixed atom during its “life”
in refining factorisation chains. The relevant information about the “life-cycle” of an
atom can be drawn from Proposition 9.3. If we are given an irreducible snark G of cyclic
connectivity 4 and a fixed atom A of G, A is always inherited as an atom into one of the
resulting subsnarks regardless of the way in which G is being factored. Eventually one of
the cuts associated with A is used for factorisation and at this moment the “life” of our
atom A ends. By decomposing G along any of these cuts — by Proposition 8.2, no matter
which one — either A is not inherited into the corresponding component as an induced
graph (namely, when A# is heterochromatic), or it is not a cyclic fragment (when A# is
isochromatic), or the corresponding component is cyclically 5-connected and the meaning
of an atom turns out to be completely different.

10 Factorisation

In this section we apply our knowledge of the interplay between atoms, cuts and 4-
decompositions to proving Theorem C. The main proof will be preceded by two lemmas,
a “switching lemma” and a “splitting lemma”. The first of these explores the same
situation as the one treated in the previous section: in an irreducible snark G an atom A
and a cycle-separating 4-edge-cut S not associated with A are given. Depending on the
order taken, the cuts ∂A and S offer two ways of factorising G into a 3-element chain.
If ∂A is taken first, then by Proposition 9.4 the cut S is inherited into one of the direct
factors as pA(S). In the next step we can use pA(S) and form a factorisation chain A. If
S is used first, then by Proposition 9.3 the atom A is inherited into an appropriate factor
again as an atom. This direct factor can be further decomposed by employing the atomic
cut ∂A, thereby producing another factorisation chain S. The switching lemma compares
these two chains.

Lemma 10.1. Let G be an irreducible snark of cyclic connectivity 4, let A be an atom
in G, and let S be a cycle-separating 4-edge-cut of G not associated with A. Let A be
the factorisation chain of G obtained by first using ∂A and then pA(S), and let S be the
factorisation chain obtained by first using S and then ∂A. Then A and S are equivalent.
In fact, the corresponding subsnarks only differ in the identity of the newly added vertices
and edges.

Proof. Let P and Q be the S-factors of G. By Proposition 9.3, one of them, say P ,
contains A as an atom. Since the role of A in P may differ from that in its original place
in G, during the whole proof we must carefully distinguish between operations performed
in P and those performed in G.

First note that the 4-poles A#
P = A∪∂P A ⊆ P and A#

G = A∪∂GA ⊆ G are isomorphic
and, by Proposition 3.2, have isomorphically unique completions to snarks ÃP and ÃG,
respectively. Thus ÃP and ÃG are isomorphic, the difference between them being limited
to the identity of the newly added vertices and edges.

Let us decompose G along ∂GA to obtain the factorisation chain {ÃG, G/ÃG}. By
Proposition 9.4, G/ÃG contains the 4-edge-cut pA(S) corresponding to S. Using the latter
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cut G/ÃG decomposes into a pair of direct factors, say H and K. Thus A = {ÃG, H, K}.
On the other hand, the factorisation chain S arises from G by first decomposing G along
S into a dot product of P and Q with A ⊆ P , and then by decomposing P along ∂P A
into a dot product of ÃP and P/ÃP . Thus S = {ÃP , P/ÃP , Q}. To finish the proof it
remains to match the subsnarks H and K to P/ÃP and Q. We therefore focus on the
multipoles resulting from the individual 4-decompositions.

Due to Theorem 7.1, the snarks P and Q resulting from the decomposition of G
along S are isomorphically unique completions of certain 4-poles M and N , respectively;
of course, this uniqueness is determined up to the identity of the newly added vertices
and edges. As Proposition 9.3 claims, one of these multipoles, say M , contains A#

P . So
A#

P ⊆ M ⊆ P .
By disconnecting the edge-cut pA(S) in G/ÃG we again obtain two multipoles. It is

easy to see that one of them is exactly N while the other one, denoted by MA, can be
obtained from M by substituting its sub-multipole A#

P with either L or R, depending
on which of them is colour equivalent to A#

P (cf. Remark 4.2). Recall, however, that the
pA(S)-factors of G/ÃG are H and K. Without loss of generality we may assume that H
is a completion of MA while K is a completion of N .

Note that the way in which M , MA and N are completed to snarks is uniquely deter-
mined by the colouring sets of the respective multipoles (Proposition 3.2). This immedi-
ately implies that K and Q, both being completions of N , can only differ in the identity
of the newly added vertices and edges.

Since MA arises from M by a colour-equivalent substitution of A#
P with one of L and

R, MA is colour-equivalent to M by the Substitution Lemma. It follows that both MA and
M will be completed to snarks by using the same 4-pole I ∈ {L, R}. As the completion
of M is P and the completion of MA is H , the snark H arises from P by substituting
A#

P with I. Note that in G the substitution of A#
G with I produces G/ÃG, so the same

substitution in P gives rise to P/ÃP . By comparison, P/ÃP coincides with H up to the
identity of newly added vertices and edges. The result follows.

The result which we have just proved can be interpreted as follows. Let G be an
irreducible snark to be factorised into cyclically 5-connected snarks, and let A be a fixed
atom of G. We already know that sooner or later one of the cuts associated with A will
be used for decomposition within a certain subsnark H of G. Consider the edge-cut S
employed in the step just before this happens, and assume that S lives in a subsnark
J > H . Lemma 10.1 now implies that by interchanging the order of S and ∂A (or,
equivalently, ∂ ′A) within J , no potential composition chain of G will be lost from a further
factorisation. As we shall see next, the immediate precedence of S to ∂A is not necessary:
we can decompose G along ∂A in the very first step without any significant effect on the
final result. This allows us to completely reorganise the whole factorisation process in
such a way that the given composition chain of G can be “split” into a composition chain
of Ã and a composition chain of G/Ã.

To formalise these ideas, we need two more definitions. Let G be a snark expressed as
a dot product H ·K. Then for any factorisation chain H = (H1, H2, . . . , Hm) of H and any
factorisation chain K = (K1, K2, . . . , Kn) of K the sequence (H1, . . . , Hm, K1, . . . , Kn) is
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a factorisation chain of G. We denote the latter chain by H∪K, the union being ordered
whenever necessary.

Let F 4 G be factorisation chains of a snark G and let H be a member of F . Define
the restriction G|H of G to H to be the subsequence of G consisting of all members of G
that are subsnarks of H . An easy inductive argument shows that G|H forms a connected
interval in G and constitutes a factorisation chain of H .

Now we are ready for the splitting lemma.

Lemma 10.2. Let G be an irreducible snark of cyclic connectivity 4 and let A be an atom
of G. Then for any composition chain C of G there is a composition chain C1 of Ã and a
composition chain C2 of G/Ã such that C is equivalent to C1 ∪ C2.

Proof. Let C be an arbitrary composition chain of G, and let A be a fixed atom of G.
Proposition 9.3 implies that there exists a factorisation chain M 4 C such that either
Ã or Ã′ ∼= Ã is a member of M. Assume that M is the shortest such chain, and define
h = hC(Ã), the height of Ã in C, to be |M| − 1.

To establish the result we employ induction on h. If h = 1, then without loss of
generality M = {Ã, G/Ã}, and any refinement of M either refines Ã or G/Ã. Therefore
it is sufficient to take C1 and C2 to be the restrictions of C to Ã and to G/Ã, respectively,
and the required conclusion follows.

For the induction step assume that h > 2 and that the statement is true for all
composition chains of G with height of Ã smaller than h. Before proceeding further let
us note that if the statement holds for a certain composition chain, then it also holds for
all composition chains equivalent to it. Therefore, to accomplish the induction step, it is
sufficient to construct a composition chain U of G equivalent to C such that the height of
Ã in U is smaller than h.

Again consider the shortest chain M 4 C which contains Ã or Ã′ as a member. We
may clearly assume Ã to be a member of M. Obviously, M is an elementary refinement
of a chain H 4 C such that A is contained as an atom in a member H of H. As |H| > 2,
H is a proper subsnark of G and therefore itself arises from a subsnark J (possibly J = G)
by decomposition along a cycle-separating 4-edge-cut S. Let J 4 C be the longest chain
which contains J . Clearly, J 4 H 4 M. We now distinguish two cases according to
whether H is or is not an elementary refinement of J .

Case 1. If H is an elementary refinement of J , then H|J = {H, J/H} and M|J =
{Ã, H/Ã, J/H}. The latter chain thus arises from J by first using the cut S and then
using one of the cuts associated with A. By Proposition 8.2, we may assume the latter
cut to be ∂A (more precisely, ∂HA). As in Proposition 10.1, we can reverse the order
of these cuts and decompose J beginning with ∂A (more precisely, ∂JA) to obtain the
chain {Ã, J/Ã}, and continuing with the cut pA(S) in J/Ã to produce a chain {Ã, H1, J1}
equivalent to {Ã, H/Ã, J/H}, with H1

∼= H/Ã and J1
∼= J/H . We now implement

the modified factorisation of J into the factorisation of G in the following manner. We
construct H1 from H by replacing H|J with {Ã, J/Ã}, and similarly we form M1 from
M by replacing M|J with {Ã, H1, J1}. Clearly, both H1 and M1 are factorisation chains
of G, moreover, J 4 H1 4 M1 and M1 is equivalent to M. Since C is a refinement of M,
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the chain M1 has an equivalent refinement B (which obviously must be a composition
chain of G). However, Ã is a member of H1 and H1 4 B but H1 is shorter than M.
Therefore hB(Ã) < h, as required.

Case 2. Assume that H is not an elementary refinement of J . Then H must be
an elementary refinement of a chain L 4 C such that J 4 L 4 H and both L and H
contain H . Note that H arises from L by using a cycle-separating 4-edge-cut outside H
whereas M arises from H by using the cut ∂HA inside H . In particular, by restricting L, H
and M to J we obtain the chains {H}∪L|J/H 4 {H}∪H|J/H 4 {Ã, H/Ã}∪H|J/H where
L|J/H 4 H|J/H . Since H and M arise from L by using cuts in different factors of L, we
may interchange the order of these cuts. In other words, we can construct a factorisation
chain H2 from H by replacing H|J with {Ã, H/Ã} ∪ L|J/H and a factorisation chain M2

from H2 by replacing H2|J/H = L|J/H with H|J/H so that L 4 H2 4 M2 and M2 is
equivalent to M. In fact, the latter two chains only differ by the identity of vertices and
edges added in the last two steps. Now, M2 has a refinement D equivalent to C, but
hD(Ã) < h, because Ã belongs to H2, and H2 is shorter than M.

This completes the induction step, and the lemma is proved.

Now we are ready to prove Theorem C.

Theorem 10.3. Any irreducible snark G 6= Db can be decomposed into a collection
{G1, . . . , Gn} of cyclically 5-connected irreducible snarks in such a way that G can be
reconstructed from them by repeated dot products. Moreover, if {H1, . . . , Hm} is another
such decomposition of G, then n = m and there is a permutation π of {1, 2, . . . , n} such
that Hi

∼= Gπ(i) for all i = 1, 2, . . . , n.

In other words, any two composition chains of an irreducible snark are equivalent.

Proof. We proceed by induction on the order of G. The result clearly holds for cyclically
5-connected snarks, so we let G be an irreducible snark of cyclic connectivity 4, and
assume the theorem to be true for all irreducible snarks of order smaller than |G|. Let C
and D be any two composition chains of G. Clearly, G contains at least one atom, say A.
By Lemma 10.2, there exist composition chains C1 and D1 of Ã and C2 and D2 of G/Ã
such that C is equivalent to C1 ∪ C2 and D equivalent to D1 ∪ D2. Since both |Ã| < |G|
and |G/Ã| < |G|, the induction hypothesis implies that C1 is equivalent to D1, and C2 is
equivalent to D2. Thus the same is true for C and D.

It may be instructive to analyse the nature of the permutation π in Theorem 10.3 by
identifying elementary isomorphisms and permutations of composition factors that make
up an equivalence of two composition chains. A careful analysis of the proof reveals two
types of elementary isomorphisms. First, there are isomorphisms related to the identity
of the newly added vertices and edges; these are inherent to all multipole extensions.
A different type of an isomorphism was described in Lemma 8.2 and the subsequent
discussion. It comes from the choice between an atomic and a quasiatomic cut. As
regards the ordering of factors, this is determined by the two kinds of decisions. If we
use a quasiatomic cut instead of an atomic one, the factors swap. The order of factors
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may also change if we apply Lemma 10.1. However, in the factorisation process these
actions are interwoven, and eventually the particular effect of a single action can hardly
be recognised.

11 Relative factorisation

Factorisations considered in previous sections were “absolute” in the sense that any 4-
edge-cut available at the current stage of the factorisation process could be used in the
next factorisation step. In this section we study factorisations subjected to one very
natural restriction: a given subgraph of a snark has to “survive” all factorisation steps.

To be more formal, let K ⊆ G be a fixed subgraph of a snark G, and let H be a
subsnark of G. A cycle-separating 4-edge-cut S of H will be called K-consistent if either
V (K)∩V (H) = ∅, or else K ⊆ H and one of the S-factors of H inherits K as a subgraph.
A factorisation chain of G obtained by a successive use of K-consistent 4-edge-cuts will
be called K-relative. Its members are K-relative subsnarks of G.

We would like to emphasise that these definitions do not require K to be induced,
therefore two vertices of K not adjacent in G can become adjacent in a K-relative subsnark
of G.

As with the usual factorisation, the ultimate aim of a K-relative factorisation is a
K-relative factorisation chain with no clean K-relative refinements. Such a chain will be
called a K-relative composition chain of G. Note that K-relative composition factors need
not be cyclically 5-connected — they may contain cycle-separating 4-edge-cuts as long
as none of them is K-consistent. However, any K-relative composition chain contains at
most one factor of cyclic connectivity 4.

For |K| 6 1 the condition of K-consistency means no real restriction. In this case any
two K-relative composition chains of an irreducible snark are equivalent by Theorem 10.3.
For subgraphs of order 2 the situation dramatically changes. By specifying a subgraph
K of order two we may enable the existence of non-equivalent K-composition chains in a
given irreducible snark.

Example 11.1. Given cubic graphs G and H , let G + H be a cubic graph constructed
as follows. Select two adjacent vertices u and v in G and two adjacent vertices p and q in
H . Remove u, v and the edge uv from G to produce a 4-pole with semiedges eu

1 , e
u
2 , e

v
1, e

v
2,

where the superscripts indicate the original end-vertex of the respective semiedge. Simi-
larly, remove p, q and the edge pq from H to obtain a 4-pole with semiedges f p

1 , f p
2 , f q

1 , f q
2 .

Finally, take two new vertices x and y joined by a new edge xy and connect eu
1 to f p

1 , ev
1

to f q
1 , eu

2 and f p
2 to x, and ev

2 and f q
2 to y. As an example, consider the graph B1 + Ps

shown in Fig. 24. Note that H + G is isomorphic to G + H provided that the choice of
vertices and the ordering of semiedges remain the same.

We claim that G + H is a snark whenever G and H are. To see this, it is sufficient
to realise that G + H can be interpreted as a dot product of G and H for an appropriate
choice of edges in G and adjacent vertices in H . In fact, G + H can be viewed both as
G · H and as H · G.
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Consider the family of snarks Cn = B1 + In where B1 is the Blanuša snark (Fig. 17)
and In is the Isaacs flower snark (Fig. 8) for odd n > 5. The snark B1+Ps can be included
as the initial member of this family exactly in the same way as the Petersen graph can
be viewed the smallest of the Isaacs flower snarks (see Example 5.5). We claim that all
these snarks are irreducible. Indeed, B1 + Ps is irreducible by Theorems 4.6, 6.1(a), and
the facts stated in Example 5.5. Several further members (up to C13) have been verified
by a computer. For the rest of the family, one can employ an induction argument similar
in structure to the one used in Example 5.5.

The snark Cn has two atoms A1 and A2 related by the following equalities: ∂A1 =
S1 = ∂ ′A2 and ∂A2 = S2 = ∂ ′A1 (see Fig. 24 which for simplicity shows B1 + Ps).
Furthermore, A1 = A′

2 and A2 = A′

1, and both S1 and S2 are associated with the same
quasiatomic pair of vertices {x, y} created by the operation B1 + In.

Fig. 24. The snark B1 + Ps

Since B1 is a dot product of two copies of the Petersen graph, the usual unrestricted
composition chain of Cn consists of two copies of Ps and a copy of In.

Let us choose K ⊆ Cn to be any subgraph with vertex-set {x, y}; it does not matter
whether K does or does not include the edge xy. We now explore the K-relative compo-
sition chains of Cn. We may start factorisation with any of the cuts S1 and S2, as both
of them are K-consistent. Since S1 = ∂A1 and S2 = ∂ ′A1, Proposition 8.2 implies that
in either case we obtain the same direct factors, namely B1 and In. The vertices x and
y will be inherited into In if S1 has been used in the first step, otherwise they will be
inherited into B1. In the former case we carry on with K-consistent factorisation of B1,
thus obtaining the usual three composition factors of B1 + In. In the latter case, however,
there are no further clean K-relative refinements. The vertices {x, y} must always be
inherited into the same factor, but all cycle-separating 4-edge-cuts of B1 separate them.

Therefore, depending on the choice of particular factorisation steps we can really arrive
at essentially different K-relative composition chains of B1 + In.

Surprisingly, the case where |K| = 2 is the only exception. The rest of this section
is devoted to proving this claim, that is to say, to establishing Theorem D. The proof
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basically follows the same lines as that of Theorem C and relies on K-consistent versions
of the lemmas used for Theorem C. One important additional device, however, is needed
first. We show that for a K-relative factorisation of an irreducible snark edges of K
are actually irrelevant and we may therefore think of K as having no edges. In such a
situation we simply identify K with its vertex-set V (K).

Proposition 11.2. Let G be an irreducible snark with a distinguished subgraph K ⊆ G,
and let H be a subsnark of G. Then a cycle-separating 4-edge-cut of H is K-consistent if
and only if it is V (K)-consistent.

Proof. A K-consistent edge-cut is obviously V (K)-consistent. For the converse, let us
take a V (K)-consistent cycle-separating 4-edge-cut S of H and show that it is also K-
consistent. If V (K) ∩ V (H) = ∅, there is nothing to prove. We therefore assume that
K ⊆ H and that S is not K-consistent. Since S is V (K)-consistent, all the vertices of K
will be inherited into the same S-factor B of G. On the other hand, S is not K-consistent,
so there must be two vertices u and v in K which are adjacent in H but are not adjacent
in B. However, the only edges of H which do not continue to exist in any of its S-factors
are those of S. Thus uv ∈ S, and consequently u and v belong to different S-factors of G.
This contradiction establishes the lemma.

Corollary 11.3. A factorisation chain of an irreducible snark G is K-relative if and only
if one of its members contains V (K).

The previous proposition and its corollary allow us to speak of K-consistent edge-cuts
and K-relative factorisation chains while actually dealing only with vertices of K.

We now proceed to the K-relative versions of Proposition 8.2, Proposition 9.3, and
Lemma 10.2, respectively.

Proposition 11.4. Let G be an irreducible snark of cyclic connectivity 4 with a distin-
guished subgraph K of order at least 3. Let A be an atom of G such that both ∂A and
∂ ′A are K-consistent. Then for any K-relative factorisation chain F < {Ã′, G/Ã′} there
exists an equivalent K-relative factorisation chain G such that G < {A, G/Ã}.

Proof. From Proposition 8.2 and the discussion following it we know that Ã′ ∼= Ã and
G/Ã′ ∼= G/Ã. Moreover, the former isomorphism simply substitutes the quasiatomic
pair {v1, v2} in Ã′ with the new pair of vertices in Ã while the latter isomorphism does
the exact reverse between G/Ã′ and G/Ã. Since F < {Ã′, G/Ã′}, we can express F as
F|Ã′ ∪F|G/Ã′, and it is obvious that the restricted chains are K-relative. By applying the
above isomorphisms to members of F|Ã′ and F|G/Ã′ we obtain factorisation chains G1 and

G2 of Ã and G/Ã, respectively, and set G = G1 ∪ G2. Clearly, G is a factorisation chain of
G. It remains to show that G is K-relative.

To see this we first observe that K has no vertex in common with the quasiatomic pair
{v1, v2} associated with A. Suppose to the contrary that K contains, say, v1. As |K| > 3,
there is a third vertex u in K different from both v1 and v2. Clearly, either ∂A or ∂ ′A
separates u from v1. However, this is a contradiction since both these cuts are assumed
to be K-consistent.
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It follows that K ∩ {v1, v2} = ∅ implying that exactly one of the inclusions K ⊆ A
and K ⊆ G−A# holds. If K ⊆ A, then K ⊆ Ã and K ⊆ Ã′. Since K ∩ {v1, v2} = ∅, the
isomorphism Ã′ ∼= Ã maps a K-consistent cycle-separating 4-edge-cut of a subsnark of Ã′

to a K-consistent cycle-separating 4-edge-cut of the corresponding subsnark of Ã. Hence
G1 is K-relative. On the other hand, any cycle-separating 4-edge-cut in a subsnark H of
G/Ã is automatically K-consistent because V (K)∩V (H = ∅. Therefore G2 is K-relative,
too, and hence so is the whole G.

If K ⊆ G − A#, the roles of Ã′ and G/Ã′ are interchanged, and a similar reasoning
leads to the conclusion that G is K-consistent again. This completes the proof.

Proposition 11.5. Let G be an irreducible snark of cyclic connectivity 4 with a distin-
guished subgraph K, and let A be an atom of G with K-consistent atomic cut. Further
let S be a K-consistent cycle-separating 4-edge-cut in G not associated with A. Then one
of the S-factors of G has cyclic connectivity 4, contains A as an atom, and the inherited
cut ∂A remains K-consistent.

Proof. Let H be the S-factor which inherits A from G. In view of Lemma 9.3, H has
cyclic connectivity 4 and A is an atom of H . It remains to show that the cut ∂HA is
K-consistent. Assume to the contrary that it is not. Then K ⊆ H and there is a pair of
vertices of K separated by ∂HA. Exactly one of these vertices belongs to A. Since A has
the same vertices in H as it has in G, the cut ∂GA separates the same pair of vertices in
G as well. However, this contradicts the assumption that ∂GA is K-consistent.

Lemma 11.6. Let G be an irreducible snark of cyclic connectivity 4 with a distinguished
subgraph K of order at least 3, and let A be an atom of G with K-consistent atomic cut.
Then for any K-relative composition chain C of G there exists a K-relative composition
chain C1 of Ã and a K-relative composition chain C2 of G/Ã such that C is equivalent to
C1 ∪ C2.

Proof. Let C be an arbitrary K-relative composition chain of G, and let A be a fixed atom
of G. By Proposition 11.5, there exists a factorisation chain M 4 C such that either Ã
or Ã′ ∼= Ã is a member of M. Assuming that M is the shortest such chain, we define the
height of Ã in C, denoted by h = hC(Ã), to be |M| − 1, and proceed by induction on h.

If h = 1, then without loss of generality M = {Ã, G/Ã}, and we can take C1 = C|Ã
and C2 = C|G/Ã. Since C is K-relative, so are the restricted chains. Thus the statement
holds in this case.

For the induction step it is enough to prove that, whenever h > 2, there exists a
K-relative composition chain U equivalent to C such that hU(Ã) < h. So let h > 2, and
consider the shortest chain M 4 C containing Ã or Ã′. We may again assume M to
contain Ã. Clearly, M is an elementary refinement of a chain H 4 C a member H of
which contains A as an atom. Since |H| > 2, H arises from a subsnark J by decomposition
along a K-consistent cycle-separating edge-cut S. Let J 4 C be the longest K-relative
factorisation chain containing J ; hence, J 4 H 4 M. We now consider two cases
depending on whether H is or is not an elementary refinement of J .
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Case 1. If H is an elementary refinement of J , then H|J = {H, J/H} and M|J =
{Ã, H/Ã, J/H}. The latter chain, denoted by S, arises from J by first using the cut S
and then by using one of the cuts associated with A. As Proposition 11.4 shows, we may
assume the latter cut to be ∂A (more precisely, ∂HA). Due to Lemma 10.1, we can reverse
the order of the cuts and decompose J by first taking ∂A (more precisely, ∂KA) to obtain
{Ã, J/Ã}, and then by employing pA(S) in J/Ã to produce a chain A = {Ã, H1, J1}
equivalent to S, with H1

∼= H/Ã and J1
∼= J/H . Since S is a restriction of a K-relative

factorisation chain, it is itself K-relative. It follows that either V (K) ∩ V (J) = ∅, or one
of members of S contains all the vertices of K. Can we claim that A is K-relative, too?
If V (K) ∩ V (J) = ∅, the answer is trivially yes. So let us assume that K is contained in
a member of S. Regarded as a subgraph of G, the distinguished subgraph K contains no
new vertices resulting from factorisation. However, Lemma 10.1 guarantees that S and
A only differ in the ordering of their members and in the identity of newly added vertices
and edges. Thus there must be a member of A which also contains all the vertices of K.
By Corollary 11.3 this means that A is K-relative. From this point on we can continue
as in the proof of Lemma 10.2: in M we replace M|J with A to form a chain M1 which
can be refined to a composition chain B equivalent to C, but with hB(Ã) < h.

Case 2. This case can be handled by a straightforward modification of arguments
employed in the corresponding place of the proof of Lemma 10.2. We leave the details to
the reader.

We are ready to prove Theorem D.

Theorem 11.7. Let G be an irreducible snark with a distinguished subgraph K ⊆ G of
order different from 2. If (G1, . . . , Gn) and (H1, . . . , Hm) are any two K-relative compo-
sition chains of G, then n = m and there exists a permutation π of {1, 2, . . . , n} such that
Hi

∼= Gπ(i) for all i = 1, 2, . . . , n.

Proof. Let K be any subgraph of G such that |K| 6= 2. If |K| = 1, then the result follows
from Theorem C. Therefore we may assume that |K| > 3, and proceed by induction on
the order of G.

The conclusion obviously holds for cyclically 5-connected snarks and for snarks with no
K-consistent cycle-separating 4-edge-cuts. For the induction step let G be an irreducible
snark with at least one K-consistent cycle-separating 4-edge-cut, and assume the theorem
to be true for all irreducible snarks of smaller order. We claim that G contains at least one
atom with a K-consistent atomic cut. Indeed, if S is any K-consistent cycle-separating
4-edge-cut in G, then one of the resulting cyclic fragments contains all vertices of K. The
other fragment contains an atom, and this atom, say A, is separated from K by S. Hence
K ∩ A = ∅, and the cut ∂A is K-consistent in G.

Now let C and D be any two K-relative composition chains of G. By Lemma 11.6,
there exist K-relative composition chains C1 and D1 of Ã and C2 and D2 of G/Ã such
that C is equivalent to C1 ∪ C2 and D equivalent to D1 ∪ D2. Since both |Ã| < |G|
and |G/Ã| < |G|, the induction hypothesis implies that C1 is equivalent to D1 and C2 is
equivalent to D2. Thus C is equivalent to D.
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As we already know, Theorem D (11.7) fails when the preassigned subgraph K has
order 2. In spite of the fact that the proof of Theorem D is similar to that of Theorem C,
a significant difference can be found in Proposition 11.4. This lemma, in contrast to its
counterpart, Proposition 8.2, guarantees the equivalence of atomic and quasiatomic cuts
only when the subgraph K has order at least 3. Moreover, Example 11.1 shows that
Proposition 11.4 does not immediately extend to the 2-vertex case. The same example,
however, seems to suggest that to save Proposition 11.4 for factorisations with respect
to 2-vertex subgraphs it might be sufficient to avoid quasiatomic pairs of vertices. Un-
fortunately, this is false. The reason is that a pair of vertices which is not quasiatomic
with respect to any atom in the original snark G can become quasiatomic in a subsnark
of G as the factorisation proceeds. To recognise whether this happens or not only from
the structure of G may not be easy. However, if this does not happen for any choice
of refinement steps, then all relative composition chains with respect to such a 2-vertex
subgraph will indeed be equivalent. Whether this property can be replaced by a “simple”
condition which refers only to G rather than to the collection of all its factorisation chains
is not known.

12 Conclusions

We conclude this paper with several remarks concerning Theorem C (10.3). In particular,
we examine the question of whether the result is best possible.

Canonical factorisation. Theorem 10.3 asserts that all composition chains of an ir-
reducible snark are pairwise equivalent. Some of them, however, can be regarded as
canonical. To see this, let G be an irreducible snark of cyclic connectivity 4 and let
A1, A2, . . . , As, s > 2, be the complete list of atoms of G. We know that the factors
resulting from the decomposition of G along any of the atomic cuts ∂Ai are Ãi and G/Ãi,
and that Ãi arises from the 4-pole A#

i either by a junction with L while G/Ãi arises by a
junction with R, or vice versa. Since Ãi is uniquely determined by Ai, and the couples of
L, R and the bond ∂Ai correspond to each other, the way of attaching L or R to G −Ai

is also uniquely determined by Ai. As any two distinct atoms Ai and Aj are disjoint,
the same holds for the edge-ends of ∂Ai and ∂Aj incident with vertices of Ai and Aj ,
respectively. It follows that the necessary junctions will be the same irrespectively of the
order taken. In other words, we can disconnect all atomic cuts at once and perform the
junctions on both sides of the cuts unambiguously, or we can just do it in an arbitrary
order. As a result we obtain a factorisation chain F1 containing the snarks Ã1, Ã2, . . . , Ãs

in some order and possibly some additional snarks G1, G2, . . . , Gt, t > 0, which arise from
vertices of G not belonging to atoms and from some of the newly added vertices and edges.
At any rate, G determines F1 uniquely up to isomorphism and ordering of the factors. If
F1 is not a composition chain, we inductively repeat the process with each member of F1

until we reach a composition chain of G.
Note that the existence of this composition chain only relies on results of Sections 3

and 7 and thus avoids the use of Theorem C. On the other hand, the mere existence of a
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canonical composition chain is not sufficient for establishing Theorem C.

Role of atoms. Atoms play a crucial role in the proof of Theorem C. Are however
atoms the only reason why Theorem C holds? To put it differently, is the fact that all
composition chains of an irreducible snark are equivalent solely caused by the uniqueness
of atoms? Yet in other words, is the collection of all atoms in all subsnarks encountered
on the way from an irreducible snark to a particular composition chain the same for all
composition chains? The answer is, surprisingly, negative. To see this, consider the snark
B1,2 depicted in Fig. 25. Clearly, B1,2 is a dot product of three copies of the Petersen graph.
The first two of these copies are joined in the same way as in B1 whereas the second and
third copies are joined in the same way as in B2. Therefore B1,2 is a kind of crossbreed
between B1 and B2. It follows from Theorems 4.6 and 6.1 applied to Example 5.5 that
B1,2 is irreducible.

Fig. 25. The snark B1,2

There are two significant cycle-separating 4-edge-cuts in B1,2, namely S1 and S2 in
the notation of Fig. 25. Thus we may factorise B1,2 in two different ways depending on
the order in which S1 and S2 are used. Starting with S1 we obtain the chains {B1,2} 4

{Ps , B2} 4 {Ps ,Ps ,Ps}. On the other hand, when S2 is applied first, the chains will be
{B1,2} 4 {B1,Ps} 4 {Ps ,Ps ,Ps}. Out of all these snarks — that is B1,2, B1, B2, and
Ps — it is only B2 which contains an atom of order 10. Thus the two composition chains
induce different collections of atoms.

Elusive subsnarks. Each elementary refinement of a factorisation chain creates two
new vertices and five new edges not present in the original snark. It is actually possible
that certain subsnarks arising during the factorisation process exclusively comprise new
vertices and new edges. We call such subsnarks elusive since they are not immediately
“visible” in the composite snark.

As an example consider the irreducible snark Sz shown in Fig. 26 left, known as the
Szekeres snark (see [14, 15]). Its composition chain consists of six copies of the Petersen
graph. Five of them are evident from the figure, the sixth one is elusive and is responsible
for the overall structure of the graph.

At the first glance elusive subsnarks seem to be important for determining the internal
structure of the composite snark. Surprisingly, however, the property of being elusive is
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not invariant over the composition chains of an irreducible snark, and therefore elusive
subsnarks do not provide any structural information about an irreducible snark in general.

Fig. 26. The Szekeres snark Sz and the Watkins snark Wa

To see this, examine a related irreducible snark Wa (Fig. 26 right) discovered by
Watkins [14] (see also [15]). This snark is obtained by a dot product of six copies of
the Petersen graph, however, performed in a way different from the Szekeres snark; the
distinction is similar to that between the Blanuša snarks B1 and B2 — Fig. 17. Although
each composition chain of the Watkins snark consists of six copies of the Petersen graph,
there are ten cycle-separating 4-edge-cuts in the composite snark, therefore different de-
cisions can be taken in particular factorisation steps. For example, there are five atomic
and five quasiatomic cuts (see Fig. 26 where dashed lines indicate one atomic and one
quasiatomic cut). If the quasiatomic cuts are used for factorisation in each of the five
cases, the sixth (central) copy of the Petersen graph will be elusive. Nonetheless, if the
atomic cuts are used for factorisation in each of the five cases, the sixth (central) copy
of the Petersen graph will completely consist of the original vertices while the five copies
of the Petersen graph whose cores are evident in the figure will gain two new vertices
each. The resulting composition chain thus contains no elusive factor. It follows that the
composition subsnark elusive in one composition chain can completely lose this property
in another composition chain.

Composition chains of critical snarks. Another important problem related to The-
orem C is the question whether its result is best possible. To give an answer we look at
snarks that are just one step below irreducible snarks in our hierarchy of k-irreducible
snarks, that is, at (strictly) critical snarks.

To start with, it is useful to realise that composition factors of a critical snark need
not be cyclically 5-connected. For instance, the strictly critical snark Sc from Fig. 16 can
be factorised into a collection of three copies of the Petersen graph and a copy of I3 whose
cyclic connectivity is only 3. Thus for composition factors of k-irreducible snarks with
k < 7 the cyclic connectivity, girth, and the irreducibility class may decrease.
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In spite of the fact that Sc has strange composition factors, it still has only one equiv-
alence class of composition chains. To give an example of a critical snark with two non-
equivalent composition chains let us consider the snark T44 of order 44 depicted in Fig. 27.
Its only cycle-separating 4-edge-cut S connects two isomorphic uncolourable 4-poles each
of which can be obtained from the Goldberg-Loupekine snark GL1 by disconnecting the
edges denoted x and y in Fig. 18. Note that T44 is not critical, because each edge not
belonging to S is suppressible. In contrast, the edges of S are non-suppressible. The 62
edges complementing S can be partitioned into 31 pairwise disjoint pairs, each consisting
of an edge of GL1 − {x, y} and its counterpart in the other copy of GL1. Since all these
pairs are essential, T44 can be converted into a strictly critical snark by the technique
described in Section 6. After performing a repeated dot product of T44 on the left with
31 copies of Ps on the right, each time using one of the essential pairs of edges in the left
factor, we obtain a strictly critical snark W on 44 + 31 × 8 = 292 vertices.

Fig. 27. The snark T44

Let us inspect composition chains of W . Since W contains T44 as a subsnark, it admits
a composition chain which includes a composition chain of T44. Given the structure of W ,
such a composition chain will consist of 31 copies of Ps and a composition chain of T44.
For the latter composition chain we have three possibilities corresponding to three non-
equivalent ways of expressing T44 as a dot product of two S-factors. Two of them produce
composition chains consisting of cyclically 5-connected factors, namely {GL1,GL′

1} and
{GL2,GL′

2}. These two chains are obviously non-equivalent, and so are the corresponding
composition chains of W . This shows that Theorem C does not extend to reducible snarks.
The third possibility for T44 gives rise to an S-factor with cyclic connectivity 4 which can
be further decomposed. The resulting composition chain of T44 will have three, not just
two, factors and, of course, will not be equivalent to any of the previous two chains. It
follows that strictly critical snarks can have composition chains of different lengths. With
this point of view the result of Theorem C appears even stronger.

Decompositions along 5-cuts. The dot product has a less well-known 5-connected
analogue first mentioned by Cameron et al. in [2]. Given two cubic graphs G and H let
us form 5-poles G(e0, e1, . . . , e4) and H(f0, f1, . . . , f4) by removing a 5-cycle from G and
a 5-cycle from H , and by deriving the ordering of the resulting semiedges from the cyclic
ordering of the corresponding cycles. Define G#H to be the cubic graph obtained by
joining each ei to f2i, the indices being reduced modulo 5. It can be shown that if both
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G and H are snarks, so is G#H . Moreover, G#Ps ∼= Ps#G ∼= G which means that the
Petersen graph is both the right and the left identity of this operation.

With this in mind, it is natural to attempt building a decomposition theory based
on this and perhaps some similar operations. An additional reason for such a project
would be the fact that 5-decompositions have already been investigated in detail and the
following 5-Decomposition Theorem is known [2]:

Let G be a snark with a 5-edge-cut whose disconnection leaves 5-poles M and N . Then
either one of M and N is not colourable, or both M and N can be extended to snarks G1

and G2 by adding at most five vertices to each.
In addition to this result it was shown in [9] that critical snarks admitting no proper

5-decomposition in the above sense are exactly those which are cyclically 5-connected and
have the property that every cycle-separating 5-edge-cut separates a 5-cycle from the rest
of the graph.

An analysis of the proofs reveals that the snark completion of each Gi either adds one,
three or five vertices (a claw plus an isolated edge, a 2-path with dangling edges, and a 5-
cycle with dangling edges, respectively). Unfortunately, only the last of these possibilities
corresponds to a well-defined 5-composition operation as the reverse of a 5-decomposition,
namely to the #-product described above. Examples suggest that the remaining two types
of completion cannot be set into a framework of unrestricted operations (see [9, p. 273])
although such operations have been reported in [3]. This drawback would certainly make
a possible theory of 5-decomposition of snarks more complicated, although undoubtedly
interesting.
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