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Abstract

In this paper, we present a formula for computing the Tutte polynomial of the
signed graph formed from a labeled graph by edge replacements in terms of the chain
polynomial of the labeled graph. Then we define a family of ‘ring of tangles’ links
and consider zeros of their Jones polynomials. By applying the formula obtained,
Beraha-Kahane-Weiss’s theorem and Sokal’s lemma, we prove that zeros of Jones
polynomials of (pretzel) links are dense in the whole complex plane.

1 Introduction

Let L be an oriented link, and D be a diagram of L. Let VL(t) be the Jones polynomial
[1] of L. The writhe w(D) of D is defined to be the sum of signs of the crossings of L. Let
[D] be the one-variable Kauffman bracket polynomial [2] of D in A (with the orientation
of D coming from L ignored). Let

fL(A) = (−A3)−w(D)[D].

Then [2]

VL(t) = fL(t−1/4).

∗Corresponding author.
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It is well known that there is a one-to-one correspondence between link diagrams and
signed plane graphs via the medial construction [3]. Based on this correspondence, in [3]
Kauffman converted the Kauffman bracket polynomial to the Tutte polynomial of signed
graphs, which are not necessarily planar. Let G be a signed graph. We shall denote by
Q[G] = Q[G](A, B, d) ∈ Z[A, B, d] the Tutte polynomial of G. To analyze zeros of Jones
polynomials, it suffices for us to consider the Tutte polynomials of signed graphs.

There have been some works on zeros of Jones polynomials [4]-[9]. For example, the
distribution of zeros of Jones polynomials for prime knots with small crossing number has
been depicted in [4] and [5]. See Fig. 1 for an example. Looking at these figures, one
may be tempted to conclude that zeros of Jones polynomials do not exist in some regions,
for example, a small circle region around z = 1 and a large area in the left half complex
plane. But in this paper by considering zeros of pretzel links we shall show that, on the
contrary, zeros of Jones polynomial of knots are dense in the whole complex plane. We
point out that Sokal proved that chromatic roots are dense in the whole complex plane
[10], and Zhang and Chen proved eigenvalues of digraphs are dense in the whole complex
plane [11].

Fig. 1: Zeros of 1288 prime alternating knots with crossing number 12 [4].

This paper contains two parts. The first part is on a formula of computing the Tutte
polynomial of signed graphs formed by edge replacements via the chain polynomial [12].
This result generalizes our previous results in [13]. It is worth noting that there are two
closely related results in [14] and [15]. In the second part, we consider the Tutte polynomial
of ‘ring of tangles’ links which include the well known pretzel links. By applying Beraha-
Kahane-Weiss’s Theorem and Sokal’s lemma, we prove that zeros of the Jones polynomial
of pretzel knots are dense in the complex plane.
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2 Tutte polynomials of signed graphs formed by edge replace-

ments

The chain polynomial was introduced by Read and Whitehead in [12] for studying
the chromatic polynomials of homeomorphic graphs. It is defined on labeled graphs, i.e.
graphs whose edges have been labeled with elements of a commutative ring with unity.
Although in a labeled graph different edges can receive the same label, we usually denote
the edges by the labels associated with them. The chain polynomial Ch[G] of a labeled
graph G is defined as

Ch[G] =
∑

Y ⊂E

FG−Y (1 − w)
∏

a∈Y

a (1)

where the sum is over all subsets of the edge set E of G, FG−Y (1 − w) denotes the flow
polynomial in q = 1−w of G− Y , the graph obtained from G by deleting the edges in Y ,
and

∏
a∈Y a denotes the product of labels in Y .

The following lemma was given implicitly in [12] and explicitly in [15]. It can be
viewed as an alternative definition of the chain polynomial.

Lemma 2.1 The chain polynomial satisfies the following recursive rules:

(1) If G is edgeless, then

Ch[G] = 1. (2)

(2) Otherwise, suppose a is an edge of G, we have:

(a) If a is a loop, then

Ch[G] = (a − w)Ch[G − a]. (3)

(b) If a is not a loop, then

Ch[G] = (a − 1)Ch[G − a] + Ch[G/a]. (4)

Example 2.2 (1) Let Θp be the labeled graph consisting of two vertices connected by p
parallel edges a1, a2, · · · , ap. Then [7]

Ch[Θp] =
1

1 − w

[
p∏

i=1

(ai − w) − w

p∏

i=1

(ai − 1)

]
. (5)

(2) Let Bp be a labeled “bouquet of p circles”, i.e. a labeled graph with one vertex and p
loops a1, a2, · · · , ap. By Lemma 2.1, we obtain

Ch[Bp] =

p∏

i=1

(ai − w). (6)
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Definition 2.3 Let G be a connected labeled graph. We define Ĝ to be the signed graph
obtained from G by replacing each edge a = uw of G by a connected signed graph Ha with

two attached vertices u and w that has only the vertices u and w in common with Ĝ − a.

Now we shall establish a relation between the Tutte polynomial of Ĝ and the chain
polynomial of G. The following two splitting lemmas on Tutte polynomials of signed
graphs will be used in proving Theorem 2.6.

Lemma 2.4 [3]

(1) Let G1 ∪ G2 be the disjoint union of two signed graphs G1 and G2. Then

Q[G1 ∪ G2] = dQ[G1]Q[G2]. (7)

(2) Let G1 · G2 be the union of two signed graphs G1 and G2 having only one common
vertex. Then

Q[G1 · G2] = Q[G1]Q[G2]. (8)

Lemma 2.5 [16] Let G be the union of two signed graphs G1 and G2 having only two
common vertices u1 and u2. Let H1 and H2 be signed graphs obtained from G1 and G2,
respectively, by identifying u1 and u2. Then

Q[G] =
1

d2 − 1
{dQ[H1]Q[H2] + dQ[G1]Q[G2] − Q[H1]Q[G2] − Q[G1]Q[H2]}. (9)

Let H ′

a be the graph obtained from Ha by identifying u and w, the two attached
vertices of Ha. Let

αa = α[Ha] =
1

d2 − 1
(dQ[Ha] − Q[H ′

a]), (10)

βa = β[Ha] =
1

d2 − 1
(dQ[H ′

a] − Q[Ha]), (11)

γa = γ[Ha] = 1 + d
α[Ha]

β[Ha]
(12)

Theorem 2.6 Let G be a connected labeled graph, and Ĝ be the signed graph obtained
from G by replacing the edge a by a connected signed graph Ha for every edge a in G. If
we replace w by 1 − d2, and replace a by γa for every label a in Ch(G), then we have

Q[Ĝ] =

∏
a∈E(G) βa

dq(G)−p(G)+1
Ch[G], (13)

where p(G) and q(G) are the numbers of vertices and edges of G, respectively.
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Proof. By solving Eqs. (10) and (11), we obtain

Q[H ′

a] = αa + dβa. (14)

When the edge a is a loop of G, by Lemma 2.4 (2) and Eq. (14), we have

Q[Ĝ] = Q[H ′

a]Q[Ĝ − a]

= (αa + dβa)Q[Ĝ − a]. (15)

When the edge a is not a loop, by Lemma 2.5, we have

Q[Ĝ] =
1

d2 − 1
{dQ[Ĝ/a]Q[H ′

a] + dQ[Ĝ − a]Q[Ha] − Q[Ĝ/a]Q[Ha] − Q[H ′

a]Q[Ĝ − a]}

=
1

d2 − 1
{Q[Ĝ − a](dQ[Ha] − Q[H ′

a]) + Q[Ĝ/a](dQ[H ′

a] − Q[Ha])}

= αaQ[Ĝ − a] + βaQ[Ĝ/a]. (16)

Now let

T [G] =
dq(G)−p(G)+1

∏
a∈E(G) βa

Q[Ĝ].

If G is an edgeless graph with n vertices, then

T [En] = d−n+1dn−1 = 1. (17)

Otherwise, suppose that a is an edge of G.

(1) If a is a loop of G, by Eq. (15), we have

T [G] =
dq(G)−p(G)+1

∏
b∈E(G) βb

(αa + dβa)Q[Ĝ − a]

=
dq(G−a)+1−p(G−a)+1

βa

∏
b∈E(G−a) βb

(αa + dβa)Q[Ĝ − a]

= d(d +
αa

βa
)T [G − a]. (18)

(2) If a is not a loop, by Eq. (16), we have

T [G] =
dq(G)−p(G)+1

∏
b∈E(G) βb

Q[Ĝ]

=
dq(G)−p(G)+1

∏
b∈E(G) βb

(αaQ[Ĝ − a] + βaQ[Ĝ/a])

=
dq(G−a)+1−p(G−a)+1

βa

∏
b∈E(G−a) βb

αaQ[Ĝ − a] +
dq(G/a)+1−p(G/a)−1+1

βa

∏
b∈E(G−a) βb

βaQ[Ĝ/a]

= d
αa

βa

T [G − a] + T [G/a]. (19)
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Comparing the coefficients of Eqs. (17)-(19) with those of (2)-(4) in Lemma 2.1, we know
that T [G] = Ch[G] |w=1−d2,a=γa

. Theorem 2.6 follows directly. �

Hereafter, we always suppose that B = A−1, d = −A2−A−2. Let X = A+Bd = −A−3.
Let Ha = P+

n , a positive path with length n. Then Q[P +
n ] = Xn. It is not difficult to

obtain

Q[C+
n ] = (Xn − An)/d + dAn.

Thus,

α[P+
n ] = (Xn − An)/d,

β[P+
n ] = An,

γ[P+
n ] = (X/A)n = (−A−4)n.

Hence, we have

Corollary 2.7 [13] Let G be a connected labeled graph. Let Gc be the signed graph ob-
tained from G by replacing each edge a by a positive path with length na. In Ch[G], if we
replace w by 1 − d2, and replace a by (−A−4)na for every label a, then we have

Q[Gc] =
A

P

a∈E(G) na

dq(G)−p(G)+1
Ch[G], (20)

where p(G) and q(G) are the numbers of vertices and edges of G, respectively.

Example 2.8 (1) The generalized theta graph Θs1,···,sp consists of end-vertices x, y con-
nected by p internally disjoint positive paths of lengths s1, · · · , sp. By Eq. (5) and
Corollary 2.7, we obtain

Q[Θs1,···,sp] =
A

P

si

dp+1

[
p∏

i=1

((−A−4)si + d2 − 1) + (d2 − 1)

p∏

i=1

((−A−4)si − 1)

]
. (21)

Note that the formula is essentially the same as the formula for Kaufman bracket
polynomial of pretzel links in [17].

(2) Let Bs1,···,sp be the graph consisting of one vertex incident with p internally disjoint
positive cycles of lengths s1, · · · , sp. By Eq. (6) and Corollary 2.7, we obtain

Q[Bs1,···,sp] =
A

P

si

dp

p∏

i=1

((−A−4)si + d2 − 1). (22)

By Example 2.8, we obtain

α[Θs1,···,sp] =
A

P

si

dp

p∏

i=1

((−A−4)si − 1), (23)

β[Θs1,···,sp] =
A

P

si

dp+1

[
p∏

i=1

((−A−4)si + d2 − 1) −

p∏

i=1

((−A−4)si − 1)

]
. (24)
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3 Zeros of Jones polynomials are dense in the whole

complex plane

Suppose that {fn(x)|n = 1, 2, · · ·} is a family of polynomials. A complex number z is
said to be the limit of zeros of {fn(x)} if either fn(z) = 0 for all sufficiently large n or z
is a limit point of the set ℜ({fn(x)}), where ℜ({fn(x)}) is the union of the zeros of the
fn(x)′s. In [18], Beraha, Kahane and Weiss proved the following theorem.

Theorem 3.1 If {fn(x)} is a family of polynomials such that

fn(x) = α1(x)λ1(x)n + α2(x)λ2(x)n + · · · + αl(x)λl(x)n, (25)

where the αi(x) and λi(x) are fixed non-zero polynomials, such that no pair i 6= j has
λi(x) ≡ ωλj(x) for some complex number ω of unit modulus, then z is a limit of zeros of
{fn(x)} if and only if

(1) two or more of the λi(z) are of equal modulus, and strictly greater in modulus than
the others; or

(2) for some j, the modulus of λj(z) is strictly greater than those of the others, and
αj(z) = 0.

Now we define a family of ‘ring of tangles’ links. Let Hi be a signed plane graph
and ui, vi be two distinct vertices of Hi lying in the boundary of the unbounded face for
i = 1, 2, · · · , n. Let C(H1, H2, · · · , Hn) be the signed plane graph obtained by identifying
ui with vi+1 for each i = 1, 2, · · · , n − 1, and identifying un with v1. We denote by
L(T1, T2, · · · , Tn) the link diagram corresponding to C(H1, H2, · · · , Hn) with the tangle Ti

corresponding to Hi for i = 1, 2, · · · , n, and call it a ‘ring of tangles’ link. In particular, if
H1 = H2 = · · · = Hn = H , we denote C(H1, H2, · · · , Hn) by Cn(H) for simplicity.

Lemma 3.2 Let Ln(T ) be the link diagram corresponding to Cn(H) with the tangle T
corresponding to the signed plane graph H. Let Q(H) = Q[H ]|A=t−1/4 and β(H) =
β[H ]|A=t−1/4. Then points satisfying the following equation

|β(H)| = |Q(H)| (26)

are limits of zeros of Jones polynomials of {Ln(T )|n = 1, 2, · · ·}.

Proof.

(1) Let Cn be the n-cycle, and its edges are all labeled with a. By using the definition of
the chain polynomial, it is not difficult for us to obtain Ch[Cn] = an −w. Replacing
a suitably by the signed plane graph H , we obtain Cn(H). By Theorem 2.6, we
have

Q[Cn(H)] =
β[H ]n

d
(γ[Hi]

n − (1 − d2))

=
d2 − 1

d
β[H ]n +

1

d
(β[H ] + dα[H ])n

=
d2 − 1

d
β[H ]n +

1

d
Q[H ]n.
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(2) By replacing A by t−1/4, we obtain

VLn(T )(t)
.
=

1

t + 1
{(t2 + t + 1)β(H)n + tQ(H)n}, (27)

where
.
= denotes equality up to a factor ±tk/2. Then by applying Beraha-Kahane-

Weiss’s Theorem, we obtain the lemma.

�

The following Sokal’s lemma [10] will play an important role in proving our main
result.

Lemma 3.3 Let F1, F2, G be analytic functions on a disc |z| < R satisfying |G(0)| 6 1
and G not constant. Then, for each ǫ > 0, there exists s0 < ∞ such that for all integers
s > s0 the equation

|1 + F1(z)G(z)s| = |1 + F2(z)G(z)s| (28)

has a solution in the disc |z| < ǫ.

Lemma 3.4 Let t0 be any complex number. For any real ǫ > 0, there is a signed plane
graph H such that Eq. (26) has a zero t with |t − t0| < ǫ.

Proof. Let Is be the graph with two vertices x and y, and s parallel edges joining x and y.
Denote by I+

s and I−

s the two signed graphs obtained from Is by assigning its each edge a
positive sign and a negative sign, respectively. By setting p = s and s1 = s2 = · · · = sp = 1
in Eqs. (23) and (24), we obtain

α[I+
s ] = A−s,

β[I+
s ] =

(−A3)s − A−s

−A2 − A−2
.

Thus we have

Q[I+
s ] = β[I+

s ] + dα[I+
s ] =

1

−A2 − A−2

[
(A4 + A−4 + 1)A−s + (−A3)s

]
.

Then the equation

|β[I+
s ]| = |Q[I+

s ]|

is equivalent to

|1 + (−1)s−1A−4s| = |1 + (−1)s(A4 + A−4 + 1)A−4s|.

Letting A = t−1/4, this equation is transformed into

|1 − (−t)s| = |1 + (t + t−1 + 1)(−t)s|. (29)
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Let t0 be an any fixed complex number with |t0| 6 1 and t0 6= 0. Setting z = t − t0,
Eq. (29) becomes

|1 − (−z − t0)
s| = |1 + (z + t0 + (z + t0)

−1 + 1)(−z − t0)
s|. (30)

By Sokal’s Lemma (F1(z) = −1, F2(z) = (z + t0 + (z + t0)
−1 + 1), G(z) = (−z − t0)),

then for any ǫ > 0, there exists s0 such that for any s > s0, Eq. (30) has a zero z satisfying
|z| < ǫ, i.e. Eq. (29) has a zero t = z + t0 satisfying |t − t0| < ǫ.

For the special case that t0 = 0, by the above result, there exists s0 such that for any
s > s0, Eq. (29) has a zero t satisfying |t − ǫ/2| < ǫ/2, implying that |t| < ǫ.

Now consider I−

s , in this case, Eq. (29) becomes

|1 − (−t−1)s| = |1 + (t + t−1 + 1)(−t−1)s|. (31)

If |t0| > 1, by Sokal’s Lemma, for any ǫ > 0 ,there exists s0 such that for any s > s0,
Eq. (31) has a zero t satisfying |t − t0| < ǫ.�

Theorem 3.5 Zeros of Jones polynomials are dense in the whole complex plane.

Proof. Let t0 be any complex number and ǫ any positive real number. By Lemma 3.4,
there exists a signed plane graph H such that Eq. (26) has a zero t′ with |t′ − t0| < ǫ/2.
Then, by Lemma 3.2, there exists an integer n > 0 such that VLn(T )(t) has a zero t with
|t − t′| < ǫ/2. Together, these mean that there exists a zero t of some Jones polynomial
with |t − t0| < ǫ. �

Finally, we give two remarks on Theorem 3.5.

1. Note that Cn(I+
s ) and Cn(I−

s ) correspond to the pretzel link P (

n︷ ︸︸ ︷
s, s, . . . , s) with

s > 0 and s < 0. We actually prove that the zeros of Jones polynomials of pretzel
links are dense in the whole complex plane.

2. Using Beraha-Kahane-Weiss’s Theorem we can also prove that points of Eq. (26)
are also limits of zeros of Jones polynomials of the link subfamily {L2k+1(T )|k =

1, 2, · · ·}. Note that when n and s are both odd numbers, P (

n︷ ︸︸ ︷
s, s, . . . , s) is a knot.

Hence, we can further prove that zeros of Jones polynomial of such pretzel knots
are dense in the whole complex plane.
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