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Abstract

A result of Mason, as refined by Ingleton, characterizessirarsal matroids as the
matroids that satisfy a set of inequalities that relate &mis of intersections and unions of
nonempty sets of cyclic flats. We prove counterparts, fodamental transversal matroids,
of this and other characterizations of transversal magtroith particular, we show that
fundamental transversal matroids are precisely the nu#iribiat yield equality in Mason’s
inequalities and we deduce a characterization of fundashénainsversal matroids due to
Brylawski from this simpler characterization.

1 Introduction

Transversal matroids can be thought of in several ways. Byitlen, a matroid is transversal if

its independent sets are the partial transversals of sonsysem. A result of Brylawski gives

a geometric perspective: a matroid is transversal if ang bl has an affine representation on
a simplex in which each union of circuits spans a face of thpkax.

*Partially supported by Projects MTM2008-03020 and Gen. B&R 2009SGR1040.
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Unions of circuits in a matroid are calleyclic sets Thus, a seX in a matroid) is cyclic
if and only if the restrictionV/| X has no coloops. Leg (M) be the set of all cyclic flats of
M. Under inclusion,Z(M) is a lattice: forX,Y € Z(M), their join in Z(M) is their join,
cl(X UY), inthe lattice of flats; their meet if (1) is the union of the circuits ik NY". The
following characterization of transversal matroids wastffiormulated by Mason [13] using
sets of cyclic sets; the observation that his result easilylies its streamlined counterpart for
sets of cyclic flats was made by Ingleton [9]. Theorem 1.1 hasgn useful in several recent
papers [1, 2, 3]. For a famil§ of sets we shortenyc»X toNF andUxcrX to UF.

Theorem 1.1 A matroid is transversal if and only if for all nonempty s&tof cyclic flats,

r(NF) < > (=17 rur). (1.1)

FICF

It is natural to ask: which matroids satisfy the correspagdet of equalities? We show
that M satisfies these equalities if and only if it is a fundamemtaigversal matroid, that i8/
is transversal and it has an affine representation on a sifgdeabove) in which each vertex of
the simplex has at least one matroid element placed at itnihe part of this paper, Section 4,
provides four characterizations of these matroids.

We recall the relevant preliminary material in Section 2.edrems 4.1 and 4.4 give new
characterizations of fundamental transversal matrordsn fthe former, two other new charac-
terizations (Theorem 4.5 and Corollary 4.6) follow easilfe proofs of Theorems 4.1 and 4.4
use a number of ideas from a unified approach to Theorem 1.& aadond characterization of
transversal matroids (the dual of another result of Masem 14]); we present this material in
Section 3 and deduce another of Mason’s results from it. Welode the paper with a section
of observations and applications; in particular, we shoat Brylawski’s characterization of
fundamental transversal matroids [5, Proposition 4.2pfe$ easily from the dual of Theorem
4.1.

As is common, we assume that matroids have finite ground sit&/ever, no proofs use
finiteness until we apply duality in Theorem 5.2, so, as wel sp# in Section 5, most of our
results apply to matroids of finite rank on infinite sets.

We assume basic knowledge of matroid theory; see [15, 16}. nOtation follows [15].
A good reference for transversal matroids is [4]. It is easygée that proving the results in
this paper in the case of matroids that have no loops immalgigitelds the same results for
matroids in general. Since, in addition, the geometric pertve on transversal matroids that
conveys most insight into key parts of our work fits best withtroids that have no loops, we
focus on loopless matroids in this paper.

We us€fr| to denote the sdfl, 2,...,7}.

2 Background

Recall that aset systemd on a setS is a multiset of subsets &f. It is convenient to write
A as (A, Ay, ..., A,) with the understanding thatd,q), Ay, . .., As¢)), Whereo is any
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permutation offr|, is the same set system. ghartial transversalof A is a subsef of S for
which there is an injection : I — [r] with z € Ay, for all z € I. Transversalof A are
partial transversals of size Edmonds and Fulkerson [8] showed that the partial trassi®of
a set systerd on S are the independent sets of a matroidgnwe say that4 is apresentation
of thistransversal matroid\/[.A].

Of the following well-known results, all of which enter intur work, Corollary 2.3 plays
the most prominent role. The proofs of some of these resalide found in [4]; the proofs of
the others are easy exercises.

Lemma 2.1 Any transversal matroid// has a presentation with()) sets. IfM has no
coloops, then each presentation/dfhas exactly-(1/) nonempty sets.

Lemma 2.2 If M is atransversal matroid, then soig| X foreachX C E(M). If (Ay,..., A,)
is a presentationV/, then(A; N X, ..., A, N X) is a presentation o/ | X .

Corollary 2.3 If (A1, As, ..., A,) is a presentation of/, then for each¥’ € Z(M), there are
exactlyr(F) integersi with F' N A; # 0.

Lemma 2.4 For eachA; € A, its complementl{ = E(M) — A; is aflat of M [A].

Lemma25 If (A4, Ay, ..., A,) is a presentation of\/ and if = is a coloop ofM\ A4;, then
(A1, As, ..., A, AUz, Ay, ..., A,) is also a presentation aoff.

Corollary 2.6 For any presentationfA;, A,, ..., A,) of a transversal matroid//, there is a
presentation( A}, A,, ..., A") of M with A; C A} and Alf € Z(M) fori € [r].

A presentationA;, A,, ..., A,) of M is maximalif, whenever(A}, A;,..., Al) is a pre-
sentation ofd/ with A; C A} for all i € [r], thenA; = A! for all i € [r]. Itis well known that
each transversal matroid of rankhas a uniqgue maximal presentation withets.

A transversal matroid ifundamentaif it has a presentatioid;, A,, ..., A,) for which
no differenceA; — Uje[r]_i A;, fori € [r], is empty. Clearly any transversal matroid can
be extended to a fundamental transversal matroid: wherageget in a given presentation is
contained in the union of the others, adjoin a new elemeritdabget and to the ground set, but
to no other set in the presentation.

In the next paragraph we describe how, given a presentatiaransversal matroid/, we
get an affine representation &f on a simplex. What we describe, which is based on [5], is
a special case of affine representations of matroids in gé(sre [15, Sections 1.5 and 6.2));
however, these particular affine representations of transsy matroids can be seen as very direct
geometric encodings of presentations. To keep the focusisaspect, we describe only where
the elements of\/ are placed on the simplex relative to the vertices and to edoér (any
assignment of coordinates that meets these conditiongidlan affine representation of in
the sense of [15, Section 1.5]).

Recall that a simpleR in R"~! is the convex hull of vectorsp,, vs, . . ., v,, that are affinely
independent. The faces Afare the convex hulls of the subsetsof, vs, ..., v,.} and so can be
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Figure 1. Three representations of the uniform matrbig on the simplex with vertices
U1, U2, V3.

identified with these subsets. Given a presentatlos (A;, A, ..., A,) of M and a simplex
A with verticesvy, vy, ..., v, forx € E(M), let A 4(z) be the face{v,, : = € A}; also, for
X C E(M), letA4(X) be the face),c xA 4(x). (We will omit the subscripi4 when only one
presentation is under discussion.) Note thafiE Z(M), then|A(F)| = r(F') by Corollary
2.3,s0F = {z : A(z) C A(F)}. GivenA, to get the corresponding affine representation of
M, first extend)M to a fundamental transversal matraid by extendingA to a presentation
A’ of M’, as above. We get an affine representation/6by, for eache € E(M’), placingx as
freely as possible (relative to all other elements\fifand to the vertices) in the fack 4 (x) of
A. Thus, a cyclic flatF’ of M’ of ranki is the set of elements in some faceffvith i vertices.
The affine representation @ff is obtained by restricting that of/’ to £(M). Note that, by
construction, such an affine representatiodbtan be extended to an affine representation of
a fundamental transversal matroid by adding elements aidttiees ofA.

Such representations of the uniform matrdigls for the presentations (a)6], [6], [6]),
(b) ({1,2,5,6},{1,2,3,4},{3,4,5,6}),and (c)({1,4,5,6},{2,4,5,6},{3,4,5,6}) are shown
in Figure 1. (Only elements with A(x) # {v1,vs,v3} are labelled in the figure.)

Note that the presentation can be recovered from the plateofi¢he elements. The fol-
lowing result of Brylawski [5] extends these ideas.

Theorem 2.7 A matroid M is transversal if and only if it has an affine representationa
simplexA in which, for eachl” € Z(M), the flatF is the set of elements in some faceof
with r(F") vertices.

With this result, we can give a second perspective on fundéh&ansversal matroids. A
basisB of a matroid/ is afundamental basig each /' € Z(M) is spanned by3 N F. In
any affine representation of a matraid with a fundamental basiB, if the elements of3 are
placed at the vertices of a simpléx then a cyclic flat of rank is the set of elements in some
1-vertex face ofA. It follows from Theorem 2.7 that a matroid is a fundamentahsversal
matroid if and only if it has a fundamental basis.

We use the following terminology from ordered sets, apptiethe latticeZ (M) of cyclic
flats. Anantichainin Z(M) is a setF C Z(M) such that no two sets iff are related by
inclusion. Afilter in Z(M) is a setF C Z(M) such that ifA € F andB € Z(M), and if
A C B,thenB € F. Anidealin Z(M)isasetF C Z(M)suchthatifB € FandA € Z(M),
and if A C B, thenA € F.
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3 Characterizationsof Transversal Matroids

In the main part of this section, we connect Theorem 1.1 witbtlaer characterization of
transversal matroids by giving a cycle of implications tpabves both. While parts of the
argument have entered into proofs of related results, tikdbetween these results seems not to
have been exploited before. In Section 4 we use substaatial f the material developed here.
We end this section by showing how another characterizatfdransversal matroids follows
easily from Theorem 1.1.

To motivate the second characterization (part (3) of Thed3e2), we describe how to prove
that a matroid\/ that satisfies the condition in Theorem 1.1 is transversalwant to construct
a presentation oi/. By Corollary 2.6,M should have a presentatiohin which the comple-
ment of each sed,; is in Z(M). Thus, we must determine, for eaghe Z (M), the multiplicity
of F¢in A. We will define a functiors on all subsets of/ (M) so that for eacli’ € Z(M), the
multiplicity of ' in A will be g(F'). In particular, the sum o (F') over all FF € Z(M), i.e.,
|A|, should be-(M). By Corollary 2.3, for eactt” € Z(M) we must have

> BY) =r(F), (3.1)

or, equivalently,

> BY) =r(M)—r(F). (3.2)

YEZ(M):FCY

With this motivation, we defing recursively on all subset¥ of E(M) by

BX)=r(M)—r(X)— > BY). (3.3)

YeZ(M): XCY

By the definition of3, equation (3.2) holds wheneverspans a cyclic flat od/. Applying that
equation to the cyclic flat ) gives

> BY) =r(M). (3.4)

YEZ(M)

Thus, equation (3.1) follows faf" € Z(M).

(The functiong is dual to the functiorv that was introduced in [14] and studied further
in [10, 11]; see the comments in the first part of Section 5. d&nition of the functionr
in [4] is similar to that of3, although values of that would otherwise be negative are set to
zero; with the recursive nature of the definition, this caarge the values on more sets than
just those on whicly is negative. It follows from Theorem 3.2 thatandr agree precisely on
transversal matroids.)

The next lemma plays several roles.

Lemma 3.1 If F is a nonempty filter ir2 (M), then

dBY)=r()— > ()T rUF). (3.5)

YeF FFICF
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Also, if 7y is any subset of that contains every minimal set if, then the sum on the right
can be taken just over all subsefs of 7.

Proof. For eachy” € F,the sety = {F € F : F C Y} is nonempty, so

> (=1

FICY: FI#0)

From this sum and equation (3.2), we have

Y BY) = BY) > (~Fi

YeF YeF Fl F'C{FEF :FCY},
FI#0
= D (=¥ YT B(Y)
F':F'CF, YeF :UF'CY
F'#0
= Y (“)FI (r(M) = r(UF)).
F'F'ICF,
F'#0

Simplification yields equation (3.5). To prove the secorskason, note that foX, Y € F with
X C Y, the termg—1)7"1+1 r(UF") with Y € F’ cancel via the involution that adjoirs to,
or omits X from, F". O

We now turn to the first two characterizations of transvensatroids. The last part of the
proof of Theorem 3.2 uses Hall's theorem: a set systemith » sets has a transversal if and
only if, for each: € [r], each union of sets inA4 has at least elements.

Theorem 3.2 For a matroid M, the following statements are equivalent:
(1) M is transversal,

(2) for every nonempty subset (equivalently, filter; equivéyeantichain)F of Z (M),

r(NF) < > (=) uF), (3.6)

FICF
(3) B(X)>0forall X C E(M).

Proof. The three formulations of statement (2) are equivalenisifc X, Y € F with X C Y,
usingF — {Y'} in place of F preserves the right side of the inequality by the argumetiteat
end of the proof of Lemma 3.1; also, the left side is clearfshme.

To show that statement (1) implies statement (2), extehtb a fundamental transversal
matroid M/;. Letr; and cl be the rank function and closure operatorléf. For 7 C Z(M),
settingF/, = {cli(F) : F € F} givesF, C Z(M;) as well asr(UF) = r (UF;) and
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r(NF) < ri(NFy), so statement (2) will follow by showing that fav/;, equality holds in
inequality (3.6).
Let B be a fundamental basis 81, and letF C Z(M;) be nonempty. We claim that

r(UF)=|BN(UF)| and r(NF)=|Bn(NF)|. (3.7)

The first equality holds sincB N (UF) is independent and eadh € F is spanned by3 N F.
For the second equality, we havgnF) > |B N (NF)| sinceB is independent. To show that
B N (NF) spansnF, considerz € (NF) — B. Sincex is not in the basidB, the setB U x
contains a unique circuit, say. Clearly,z € C. Similarly using the basi® N F of F, for
F € F, and the uniqueness 6fgivesC' —x C BN F'; thus,C' —x C BN (NF), so, as heeded,
BN (NF) spans\.F.

For M;, upon using equations (3.7) to rewrite both sides of indtyugd.6), it is easy to see
that equality follows from inclusion-exclusion.

We now show that statement (2) implies statement (3). ¥oc E(M), let F(X) be
{Y € Z(M) : X CY}.Byequation (3.3), proving(X) > 0 is the same as proving

Z BY) < r(M)—r(X). (3.8)

YeF(X)

This inequality is clear ifF (X)) = 0; otherwise, it follows from Lemma 3.1, statement (2), and
the obvious inequality (X) < r(NF(X)).

Lastly, to show that statement (3) implies statement (1)sh@w thatM/ = M[.A] where
A = (Ff, Fs, ..., FF) is the multiset that consists of( /') occurrences of for each cyclic
flat F' of M. By equation (3.4), we have= r(M).

To show that each dependent sétof M is dependent inV/[A], it suffices to show this
when X is a circuit of M. In this case, gl (X) is a cyclic flat of M, so, by equation (3.1)
and the definition of4, it has nonempty intersection with exactly;(X) sets of.A, counting
multiplicity. Thus, X is dependent inV/[A] since, withr,,(X) < |X|, it cannot be a partial
transversal of4.

To show that each independent setldfis independent in\/[A], it suffices to show this
for each basisB. For this, we use Hall's theorem to show thi@t’ N B,..., F° N B) has a
transversal (which necessarily I8). Let X = (J,.,(F;y N B) with J C [r]. We must show
|X| > |J|. Note that the cyclic flat’;, for eachj € .J, properly contains the independent set
B — X, so by howA is defined and by statement (3) we have

/] < > BY).

YeZ(M): B-XCY

By reformulating statement (3) as in inequality (3.8), thikges|/| < r(M) — r(B — X), that
is,|J| < |B| — |B — X|, so|J| < |X]|, as needed. O

It follows from equation (3.2) that the definition gfon cyclic flats is forced by wanting a
presentation in which the complement of each set is a cyeic Maximal presentations have
this property by Corollary 2.6, so we get the following wkiiewn result, the first part of which
we stated in Section 2.
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Corollary 3.3 The maximal presentatiod of M is unique; it consists of the sefs® with
F € Z(M), whereF'° has multiplicity5(F') in A.

Like Theorem 1.1, the next result is a refinement, noted byetng [9], of a result of
Mason [13] that used cyclic sets. Mason used this resultsmpfoof of Theorem 1.1; we show
that it follows easily from that result. Let"”! be the lattice of subsets 6f].

Theorem 3.4 A matroid M of rank r is transversal if and only if there is an injective map
¢ Z(M) — 2" with

(L) [6(F)| = r(F)forall F € Z(M),
(2) ¢(cl(FUQG)) = ¢(F)U¢(G) forall F,G € Z(M), and

) r(nF) < |n{e(F) : F € F}| for every subset (equivalently, filter; equivalently,
antichain)F of Z(M).

Proof. AssumeM = M[A] with A = (A, As,..., A,). ForF' € Z(M), let
H(F)={k : FNA, #0}. (3.9)

It is easy to see that is an injection and that properties (1)—(3) hold; in paftcuthe first is
Corollary 2.3. For the converse, assumeZ (M) — 2"l is an injection that satisfies properties
(1)—(3). For any nonempty subsgtof Z (M), properties (1) and (2) allow us to recast the right
side of inequality (3.6) as the summation part of an inclas&clusion equation for the sets
¢(F) with F' € F; inequality (3.6) follows from inclusion-exclusion andoperty (3), sal/ is
transversal by Theorem 3.2. O

4 Characterizations of Fundamental Transversal M atroids

In this section, we treat counterparts, for fundamentaldvarsal matroids, of the results in the
last section. In contrast to Theorem 1.1, in the main reSilgorem 4.1, we must work with
cyclic flats since equality (4.1) may fail for sefsof cyclic sets.

Theorem 4.1 A matroidM is a fundamental transversal matroid if and only if

r(NF) =Y (=) (uF) (4.1)

FICF
for all nonempty subsets (equivalently, antichains; egjently, filters)7 C Z(M).

In the proof of Theorem 3.2, we showed that equation (4.1¥$1dbr all fundamental
transversal matroids; below we prove the converse. In tbefpwe use the notatio(x)
andA(X) that we defined in Section 2. The following well-known lemma&asy to prove.
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Lemma4.2 For any presentation of a transversal matroid, if C' is a circuit of M, then
A(C)=A(C —x)forall z € C.

By Theorem 3.2, if equation (4.1) always holds, thenis transversal. In this setting, the
next lemma identifiegA ()|, for the maximal presentation, as the rank of a set.

Lemma4.3 Let (A, A, ..., A,) be the maximal presentation of a transversal matrbidor
which equality (4.1) holds for all nonempty subsets£ofl/). For eachx € E(M), we have
|A(z)| = r(NF) whereF ={F € Z(M) : z € F}.

Proof. The setA(x) contains the vertices, where A, = F“andF € Z(M) — F. By
Lemma 3.1, Corollary 3.3, and equations (3.4) and (4A)z)| is, as stated,

Y. BF)=r(nF). O

FeZ(M)-F

The equality|A(z)| = r(NF) may fail if equality (4.1) fails. For example, consider the
rank<4 matroid on{a,b,c,d, e, f,g} in which {a,b,c,d} and {d,e, f,g} are the only non-
spanning circuits. In the affine representation arisingftbe maximal presentatiod s placed
freely on an edge of the simplex even though the cyclic flats¢bntain it intersect in rank one.

We now prove the main result.

Proof of Theorem 4.1Assume equation (4.1) holds for all nonempty sets of cycitsflAs
noted above) is transversal. Coloops can be placed at vertices ahd doing so reduces the
problem to a smaller one, so we may assume Mdtas no coloops. Thugy(M) € Z(M).
The setl” of vertices ofA has size (M), SOA(E(M)) = V.

Let A be the maximal presentation 8f. As parts (a) and (c) of Figure 1 show, from the
corresponding affine representation, it may be possibletother affine representations if
by moving some elements @f to vertices ofA, wherex € E(M) may be moved only to a
vertex inA 4(x). Such affine representations correspond to presentatiba) in which, for
eachx € E(M), eitherA 4 (x) = Ay(z) or Ay (z) = {v;} for somev; € A (z). Among
all such affine representations, fix one with the minimum nendf vertices ofA at which
no element oft’(M) is placed; letd’ be the corresponding presentation. To show thais
fundamental, we show that if, in this affine representatiomelement is placed at vertex
of A, then we get another affine representationm6fby moving some element there, which
contradicts the minimality assumption.

To show this, we will use the fundamental transversal mdttdj that we obtain from the
fixed affine representation df/ (corresponding tod’) by adding an element (which we call
v;) at each vertex; of A at which there is no element df/. Let P be the corresponding
presentation of\/;. Letr; and c| be its rank function and closure operator. BorC Z(M),
let 7y = {cl(F) : F € F}. Clearlyr(UF) = r (UF;). We claim that

(l) T(ﬂf) = rl(ﬂfl),
(i) Ayp(NF) = Ap(NF;), and
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(i) r(NF) = |Au(NF)|.

To prove these properties, note that sidéeis fundamental, we have

> (=) (UF) = r(NF).

FICF

Term by term, the sum agrees with its counterpartfom M, so property (i) follows from
equation (4.1). Clearly;(NF) < |A 4 (NF)|. Also, A 4 (NF) C Ap(NFy) sincenF; contains
NF. SincelM, is fundamental, equation (3.7) holds, from which we|get(NF;)| = r1(NF1).
With these deductions, property (i) gives properties (gl &iii).

Now assume that no element &f has been placed at vertexof A. Let

F={FecZM):uvecAyF)}

(By Corollary 2.3,A4(F) = An(F) forall F € Z(M).) Now E(M) € F, soF # (). Since
v; is in all sets inF, we getv; € Ap(NF;), SO property (i) gives; € Ay (NF). Fixz € NF
with v; € A ().

We claim thatF = {F € Z(M) : =z € F}. If € F, thennF C F,sox € F.
Conversely, iff' € Z(M) andzx € F, thenv; € A 4 (F) sinceA 4 (x) C Ay (F).

Now v; € A4 (x) butz was not placed at;, SOA 4 (z) = A 4(x). Sincexr € NF, we have
Ay (x) € Ag(NF); property (iii), the previous paragraph, and Lemma 4.3 gigeality, that
is, z is placed freely in the facA 4 (NF). Let M, be the matroid that is obtained by moving
to v;, thatis,M, = M[A”] whereA” is formed fromA’ by removingz from all sets except the
one indexed by. We claim that\/ and M, have the same circuits and so are the same matroid,
thus proving our claim that some element can be moved tdmong all sets” that are circuits
of just one ofM and M, (if there are any), le€’ have minimum size. Clearly, € C.

We claim thatA 4 (C) = A4 (C). If C is a circuit of M, then the claim follows from
Lemma 4.2, the inclusion 4~ (z) C A (z), and the observation tha 4 (y) = A4 (y) for
y € C — x. AssumeC'is a circuit of M,. By Lemma 4.2p; € A 4 (y) for somey in C' — .
Thus,v; € A4 (y), so all cyclic flats that contaipare inF and so contain; thus, all sets in the
maximal presentation that contairalso containy, that is,A 4(z) C A4(y). Since no element
prior to = was placed at;, we haveA 4 (y) = A4(y); also, as noted above 4 (x) = Ay(x),
SOA 4 (z) € A (y), from which the claim follows.

Now C'is a circuit in one ofA/ and My, so, sinceA 4 (C') = A 4+(C), we have

[Ax(C)] =[Ax(C) <|C].
It follows that C' is dependent in botlA/ and M;. From this conclusion and the minimality

assumed forC|, it follows thatC' cannot be a circuit of just one dif andM,. Thus,M and
M5 have the same circuits and so are the same matroid, as wednieesteow. O

The following result is immediate from Theorem 4.1 and Len8ria
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Theorem 4.4 A matroidM is a fundamental transversal matroid if and only if

> B(Y) =r(M)—r(nF) (4.2)

YeF

for all filters 7 C Z(M).
The proof of the next result is similar to that of Theorem 31d ases Theorem 4.1.

Theorem 4.5 A matroid M of rankr is a fundamental transversal matroid if and only if there
is an injectiong : Z(M) — 2 with

L) [6(F)| = r(F)forall F € Z(M),
(2) ¢(cl(FUQG)) =¢(F)U¢(G) forall F,G € Z(M), and

) r(nF) = |n{a(F) : F € F}| for every subset (equivalently, filter; equivalently,
antichain)F of Z(M).

If the matroid M is already known to be transversal and if a presentatioh/as known,
then we should define the functiahin the last result as in equation (3.9) or, equivalently,
o(F) ={k : v, € A(F)}. Properties (1) and (2) then hold, so we have the next coyolla

Corollary 4.6 Let A be any presentation of a transversal matrdifl The matroidM is fun-
damental if and only if-(NF) = | N {A(F) : F € F}| for every subset (equivalently, filter;
equivalently, antichain} of Z(M).

5 Observationsand Applications

We first consider the duals of the results above. In particllaecorem 5.1 makes precise the
remark before Lemma 3.1, thatis dual to Mason'’s function; this shows that the equivalence
of statements (1) and (3) in Theorem 3.2 is the dual of Mas®sslt that)/ is a cotransversal
matroid (a strict gammoid) if and only i(X) > 0 for all X C E(M).

It is well known and easy to prove that

ZM*)={E(M)—-F : Fe ZM)}, (5.1)
whereM* is the dual ofM. With this result and the formula
r*(X):\X|—r(M)+r(E(M)—X) (5.2)

for the rank function* of M™*, it is routine to show that a matroidl/ satisfies statement (2)
in Theorem 3.2 if and only if for all sets (equivalently, alleials; equivalently, all antichains)
FCZ(M),
rUR) < Y (=) (nF).
FICF:F'#0
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Thus, this condition characterizes cotransversal magrid.
We now recall the function that Mason introduced in [14], which is defined recursivedy a
follows. ForX C E(M), set

oX)=n(X) = Y aF), (5.3)

flats F: FCX

wheren(X) is the nullity,| X | — »(X), of X. Thus for any flatX of M,

Z a(F) = n(X). (5.4)

flats F: FCX

To prepare to link the functions and 3, we first show thaty(F') = 0 if F'is a noncyclic
flat. Induct on|F’|. The base case holds vacuously. Léte the set of coloops af/|F" and set
F'=F —1,s0F" € Z(M). Sincen(F) = n(F"), equation (5.4) gives

Yooa)= > ay)

flatsY : YCF flatsY’: Y/CF'

Now F' and F” contain precisely the same cyclic flats, €@F") is the only term in which the
two sides of this equality differ that is not yet known to bexesoa(F) = 0.

It now follows that the sum in equation (5.3) can be over jlise Z(M) with F' C X.
With induction, the next theorem follows from this resultdeeguations (5.1) and (5.2).

Theorem 5.1 For any matroid), if X C E(M), thena (X) = B+ (E(M) — X).

As shown in [12], the class of fundamental transversal nidgris closed under duality. (To
see this, note that a basisof M is fundamental if and only if (M) = r(F) + |B — F| for
everyF' € Z(M); a routine rank calculation then shows ttais a fundamental basis off if
and only if E(M) — B is a fundamental basis @df/*.) Using this result and those above, it is
easy to deduce the following dual versions of Theorems 4dMah (Likewise, one can dualize
Theorem 4.5 and Corollary 4.6.)

Theorem 5.2 For a matroid M, the following statements are equivalent:

(1) M is a fundamental transversal matroid,

(2) for all subsets (equivalently, ideals; equivalently, ahtiins).F of Z(M),

r(UF) = > (- e(nF), (5.5)

FICF: F'#0
(3) for allidealsF C Z(M),
> aY) = n(uF).

YeF
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We now consider how the results above extend to transveratibids of finite rank on
infinite sets. Although the ground set is infinite, every nsalt we consider is finite. Thus, let
M be M[A] where A = (A, As, ..., A,) is a set system on the infinite sB{\/). For each
subsetX of E(M), letg(X) = {k : X N Ay # 0}. Itis easy to see that i is a cyclic flat
of M, thenF = {z : ¢(z) C ¢(F)}. It follows that M has at mos{}) cyclic flats of rank
k, so Z(M) is a finite lattice. Whenevel/ has finite rank anc () is finite, the definition
of 3 makes sense, as do the sums that appear in the results alswewirRg the proofs shows
that Theorems 3.2, 3.4, 4.1, 4.4, 4.5, and Corollary 4.6 hotHis setting, where we add to the
hypotheses of all but the last result the requirementsithéias finite rank anc€ (M) is finite.
Note that in this setting, the assertion that matroids withdamental bases are transversal
holds since the argument proving statement (2) in Theor@ral®ws that such matroids satisfy
that statement (with equality). In contrast, Theorem 5.8 alatained by duality, which does not
apply within the class of matroids of finite rank on infinitesseHowever, we have the following
result.

Theorem 5.3 A matroid M of finite rank on an infinite set is a fundamental transversal m
troid if and only if the latticeZ (M) is finite and equation (5.5) holds for all of its subsets
(equivalently, ideals; equivalently, antichains).

Proof. First assumeél/ is a fundamental transversal matroid. Létbe a finite subset o (M)
whose subsets include a fundamental basis, a cyclic spasetrior each cyclic flat, and a span-
ning set for each intersection of cyclic flats. It follows thid|X is a fundamental transversal
matroid and the map : Z(M|X) — Z(M) given byy(Y) = cly(Y) is a rank-preserving
isomorphism. Sincé/| X is fundamental, the counterpart of equation (5.5) holds\foX . By
usingy, we can deduce equation (5.5) fof.

To prove the converse, let= (M) and letX be a finite subset of’/()/) that contains a
cyclic spanning set for each cyclic flat and a spanning se¢&ch intersection of cyclic flats.
As above, the mag given by (Y') = cly(Y') is a rank-preserving isomorphism &f( M| X)
onto Z(M). Using, from the validity of equation (5.5) fol/ we can deduce its counterpart
for M|X, soM|X is fundamental by Theorem 5.2. Thus, some injectianZ (M|X) — 2"
satisfies properties (1)—(3) of Theorem 4.5. Define Z(M) — 2" by ¢/(F) = ¢(F|X).

It is immediate that)’ is an injection that satisfies properties (1)—(3) of Theoteh) solM is
fundamental. O

Brylawski’s characterization of fundamental transversatroids [5, Proposition 4.2], which
we state next, follows easily from Theorem 5.2.

Theorem 5.4 A matroid M is a fundamental transversal matroid if and only if for alhidies
F of intersections of cyclic flats,

r(UF) > Y ()T (nF), (5.6)
FICF:F'#0

or, equivalently, equality holds in inequality (5.6). Tharse statement holds for matroids of
finite rank on infinite sets where, in the second part, we adt &M ) is finite.
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Proof. An inclusion-exclusion argument like that in the proof ofeinem 3.2 shows that equal-
ity holds in inequality (5.6) for fundamental transversaltmoids. For the converse, note that if
that equality always holds, then is fundamental by Theorem 5.2. Thus, it suffices to show
that having inequality (5.6) hold for all familieg of intersections of cyclic flats o#/ yields
equality. To prove this, we induct oiF|. The base caseF| = 1, is obvious. Assume that
|F| > 1 and that equality holds for all families of intersectionscgtlic flats that have fewer
sets thanF. Fix X € F and letF; = F — {X}. The setF' = {X} contributes(X) to the
sum. The sets” with 7" C F; give terms that, by the induction hypothesis, together con-
tributer(UF ) to the sum. The setg” with { X} C F’ contribute terms that are the negatives
of the terms in the corresponding sum based on the fafiily X : F' € F}; by the induction
hypothesis, the sum of these terms-is(X N (UF)). Thus, inequality (5.6) is equivalent to

r(UF) > r(X)+r(UFg) —r(X N (UFg)).
Semimodularity (the opposite inequality) gives equalltlyis completes the induction. O

Finally, we apply our results to the free product, which wasdduced and studied by Crapo
and Schmitt [6, 7]. Given matroid&/ and N on disjoint sets, theifree productM O N is the
matroid on the sek/(M) U E(N) whose bases are the subsBtwith (i) |B| = r(M) + r(N),

(i) BN E(M) independent inV/, and (iii) B N E(N) spanningV (see [7, Proposition 3.3]).

In general, M O N # N O M. Relative to the weak order, the free product is the greatest
matroid M’ on E(M) U E(N) with M'\E(N) = M andM'/E(M) = N. Special cases of the
free product include the free extension/af(setN = U, ;) and the free coextension of (set

M = Uy ;). The dual of the free product is given B/ O N)* = N* O M*. The following
resultis [7, Proposition 6.1].

Proposition 5.5 A subsetr’ of E(M) U E(N) other thanE (M) is in Z(M O N) if and only
if either (i) F C E(M)andF € Z(M) or (i) E(M) C FandF — E(M) € Z(N). The set
E(M)isinZ(M O N)ifandonly if E(M) € Z(M) and) € Z(N).

By giving a presentation o/ O N from presentations o/ and NV, Crapo and Schmitt
[7, Proposition 4.14] showed that free products of transalematroids are transversal. The
following extension of their result can be proven using eitidleas in [7] or, as we show below,
Theorems 3.2 and 4.1.

Theorem 5.6 For matroids M and N on disjoint ground sets, their free produdf O N is
transversal if and only if botd/ and N are. The corresponding statements hold for fundamen-
tal transversal matroids, for cotransversal matroids, dadmatroids that are both transversal
and cotransversal.

Proof. The proof of each part uses one of Theorems 3.2 and 4.1 aldhghwee observations:

(1) by Proposition 5.5, any antichain B(M O N) is either (i) an antichain i€ (M) or (ii)
obtained from an antichain i&(N) by augmenting each set ldy(/);
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(2) if X C E(M), thenrpyon(X) = ry(X) since(M O N)\E(N) = M;
(3) if X C E(N), thenryon(X U E(M)) =rn(X) +r(M) since(M ON)/E(M)is N.

To illustrate the argument, assume thi@tand N are fundamental transversal matroids and let
F be an antichain it (M O N). If F is an antichain irZ (M), then equation (4.1) holds using
the rank function of\/, so, by observation (2), this equation also holdsj#ousing the rank
function of M O N. Assume instead th& is obtained by augmenting, y()M), each set in
an antichainFy in Z(N). Note that the equality we know, namely,

rv(NFy) = Y (1) ey (UF),

FICFn

is preserved if we replacey (NFy) by rn(NFy) + (M) and, whenF’ # (), replacery (UF)
by ry(UF') + r(M). Thus, by observation (3), equation (4.1) holds for thecatin F in
Z(MON). ThereforeM O N is a fundamental transversal matroid. The proofs of the ers®/
and the remaining assertions are similar. O

Acknowledgement
The authors thank the referee for useful feedback on thesitxpio.

References

[1] J. Bonin, A construction of infinite sets of intertwines fpairs of matroidsSIAM J. Dis-
crete Math.24 (2010) 1742-1752.

[2] J. Bonin, Transversal latticegJectron. J. Combinl5 (2008) Research Paper 15, 11 pp.

[3] J. Bonin and A. de Mier, The lattice of cyclic flats of a n@tt, Ann. Comb12 (2008)
155-170.

[4] R.A. Brualdi, Transversal matroids, il€ombinatorial GeometriedN. White, ed. (Cam-
bridge Univ. Press, Cambridge, 1987) 72-97.

[5] T.H.Brylawski, An affine representation for transvdrgaometriesStudies in Appl. Math.
54 (1975) 143-160.

[6] H.H. Crapo and W.R. Schmitt, The free product of matrpisropean J. Combin26
(2005) 1060-1065.

[7] H.H. Crapo and W.R. Schmitt, A unique factorization thea for matroids,J. Combin.
Theory Ser. A12 (2005) 222—-249.

[8] J. Edmonds and D.R. Fulkerson, Transversals and mapaittion, J. Res. Nat. Bur.
Standards Sect. B9B (1965) 147-153.

[9] A.W. Ingleton, Transversal matroids and related stoes, in: Higher Combinatorics
M. Aigner, ed. (Proc. NATO Advanced Study Inst., Berlin, 89Reidel, Dordrecht-
Boston, MA, 1977) 117-131.

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P106 15



[10] A.W. Ingleton and M.J. Piff, Gammoids and transversatmids,J. Combin. Theory Ser.
B 15(1973) 51-68.

[11] J.P.S. Kung, The alpha function of a matroid, I: Tramsakmatroids Studies in Appl.
Math.58 (1978) 263—-275.

[12] M. Las Vergnas, Sur les systemes de représentartisagsd’une famille d’ensemble€.
R. Acad. Sci. Paris@&. A-B270 (1970) A501-A503.

[13] J.H. Mason, A characterization of transversal indejgte spaces, ifmthéorie des Ma-
troides(Lecture Notes in Math., Vol. 211, Springer, Berlin, 1975}-94.

[14] J.H. Mason, On a class of matroids arising from pathgaphgs,Proc. London Math. Soc.
25(1972) 55-74.

[15] J.G. OxleyMatroid Theory (Oxford University Press, Oxford, 1992).
[16] D.J.A. WelshMatroid Theory (Academic Press, London, 1976).

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #P106 16



