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Abstract

For integers n ≥ 1, k ≥ 0, the stable Kneser graph SGn,k (also called the
Schrijver graph) has as vertex set the stable n-subsets of [2n + k] and as edges
disjoint pairs of n-subsets, where a stable n-subset is one that does not contain any
2-subset of the form {i, i + 1} or {1, 2n + k}. The stable Kneser graphs have been
an interesting object of study since the late 1970’s when A. Schrijver determined
that they are a vertex critical class of graphs with chromatic number k + 2. This
article contains a study of the independence complexes of SGn,k for small values of
n and k. Our contributions are two-fold: first, we prove that the homotopy type of
the independence complex of SG2,k is a wedge of spheres of dimension two. Second,
we determine the homotopy types of the independence complexes of certain graphs
related to SGn,2.

1 Introduction

Let [n] := {1, 2, 3, . . . , n} and consider the following family of graphs.

Definition 1.1 For each pair of integers n ≥ 1, k ≥ 0, the Kneser graph KGn,k has as
vertices the n-subsets of [2n+ k] with edges defined by disjoint pairs of n-subsets. For the
same parameters, the stable Kneser graph SGn,k, also called the Schrijver graph, is the
subgraph of KGn,k induced by the stable n-subsets of [2n+ k], i.e. those n-subsets that do
not contain any 2-subset of the form {i, i+ 1} or {1, 2n+ k}.

∗The author was partially supported by the NSF through award DMS-0758321. Thanks to the referees
for their careful reading of the document. The author is particularly grateful to the anonymous referee
who pointed out that Theorem 1.5 can be proved using the contractible subcomplex approach given in
the first proof. Thanks also to John Shareshian for thoughtful discussions at the beginning of this project.
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The Kneser and stable Kneser graphs have interesting properties related to indepen-
dent sets of vertices, where a collection of vertices in a graph G is an independent set if
the vertices are pairwise non-adjacent in G. Perhaps the most widely-known structure in
graph theory related to independent sets is that of a proper graph coloring, i.e. a partition
of the vertices of G into disjoint independent sets. The minimal number of independent
sets required for such a partition is called the chromatic number of G and is denoted χ(G).
In 1978, L. Lovász proved in [13] that χ(KGn,k) = k+2 by using an ingenious application
of the Borsuk-Ulam theorem, thus verifying a conjecture due to M. Kneser from 1955.
Shortly afterwards, A. Schrijver determined in [15] that χ(SGn,k) = χ(KGn,k), again us-
ing the Borsuk-Ulam theorem. Schrijver also proved that the stable Kneser graphs are
vertex critical, i.e. the chromatic number of any subgraph of a stable Kneser graph SGn,k

obtained by removing vertices is strictly less than χ(SGn,k). These theorems were one
source of inspiration for subsequent work involving the interaction of combinatorics and
algebraic topology, see [10, 11, 14] for recent textbook accounts of further developments.

Recall that an (abstract) simplicial complex ∆ = (V,F) is a finite set V , called the
vertices of ∆, together with a collection of subsets F ⊆ 2V such that

F ∈ F , G ⊆ F ⇒ G ∈ F ,

called the faces of ∆. For technical purposes, we include the emptyset as a face. Lovász’s
original proof that χ(KGn,k) = k+2 followed from a general theorem bounding χ(G) from
below by a function of the connectivity of the neighborhood complex of G, the complex
whose vertices are the vertices of G and whose faces are vertices sharing a common neigh-
bor. In [2], Björner and De Longueville proved that the neighborhood complex of SGn,k

is homotopy equivalent to a k-sphere, implying that SGn,k is well-behaved topologically
with regard to this construction and Lovász’s theorem. While the neighborhood complex
plays a fundamental role in providing topological lower bounds on chromatic numbers,
this is not the only topological construction that investigates independence structures. If
one is interested in the interplay among all the independent sets in G, without regard to
chromatic numbers, one is led to the following construction.

Definition 1.2 Let G = (V,E) be a graph. The independence complex of G, Ind(G), is
the simplicial complex with vertex set V and faces given by independent sets.

Independence complexes have been the subject of recent investigation, see for exam-
ple [3, 5, 6, 7, 9, 17]. Five of these papers involve a connection between independence
complexes of graphs and hard squares models in statistical mechanics. Additionally, the
homotopy type of the independence complexes of cycles played a critical role in the recent
resolution by E. Babson and D. Kozlov in [1] of Lovász’s conjecture regarding odd cycles
and graph homomorphism complexes.

Our purpose in this paper is to investigate the homotopy type of the independence
complexes of the stable Kneser graphs SG2,k and the independence complexes of a family
of graphs related to SGn,2. There are several reasons to be curious about the indepen-
dence complex of SGn,k. Since the stable Kneser graphs are vertex-critical, they are a
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minimal obstruction to colorability in the Kneser graphs, and the chromatic number in-
herently measures some restricted behavior of independent sets which is reflected in the
neighborhood complex. It is of interest to see what, if any, properties of independent sets
in SGn,k are exposed through Ind(SGn,k). Also, an independent set in SGn,k is a pairwise
intersecting family of stable n-subsets of [2n + k]. Such families have been previously
studied from an extremal perspective, see for example [16] and the references therein.

The homotopy types of the independence complexes of some stable Kneser graphs
are already known. For n = 1, the stable Kneser graphs are complete graphs and thus
their independence complexes are wedges of 0-dimensional spheres. For k = 0, the stable
Kneser graphs are complete graphs on two vertices, hence their independence complexes
are zero dimensional spheres. For k = 1, it is easy to see that SGn,1 = C2n+1, the cycle
of odd length, and the homotopy types of independence complexes of cycles are known.

Theorem 1.3 (Kozlov, [12]) For n ≥ 1, let Cn denote the cycle of length n. The following
homotopy equivalence holds:

Ind(Cn) ≃

{

Sr−1
∨

Sr−1 if n = 3r
Sr−1 if n = 3r ± 1

Our first contribution is to describe Ind(SG2,k) up to homotopy.

Theorem 1.4 For k ≥ 4,

Ind(SG2,k) ≃
∨

(k−3)(k−1)(k+4)
6

−1

S2.

Also,

Ind(SG2,2) ≃ S1
∨

S1

and
Ind(SG2,3) ≃ S1.

Our second contribution is to investigate Ind(SGn,2). Unfortunately, as will be dis-
cussed in Section 4, these complexes are more complicated than those where n = 2, and
their homotopy type is still unknown. However, we will be able to determine the homo-
topy type of a class of graphs we call E2n+2, close relatives of SGn,2 that will be defined in
Section 4. A rough description of SGn,2 is as a cylinder graph with some additional edges
on the cycles forming the ends of the cylinder; E2n+2 is then obtained by “squeezing”
SGn,2 so that only the end cycles and additional edges remain.

Theorem 1.5 Let n ≥ 3. If 4 | 2n+ 2, i.e. n is odd, then

Ind(E2n+2) ≃

{

S2k+1
∨

S2k+1
∨

S2k+1 if n = 4k + 1
S2k+2 if n = 4k + 3

.
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If 4 ∤ 2n+ 2, i.e. n is even, then

Ind(E2n+2) ≃







S2k if n = 6k
S2k+1

∨

S2k+1 if n = 6k + 2
S2k+2 if n = 6k + 4

.

Our primary tool for proving these theorems is discrete Morse theory. The remainder
of the paper is structured as follows. In Section 2, we discuss the basics of discrete
Morse theory, including the construction of acyclic partial matchings via matching trees
introduced in [3]. In Section 3, we prove Theorem 1.4. In Section 4, we provide an
explicit description of the graphs SGn,2 leading to the definition of E2n+2 and remark
on a connection between Ind(SGn,2) and [9]. Finally, in Section 5 we provide a proof of
Theorem 1.5.

2 Tools From Discrete Morse Theory

In this section we introduce the tools we need from discrete Morse theory. Discrete Morse
theory was introduced by R. Forman in [8] and has since become a standard tool in
topological combinatorics. The main idea of (simplicial) discrete Morse theory is to pair
cells in a simplicial complex in a manner that allows them to be cancelled via elementary
collapses, reducing the complex under consideration to a homotopy equivalent complex,
cellular but possibly non-simplicial, with fewer cells. Detailed discussions of the following
definitions and theorems, along with their proofs, can be found in [10, 11].

2.1 Partial Matchings and the Main Theorem

Definition 2.1 A partial matching in a poset P is a partial matching in the underlying
graph of the Hasse diagram of P , i.e. it is a subset M ⊆ P × P such that

• (a, b) ∈M implies b covers a, i.e. a < b and no c satisfies a < c < b, and

• each a ∈ P belongs to at most one element in M .

When (a, b) ∈ M we write a = d(b) and b = u(a). A partial matching on P is called
acyclic if there does not exist a cycle

b1 > d(b1) < b2 > d(b2) < · · · < bn > d(bn) < b1,

with n ≥ 2, and all bi ∈ P being distinct.

Given an acyclic partial matching M on P , we say that the unmatched elements of P
are critical. The following theorem asserts that an acyclic partial matching on the face
poset of a polyhedral cell complex is exactly the pairing needed to produce our desired
homotopy equivalence.
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Theorem 2.2 (Main Theorem of Discrete Morse Theory) Let ∆ be a polyhedral cell com-
plex and let M be an acyclic partial matching on the face poset of ∆. Let ci denote the
number of critical i-dimensional cells of ∆. The space ∆ is homotopy equivalent to a cell
complex ∆c with ci cells of dimension i for each i ≥ 0, plus a single 0-dimensional cell in
the case where the emptyset is paired in the matching.

Remark 2.3 In particular, if an acyclic partial matching M has critical cells only in a
fixed dimension i, then ∆ is homotopy equivalent to a wedge of i-dimensional spheres.

It is often useful to be able to make acyclic partial matchings on different sections
of a poset and combine them to form a larger acyclic partial matching. This process is
formalized via the following theorem, referred to as the Cluster Lemma in [10, Lemma 4.2]
and the Patchwork Theorem in [11, Theorem 11.10].

Theorem 2.4 If φ : P → Q is an order-preserving map and, for each q ∈ Q, each
subposet φ−1(q) carries an acyclic partial matching Mq, then the union of the Mq is an
acyclic partial matching on P .

2.2 Matching Trees

To facilitate the study of Ind(G) for a graph G = (V,E), matching trees were introduced
by Bousquet-Mélou, et al. in [3, Section 2]. Let

Σ(A,B) := {I ∈ Ind(G) : A ⊆ I and B ∩ I = ∅} ,

where A,B ⊆ V satisfy A ∩ B = ∅ and N(A) :=
⋃

a∈AN(a) ⊆ B, where N(a) denotes
the neighbors of a in G.

Definition 2.5 Let G be a connected graph. A matching tree, M(G), for G is a directed
tree constructed according to the following algorithm. Begin by letting M(G) be a single
node labeled Σ(∅, ∅), and consider this node a sink until after the first iteration of the
following loop:

WHILE M(G) has a leaf node Σ(A,B) that is a sink with |Σ(A,B)| ≥ 2
DO ONE OF THE FOLLOWING

1. If there exists a vertex p ∈ V \ (A ∪ B) such that

|N(p) \ (A ∪B)| = 0,

create a directed edge from Σ(A,B) to a new node labeled ∅. Refer to p as a free
vertex of M(G).
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2. If there exist vertices p ∈ V \ (A ∪B) and v ∈ N(p) such that

N(p) \ (A ∪ B) = {v},

create a directed edge from Σ(A,B) to a new node labeled

Σ(A ∪ {v}, B ∪N(v)).

Refer to v as a matching vertex of M(G) with respect to p.

3. Choose a vertex v ∈ V \ (A∪B) and created two directed edges from Σ(A,B) to new
nodes labeled

Σ(A,B ∪ {v})

and
Σ(A ∪ {v}, B ∪N(v)).

Refer to v as a splitting vertex of M(G).

The node Σ(∅, ∅) is called the root of the matching tree, while any non-root node of
degree 2 in M(G) is called a matching site of M(G) and any non-root node of degree 3 is
called a splitting site of M(G).

The key observation in [3] is that a matching tree on G yields an acyclic partial
matching on the face poset of Ind(G), as the following theorem indicates.

Theorem 2.6 [3, Section 2] A matching tree M(G) for G yields an acyclic partial match-
ing on the face poset of Ind(G) whose critical cells are given by the non-empty sets Σ(A,B)
labeling non-root leaves of M(G). In particular, for such a set Σ(A,B), the set A yields
a critical cell in Ind(G).

3 Proof of Theorem 1.4

The case k = 2 is a simple exercise, as the complex is pure two-dimensional and has only
eight maximal faces. The case k = 3 is handled at the end of this section. Let k ≥ 4
and let Qk denote the face poset of Ind(SG2,k) and let Ik+2 be a (k + 2)-element chain,
with elements labeled 3 < 4 < 5 < 6 < · · · < k + 4. Our goal is to create an acyclic
partial matching on Qk by using Theorem 2.4 to break Qk into preimages and produce
acyclic partial matchings on these. In this section, addition and subtraction are modulo
k + 4. Note that in our proof below, whenever a 2-element subset {i, j} is considered, it
is assumed that {i, j} is stable, i.e. |i− j| ≥ 2 and {i, j} 6= {1, k + 4}.

While the maps and matchings below appear complicated, they are easily motivated.
The maximal elements of Qk are of two types: independent sets of the form {{i, j} : j ∈
[k+4]}, and independent sets of the form Ti,j,h := {{{i, j}, {j, h}, {i, h}} : i, j, h ∈ [k+4]}.
Thus, Ind(SG2,k) is built from k+ 4 simplices of dimension k and additional 2-cells. Our
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goal is to cut down the k-dimensional facets so that only faces of small dimension remain.
Informally, we want to begin this process by pairing faces σ with σ∪{1, 3} when possible,
which leads us to begin defining a map φ : Qk → Ik+2 as follows. Note that all variables
referenced (e.g. j, r, i1, i2, . . .) are integers in [k + 4].

φ−1(3) :=























∅
σ σ ⊆ {{1, j} : j ∈ [k + 4]}
σ σ ⊆ {{3, j} : j ∈ [k + 4]}
{{1, j}, {3, j}} 3 < j < k + 4
T1,3,j 3 < j < k + 4

To continue our definition of φ, we remark that from the remaining unpaired faces, we
eventually want to pair σ with σ ∪ {1, 4} when possible; once this is done, we will want
to pair σ with σ ∪ {1, 5} when possible, etc. Continuing this process until reaching k + 3
leads us to continue defining the map φ as follows.

For 3 < l < k + 4,

φ−1(l) :=























































{2, l}
{{1, l}, {2, l}}
{l, j} l < j ≤ k + 4
{{l, i}, {l, j}} l < i < j ≤ k + 4
{{i, l}, {l, j}} 1 ≤ i < l < j ≤ k + 4
{{i, l}, {j, l}} 2 ≤ i < j < l
{{l, i1}, {l, i2}, . . . , {l, ir}} 3 ≤ r ≤ k + 1
{{1, j}, {l, j}} l < j ≤ k + 3
T1,l,j l < j ≤ k + 3

To motivate the conclusion of our definition of φ, we remark that following the pairing
process, we will be left with additional unpaired faces that are not 2-dimensional. To com-
plete our matching, we will construct a second poset map ψ on the remaining “unpaired”
elements, so we assign these remaining elements to the preimage φ−1(k + 4):

φ−1(k + 4) :=















{2, k + 4}
{{2, i1}, {2, i2}, . . . , {2, ir}} 2 ≤ r ≤ k + 1
{{k + 4, i1}, {k + 4, i2}, . . . , {k + 4, ir}} 2 ≤ r ≤ k + 1
Ti,j,h i, j, h 6= 1

It is straightforward to check that φ is an order-preserving map. For 3 ≤ l < k + 4,
we produce an acyclic matching Ml on φ−1(l) via the matching (σ, σ ∪ {1, l}) for each
σ not containing {1, l}. It is straightforward to check that for each l, every element of
φ−1(l) is an element of some matched pair in Ml. Ml is acyclic because if one attempts to
construct a directed cycle in φ−1(l) as in Definition 2.1, starting from an element σ not
containing {1, l}, we must begin our cycle with

σ < σ ∪ {1, l} < (σ ∪ {1, l}) \ {i, j}
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for some {i, j} 6= {1, l}. However, there is no τ ∈ Qk such that σ′ := (σ ∪ {1, l}) \ {i, j}
satisfies (σ′, τ) ∈Ml, hence we cannot complete our desired cycle.

Remaining is only the poset φ−1(k+4). To establish an acyclic partial matching here,
we apply Theorem 2.4 a second time. Observe that the elements of φ−1(k + 4) are parts
of “stars” through 2 or k + 4, together with triangles that avoid 1. Let C := {b < r6 <
r7 < · · · < rk+3 < m1 < m2 < t2 < s4 < s5 < · · · < sk+2 < m3 < m4 < tk+4} be a chain;
we will define our map ψ : φ−1(k+4) → C in two steps. First, we define preimages under
ψ that will host pairings eliminating unwanted faces containing 2.

ψ−1(b) :=

{

{2, k + 4}
{{2, 4}, {2, k + 4}}

For 6 ≤ i ≤ k + 3,

ψ−1(ri) :=

{

{{2, 4}, {2, i}}
{{2, 4}, {2, i}, {4, i}}

ψ−1(m1) :=

{

{{2, 5}, {2, 7}}
{{2, 5}, {2, 7}, {5, 7}}

ψ−1(m2) :=

{

{{2, 4}, {2, 5}}
{{2, 4}, {2, 5}, {2, 7}}

ψ−1(t2) :=















{{2, i}, {2, j}} 5 ≤ i < j ≤ k + 4
except {{2, 5}, {2, 7}}
{{2, i1}, {2, i2}, . . . , {2, ir}} 3 ≤ r ≤ k + 1
except {{2, 4}, {2, 5}, {2, 7}}

Observe that most of these preimages contain exactly an edge and a triangle that we
will end up pairing together, and in the preimage ψ−1(t2) is found the remaining faces
coming from the “star” through 2. Next, we need to define preimages under ψ that will
host pairings eliminating unwanted faces containing k + 4.

For 4 ≤ j ≤ k + 2,

ψ−1(sj) :=

{

{{2, k + 4}, {j, k + 4}}
{{2, k + 4}, {j, k + 4}, {2, j}}

ψ−1(m3) :=

{

{{3, k + 4}, {5, k + 4}}
{{3, k + 4}, {5, k + 4}, {3, 5}}

ψ−1(m4) :=

{

{{2, k + 4}, {3, k + 4}}
{{2, k + 4}, {3, k + 4}, {5, k + 4}}

ψ−1(tk+4) :=























{{i, k + 4}, {j, k + 4}} 3 ≤ i < j < k + 4
except {{3, k + 4}, {5, k + 4}}
{{k + 4, i1}, {k + 4, i2}, . . . , {k + 4, ir}} 3 ≤ r ≤ k + 1
except {{2, k + 4}, {3, k + 4}, {5, k + 4}}
Ti,j,k Ti,j,k not yet listed
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Observe again that most of these preimages contain exactly an edge and a triangle
that we will end up pairing together, and in the preimage ψ−1(tk+4) is found the remaining
faces coming from the “star” through k + 4.

It is straightforward to check that this is an order preserving map. To form acyclic
partial matchings on these preimages, for all elements in the chain except t2 and tk+4,
match the pair of elements in the preimage. Match the pair (σ, σ ∪ {2, 4}) on ψ−1(t2);
this matching is acyclic and matches every element. Match the pair (σ, σ ∪ {2, k + 4})
on ψ−1(tk+4); this matching is again acyclic, but does not match every element. One can
check that the critical cells on ψ−1(tk+4) are given by the set

Mcrit := {Ti,j,h : i < j < h, i, j, h 6= 1} \ S,

where

S := {T2,4,j : 6 ≤ j ≤ k + 3} ∪ {T2,j,k+4 : 4 ≤ j ≤ k + 2} ∪ {T3,5,k+4, T2,5,7}.

It is straightforward to calculate that the size of {Ti,j,h : i < j < h, i, j, h 6= 1} is
(

k+1
3

)

and the size of S is 2k − 1, hence the size of Mcrit is

(

k + 1

3

)

− (2k − 1) =
(k − 3)(k − 1)(k + 4)

6
− 1,

as desired. We are now in a position to invoke Theorems 2.2 and 2.4, completing our
proof for the case k ≥ 4.

For the case k = 3, we define φ as above, but we must modify the definition of ψ. In
particular, for this case we eliminate ψ−1(m1) and ψ−1(m2) and include {{2, 5}, {2, 7}},
{{2, 4}, {2, 5}} and {{2, 4}, {2, 5}, {2, 7}} in ψ−1(t2). Note that the triangle T2,5,7 is
already present in ψ−1(s5). There are only four stable triangles avoiding 1, namely
T2,4,6, T2,4,7, T2,5,7 and T3,5,7. These four cells are paired individually in the preimages
of r6, s4, s5, and m3, respectively, implying that there are no unlisted triangles contained
in ψ−1(t7). Thus, for the case k = 3, the only critical cell is {{2, 4}, {2, 5}}, and our proof
is complete.

4 The graphs SGn,2 and E2n+2

The graphs SGn,2 admit an alternate description which we will discuss here. This de-
scription is given in detail in [4], but the details are easy to fill in from the following. For
an integer n ≥ 2, we define:

p(n) :=

{

n if 2 ∤ n
n− 1 otherwise

o(n) :=

{

n+1
2

if 2 | n+ 1
n+2

2
otherwise
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Observe that a vertex of SGn,2 is given by a stable n-subset of [2n + 2] and that these
subsets may be partitioned into three classes.

Definition 4.1 Let X := {i1, i2, . . . , in} be a stable n-subset of [2n + 2], where [2n + 2]
is ordered cyclically.

A: We say X is an alternating end vertex if X is an image

α({1, 3, . . . , p(n), p(n) + 3, p(n) + 5, . . . , 2n})

for some permutation α of the stable n-subsets of [2n + 2] induced by a cyclic per-
mutation of [2n + 2];

B: We say X is a bipartite end vertex if X is a proper subset of either the even numbers
or the odd numbers; and

M: We say X is a middle vertex for all other cases.
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{3,5,7,9}

{1,3,5,7}

{2,4,6,8}

{4,6,8,10}

{2,4,6,9}

{1,4,6,9}

{3,5,7,10}

Figure 1: SG4,2

Figures 1 and 2 contain representations of SG4,2 and SG5,2 which we will use as
references throughout this discussion. Recall that given two graphsG andH , the cartesian
product G�H has vertex set V (G) × V (H) with (u, v) adjacent to (u′, v′) if and only if
u = u′ and {v, v′} ∈ E(H), or v = v′ and {u, u′} ∈ E(G). Note that each copy of SGn,2

contains a complete bipartite graph Kn+1,n+1 induced by the bipartite end vertices of
SGn,2, hence the nomenclature. In Figures 1 and 2, these vertices are the outer ring of
the graph, where for visual clarity we have not displayed all the edges, replacing them
instead with dashed lines at each vertex indicating the presence of an edge. Let Cj denote
the cycle of length j and let Pj denote the path with j vertices. For every n, the middle
vertices of SGn,2 induce as a subgraph a copy of C2n+2�Po(n)−2 which we call the middle
cylinder. In our examples above, o(4) = o(5) = 3, and hence the middle rings of vertices
in Figures 1 and 2 are C10�P1 and C12�P1, respectively. It is easy to see that each
bipartite end vertex of SGn,2 is connected to a unique vertex on an end cycle of the
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Figure 2: SG5,2

middle cylinder. Finally, the alternating end vertices of SGn,2 induce a copy of Cn+1 in
the case when 2 | n and a copy of DC2n+2 in the case when 2 ∤ n, where DC2n+2 is defined
to be a (2n+2)-cycle augmented by edges connecting antipodal vertices. In the first case,
each alternating end vertex of SGn,2 is connected to a pair of middle vertices, while in the
latter case each alternating end vertex of SGn,2 is connected to a unique middle vertex. A
moment of thought reveals that when n is even, there are n+ 1 alternating end vertices,
while for n odd there are 2n + 2 alternating end vertices, and there are 2n + 2 bipartite
end vertices and (2n+ 2) · (o(n) − 2) middle vertices.

Remark 4.2 In the case where n is odd, the graph SGn,2 can be described as an even
cylinder C2n+2�Po(n) with additional edges forming a complete bipartite graph on one
end and a cycle with diagonals on the other end, with a similar description for n even.
Though the graphs SGn,2 admit this nice description, the complexes Ind(SGn,2) have been
resistant to investigation. The difficult nature of this problem is similar to the difficult
nature of the study of Ind(C2n+2�Pl) for arbitrary l ≥ 6, n ≥ 3. As discussed in Section 6
of [9], even a determination of the Euler characteristic of Ind(C2n+2�Pl) is unknown in
general. For small values of n and l, there are some results regarding the homotopy type
and Euler characteristic of these complexes, e.g. [17], but in general this is an interesting
open problem.

One approach for studying Ind(SGn,2) would be to consider arbitrary even circumfer-
ence cylinders C2n+2�Pl and augment their end cycles in a manner consistent with that
described above. One might hope to then induct on l in some fashion, though our at-
tempts following this approach have been unsuccessful. However, were one to pursue this
strategy, the base case would be a cylinder of length two, i.e. a cylinder with no middle
vertices. We therefore introduce the following class of graphs, which are formed by consid-
ering only the end vertices of SGn,2 and connecting them directly via edges. Let Kn+1,n+1

denote the complete bipartite graph on vertex set {1, 2, . . . , 2n+ 2} with bipartition into
the set of odds and evens. LetDC2n+2 denote the cycle on the vertex set {c1, c2, . . . , c2n+2}
with edges {{ci, ci+1} : i ∈ [2n+2]}∪{{ci, ci+n+1} : i ∈ [n+1]}. Let Cn+1 denote the cycle
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on the vertex set {c1, c3, c5, . . . , c2n+1} with edges {{ci, ci+2} : i ∈ {1, 3, 5, . . . , 2n + 1}}.
For all of these graphs, addition of indices for vertices is modulo 2n+ 2.

Definition 4.3 For n ≥ 2, let E2n+2 denote the following graph: if 2 ∤ n, take a copy of
Kn+1,n+1 and a copy of DC2n+2 and add an edge connecting each vertex i of Kn+1,n+1 to
the vertex ci of DC2n+2. If 2 | n, take a copy of Kn+1,n+1 and a copy of Cn+1 and add
edges connecting each vertex ci of Cn+1 to the vertices i and i+ n + 1 of Kn+1,n+1.

Remark 4.4 As Theorem 1.5 indicates, the topology of Ind(E2n+2) is reasonably well-
behaved. It would be of interest to understand more about the topology of the independence
complexes of the graphs obtained by adding middle cycles back into E2n+2; in particular, it
would be interesting to know if there is any relation between the independence complexes
of the graphs obtained by adding j middle cycles and j + k middle cycles to E2n+2 for
small values of k.

5 Proof of Theorem 1.5

We will sketch two proofs of Theorem 1.5. The idea behind the first proof is that
Ind(E2n+2) can be covered by two contractible subcomplexes that intersect in the in-
dependence complex of Cn+1 or DC2n+2, depending on the parity of n. Thus, Ind(E2n+2)
is the suspension of the independence complex of the relevant graph. For the second proof,
we will show how to construct matching trees for the some of the graphs E2n+2. While the
second proof is significantly longer than the first, we provide this sketch because matching
trees are one approach to the questions discussed in Remark 4.4. The author cannot see
how the techniques used in the first proof might easily extend to the general case.

When we use matching trees in the following, we refer to vertices of the matching tree
as nodes, reserving the word vertices for the vertices of E2n+2. During the construction of
our trees, references to matching, splitting, and free vertices of E2n+2 are references to the
types of vertices possible in the matching tree construction algorithm given in Section 2.
It is helpful to use diagrams like Figure 4 to illustrate matching trees, which we also
describe with Σ(A,B) notation. In these diagrams, each node of the matching tree is
shown as a graph representing Σ(A,B), where black dots represent elements of A, white
dots represent elements of B, and gray dots represent elements in neither A nor B.

Both proofs below involve the following definition and lemma.

Definition 5.1 Let EL0 := K2 and let EL1 := K1,3, where K1,3 is a complete bipartite
graph with bipartition sets of size 1 and 3. For r ≥ 2, let ELr be the graph with 2r + 2
vertices depicted in Figure 3.

Lemma 5.2 There is a matching tree on ELr with a single non-empty leaf corresponding
to a critical cell of size

{

2k + 1 if r = 4k
2k + 1 if r = 4k + 1

,

and no critical cell if r = 4k + 2 or r = 4k + 3.
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Figure 3:

Proof: It is straightforward to construct a matching tree taking ELr to ELr−4 by first
using the vertex labeled a as a matching vertex, then using b as a matching vertex. Iterate
this process until the only gray vertices remaining form a copy of ELr for r = 0, 1, 2, or 3.
At each iteration, exactly two black vertices are added. It is now an easy exercise to check
that there are matching trees on EL0 and EL1 yielding a single non-empty leaf with a
single black vertex, while there are matching trees on EL2 and EL3 with no critical cells.
�

5.1 Proof by covering with contractible subcomplexes

We apply the gluing lemma, Theorem 15.25 in [11], which implies that if a complex X
is covered by two contractible subcomplexes A and B, then X is homotopy equivalent
to the suspension of A ∩ B. We will cover Ind(E2n+2) by the subcomplexes arising as
independence complexes of the subgraphs of E2n+2 induced by DC2n+2, when n is odd,
or Cn+1, when n is even, together with the n+ 1 vertices from a shore of Kn+1,n+1.

That these subcomplexes are contractible follows from Lemma 2.4 of [6], stating that
for any graph G and two vertices v, w in G, if the neighborhood of v is contained in the
neighborhood of w, then Ind(G) is homotopy equivalent to Ind(G − {w}). Specifically,
when n is even, this lemma allows us to eliminate every vertex in Cn+1 from our subcom-
plexes, with only a simplex remaining. When n is odd, this lemma allows us to eliminate
every other vertex in DC2n+2 from our subcomplex, and what is left is a join of (n+ 1)/2
copies of S0 with a simplex formed by the relevant shore of Kn+1,n+1. In both cases, the
two subcomplexes clearly intersect in Ind(DC2n+2) or Ind(Cn+1), and hence the complexes
Ind(E2n+2) are suspensions of these.

The homotopy type of the independence complex of Cn+1 is given in Theorem 1.3. For
DC2n+2, we have the following, which finishes our proof.

Lemma 5.3

Ind(DC2n+2) ≃

{

S2k
∨

S2k
∨

S2k if n = 4k + 1
S2k+1 if n = 4k + 3

.

Proof: Construct a matching tree as follows, using the notation introduced just before
Definition 4.3. Use c1 as a splitting vertex. On Σ({c1}, {c2, c2n+2, cn+2}), we use cn as a
matching vertex and what remains is a copy of ELn−4, plus the two included elements
c1 and cn. On Σ(∅, {c1}), we use c2 as a splitting vertex. The case Σ({c2}, {c1, c3, cn+3})
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is identical to our first case, yielding a copy of ELn−4 plus the two included elements c2
and cn+1. We are thus left with Σ(∅, {c1, c2}). In this case, it is straightforward to use
cn−1 as a splitting vertex and (after a few more obvious steps) have two more nonempty
leaves on the tree: a copy of ELn−3 plus one point, and a copy of ELn−5 plus two points.
Applying Lemma 5.2 to complete this matching tree finishes the proof. �

5.2 Proof by matching tree construction for odd n

The matching tree proof also requires two cases, 4 | 2n + 2 and 4 ∤ 2n + 2; however, as
this section is primarily intended to illustrate the matching tree method in this context,
we discuss only the first case.

When 4 | 2n+ 2, the first step of our matching tree construction proceeds as follows:
from Σ(∅, ∅), use vertex 1 as a splitting vertex, yielding directed edges to new nodes
Σ({1}, {2, 4, . . . , 2n + 2, c1}) and Σ(∅, {1}). For node Σ({1}, {2, 4, . . . , 2n + 2, c1}), we
have that vertex c3 is a matching vertex with respect to vertex 3, thus we can create a
directed edge to a new node labeled Σ({1, c3}, {2, 3, 4, 6, . . . , 2n + 2, c2, c4, c3+n+1}). For
this node, vertex n+ 4 is a free vertex, and we can create a new directed edge to a node
labeled ∅. Our construction now proceeds by iterating this first branching step on the
node Σ(∅, {1, 2, 3, . . . , i}), where 1 ≤ i ≤ n− 2. After repeating this for all 1 ≤ i ≤ n− 2,
our only remaining leaf node in M(E2n+2) is Σ(∅, {1, 2, 3, . . . , n− 1}).

We now proceed by iterating a different matching process where we assume that 0 ≤
r ≤ n−2 and that M(E2n+2) has only one leaf node, labeled Σ(∅, {1, 2, 3, . . . , n−1+ r}).
We use vertex n+ r as a splitting vertex, creating two new edges to nodes labeled

Σ(∅, {1, 2, 3, . . . , n+ r})

and
Σ ({n+ r}, {1, 2, 3, . . . , n− 1 + r, n+ r + 1, n+ r + 3, . . . , j, cn+r}) ,

where j is either 2n + 1 or 2n + 2 depending on the parity of n + r. The first node is
handled when we consider the case r + 1, while for the second node we use cn+r+2 as a
matching vertex with respect to vertex n + r + 2, then use cn+r+4 as a matching vertex
with respect to the vertex n+ r+ 4 to obtain a new edge to a node for which vertex cr+2

is a free vertex, leading us to ∅. Following these iterations, our matching tree has only
one non-empty leaf node, labeled Σ(∅, {1, 2, 3, . . . , 2n − 2}), represented as the graph in
Figure 4.

We next use vertex 2n as a splitting vertex, yielding two new edges to new nodes
which we handle in subcases below.

Subcase: Σ({2n}, {1, 2, 3, . . . , 2n − 1, 2n + 1, c2n}) Using vertex c2n+2 as a splitting
vertex makes vertex 2n+ 2 a free vertex for

Σ({2n}, {1, 2, 3, . . . , 2n− 1, 2n+ 1, c2n, c2n+2}),

leaving us to consider only the node

Σ({2n, c2n+2}, {1, 2, 3, . . . , 2n− 1, 2n+ 1, 2n+ 2, c2n, c2n+1, c1, cn+1}).
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2n−1 2n−2

c2n+2

Figure 4: We have suppressed some of the edges in the bipartite graph portion of E2n+2

for clarity.

Using vertex cn−1 as a splitting vertex, we see that vertex cn is a free vertex for

Σ({2n, c2n+2}, {1, 2, 3, . . . , 2n− 1, 2n+ 1, 2n+ 2, c2n, c2n+1, c1, cn+1, cn−1}),

leaving us to consider only the node

Σ({2n, c2n+2, cn−1}, {1, 2, 3, . . . , 2n− 1, 2n+ 1, 2n+ 2, c2n, c2n+1, c1, cn+1, cn, cn−2}).

The remaining vertices induce as a subgraph of E2n+2 a copy of ELn−4. Thus, we are in a
position to invoke Lemma 5.2, and we see that the portion of the resulting matching tree
M(E2n+2) rooted from our remaining node yields a critical cell of size 2k+2 if n = 4k+1
and no critical cells if n = 4k + 3.

Subcase: Σ(∅, {1, 2, 3, . . . , 2n−2, 2n}) Using vertex c2n+2 as a splitting vertex makes
vertex 2n + 1 a free vertex for

Σ({c2n+2}, {1, 2, 3, . . . , 2n− 2, 2n, 2n+ 2, c1, c2n+1, cn+1}),

leaving us to consider only the node

Σ(∅, {1, 2, 3, . . . , 2n− 2, 2n, c2n+2}).

We now use vertex 2n+1 as a splitting vertex, yielding two new edges to new nodes which
we consider in two subsubcases.

Subsubcase: Σ(∅, {1, 2, 3, . . . , 2n−2, 2n, c2n+2, 2n+1}) We first use vertex 2n−1 as
a matching vertex with respect to vertex 2n+ 2. Using vertex cn−1 as a splitting vertex,
we see that vertex c2n+1 is a free vertex when cn−1 is included with 2n− 1, hence we need
only consider node

Σ({2n− 1}, {1, 2, 3, . . . , 2n− 2, 2n, c2n+2, 2n+ 1, 2n+ 2, c2n−1, cn−1}).
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Using vertex c2n+1 as a splitting vertex, we see that vertex c2n is a free vertex when c2n+1

is omitted from the cell, hence we need only consider node

Σ({2n− 1, c2n+1}, {1, 2, 3, . . . , 2n− 2, 2n, c2n+2, 2n+ 1, 2n+ 2, c2n−1, cn−1, c2n, cn}).

Using vertex cn+2 as a splitting vertex, we see that vertex cn+1 is a free vertex when cn+2

is omitted from the cell, hence we only need to consider node

Σ

(

{2n− 1, c2n+1, cn+2} ,

{

1, 2, 3, . . . , 2n− 2, 2n, c2n+2, 2n+ 1,
2n+ 2, c2n−1, cn−1, c2n, cn, cn+1, c1, cn+3

})

.

The remaining vertices induce as a subgraph of E2n+2 a copy of ELn−5. Thus, we are in a
position to invoke Lemma 5.2, and we see that the portion of the resulting matching tree
M(E2n+2) rooted from our remaining node yields a critical cell of size 2k+2 if n = 4k+1
and no critical cells if n = 4k + 3.

Subsubcase: Σ({2n + 1}, {1, 2, 3, . . . , 2n − 2, 2n, c2n+2, c2n+1, 2n + 2}) We begin by
using c2n−1 as a matching vertex with respect to vertex 2n − 1, followed by the use of
vertex cn as a matching vertex with respect to vertex cn−1. We are left to consider only
the node

Σ



{2n+ 1, c2n−1, cn} ,







1, 2, 3, . . . , 2n− 2, 2n, c2n+2, c2n+1,
2n+ 2, 2n− 1, c2n, c2n−2,
cn−2, cn−1, cn+1









 .

We now use vertex cn+2 as a splitting vertex, yielding the new nodes

Σ



{2n+ 1, c2n−1, cn} ,







1, 2, 3, . . . , 2n− 2, 2n, c2n+2, c2n+1,
2n+ 2, 2n− 1, c2n, c2n−2, cn−2,
cn−1, cn+1, cn+2











and

Σ



{2n+ 1, c2n−1, cn, cn+2} ,







1, 2, 3, . . . , 2n− 2, 2n, c2n+2, c2n+1,
2n+ 2, 2n− 1, c2n, c2n−2, cn−2,
cn−1, cn+1, c1, cn+3









 .

The remaining vertices for the first of these nodes induce as a subgraph of E2n+2 a copy of
ELn−5 while for the second of these nodes the remaining vertices induce as a subgraph of
E2n+2 a copy of ELn−6. Thus, we are in a position to invoke Lemma 5.2, and we conclude
that the portions of the resulting matching tree M(E2n+2) rooted from these final two
nodes yield a critical cell of size 2k + 2 if n = 4k + 1 and a critical cell of size 2k + 3 if
n = 4k + 3.

Summary: When n = 4k + 1, there are 3 critical cells, all of size 2k + 2. When
n = 4k + 3, there is a single critical cell of size 2k + 3. As each of these cases yield cells
of the same dimension, our resulting cell complex is a wedge of spheres, as desired.
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