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Abstract

For a graph G, let γ(G) denote the domination number of G and let δ(G) denote
the minimum degree among the vertices of G. A vertex x is called a bad-cut-vertex
of G if G−x contains a component, Cx, which is an induced 4-cycle and x is adjacent
to at least one but at most three vertices on Cx. A cycle C is called a special-cycle
if C is a 5-cycle in G such that if u and v are consecutive vertices on C, then at least
one of u and v has degree 2 in G. We let bc(G) denote the number of bad-cut-vertices
in G, and sc(G) the maximum number of vertex disjoint special-cycles in G that
contain no bad-cut-vertices. We say that a graph is (C4, C5)-free if it has no induced
4-cycle or 5-cycle. Bruce Reed [14] showed that if G is a graph of order n with
δ(G) ≥ 3, then γ(G) ≤ 3n/8. In this paper, we relax the minimum degree condition
from three to two. Let G be a connected graph of order n ≥ 14 with δ(G) ≥ 2. As
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an application of Reed’s result, we show that γ(G) ≤ 1

8
(3n + sc(G) + bc(G)). As

a consequence of this result, we have that (i) γ(G) ≤ 2n/5; (ii) if G contains no
special-cycle and no bad-cut-vertex, then γ(G) ≤ 3n/8; (iii) if G is (C4, C5)-free,
then γ(G) ≤ 3n/8; (iv) if G is 2-connected and dG(u) + dG(v) ≥ 5 for every two
adjacent vertices u and v, then γ(G) ≤ 3n/8. All bounds are sharp.
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1 Introduction

In this paper, we continue the study of domination in graphs. Domination in graphs is
now well studied in graph theory. The literature on this subject has been surveyed and
detailed in the two books by Haynes, Hedetniemi, and Slater [5, 6].

For notation and graph theory terminology we in general follow [5]. Specifically, let
G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|,
and let v be a vertex in V . The open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is N [v] = {v} ∪N(v). For a set S of vertices, the open
neighborhood of S is defined by N(S) = ∪v∈SN(v), and the closed neighborhood of S by
N [S] = N(S)∪S. If X, Y ⊆ V , then the set X is said to dominate the set Y if Y ⊆ N [X].
For a set S ⊆ V , the subgraph induced by S is denoted by G[S] while the graph G − S
is the graph obtained from G by deleting the vertices in S and all edges incident with S.
We denote the degree of v in G by dG(v), or simply by d(v) if the graph G is clear from
context. The minimum degree among the vertices of G is denoted by δ(G). A cycle on n
vertices is denoted by Cn.

A dominating set of a graph G = (V,E) is a set S of vertices of G such that every
vertex v ∈ V is either in S or adjacent to a vertex of S. (That is, N [S] = V .) The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating
set. A dominating set of G of cardinality γ(G) is called a γ(G)-set.

If G does not contain a graph F as an induced subgraph, then we say that G is F -free.
We say that G is (C4, C5)-free if G is both C4-free and C5-free; that is, if G has no induced
4-cycle and no induced 5-cycle.

By identifying two vertices x and y in G we mean replacing the vertices x and y by a
new vertex vxy and joining vxy to all vertices that were adjacent to x or y in G.

1.1 Reducible Graphs

In this section, we define two types of reducible graphs. Using these reductions, we define
a family F≤13 of graphs each of which has order at most 13.

Definition 1 If there is a path v1u1u2v2 on four vertices in a graph G such that d(u1) =
d(u2) = 2 in G, then we call the graph obtained from G by identifying v1 and v2 and
deleting {u1, u2} a type-1 G-reducible graph.
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Definition 2 If there is a path x1w1w2w3x2 on five vertices in a graph G such that
d(w2) = 2 and N(w1) = N(w3) = {x1, x2, w2} in G, then we call the graph obtained from
G by deleting {w1, w2, w3} and adding the edge x1x2 if the edge is not already present in
G a type-2 G-reducible graph.

Definition 3 Let F4 be a set of graphs only containing one element, namely the 4-cycle
C4. Thus, F4 = {C4}. For every i > 4 with i ≡ 1 (mod 3), we define the family Fi as
follows. A graph G belongs to Fi if and only if δ(G) ≥ 2 and there is a type-1 or a type-2
G-reducible graph that belongs to Fi−3.

Notice that for every i ≥ 4 with i ≡ 1 (mod 3), if G ∈ Fi, then G has order i. To
illustrate Definition 3, consider the graphs G7, G10 and G13 shown in Figure 1(a), 1(b)
and 1(c), respectively. Each of these graphs has minimum degree at least two. Note that
the 4-cycle C4 is both a type-1 G7-reducible graph and a type-2 G7-reducible graph. Thus,
G7 ∈ F7. The graph G7 itself is a type-1 G10-reducible graph, and so G10 ∈ F10. The
graph G10 is a type-2 G13-reducible graph, and so G13 ∈ F13.
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Figure 1: The graphs G7, G10 and G13.

The six graphs in the family F7 are shown in Figure 2. (The graph G7 in Figure 1(a)
is redrawn as the graph shown in Figure 2(b).)
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Figure 2: The family F7.

Lemma 1 If G is a graph and G′ is a type-1 G-reducible graph, then γ(G) = γ(G′) + 1.

Proof. Let v1u1u2v2 be a path in G such that d(u1) = d(u2) = 2 in G, and let G′ be
the type-1 G-reducible graph obtained from G by identifying v1 and v2 into one vertex w
and deleting {u1, u2}. We show first that γ(G) ≤ γ(G′) + 1. Let D′ be a γ(G′)-set. If
w ∈ D′, let D = (D′ \ {w})∪ {v1, v2}. If w /∈ D′, let w′ be a vertex in D′ that dominates
w in G′. Without loss of generality, we may assume that w′ ∈ NG(v1). (Possibly, w′ is
also in the neighborhood of v2 in G.) In this case, let D = D′ ∪ {u2}. In both cases,
D is a dominating set of G and |D| = |D′| + 1. Hence, γ(G) ≤ |D| = γ(G′) + 1.
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We show next that γ(G′) ≤ γ(G) − 1. Among all γ(G)-sets, let S be chosen so that
|S ∩ {u1, u2}| is minimum. Then either {v1, v2} ⊆ S or S ∩ {v1, v2} = ∅. If {v1, v2} ⊆ S,
then let S ′ = (S \ {v1, v2}) ∪ {w}. If S ∩ {v1, v2} = ∅, then we may assume without
loss of generality that S ∩ {u1, u2} = {u2} (if both u1 and u2 belong to S, replace them
by v1 and v2 to produce a γ(G)-set that contradicts our choice of S). In this case, let
S ′ = S \ {u2}. In both cases, S ′ is a dominating set of G′ and |S ′| = |S| − 1, and so
γ(G′) ≤ |S ′| = γ(G) − 1. Consequently, γ(G) = γ(G′) + 1. 2

Lemma 2 If G is a graph and G′ is a type-2 G-reducible graph, then γ(G) = γ(G′) + 1.

Proof. Let x1w1w2w3x2 be a path in G such that d(w2) = 2 and NG(w1) = NG(w3) =
{x1, x2, w2}, and let G′ be the type-2 G-reducible graph G′ = (G−{w1, w2, w3})∪{x1x2}.
We show first that γ(G) ≤ γ(G′) + 1. Let D′ be a γ(G′)-set. If D′ ∩ {x1, x2} = ∅, let
D = D′ ∪ {w2}. If D′ ∩ {x1, x2} 6= ∅, let D = D′ ∪ {w1}. Then, D is a dominating
set of G and |D| = |D′| + 1. Hence, γ(G) ≤ |D| = γ(G′) + 1. We show next that
γ(G′) ≤ γ(G) − 1. Among all γ(G)-sets, let S be chosen so that |S ∩ {w1, w2, w3}| is
minimum. Then, |S ∩ {w1, w2, w3}| = 1. If w2 ∈ S, then S ∩ {w1, w3} = ∅ and we let
S ′ = S\{w2}. If w2 /∈ S, then we may assume without loss of generality that {w1, x1} ⊆ S.
Thus, w3 /∈ S (possibly, x2 ∈ S). In this case, we let S ′ = S \ {w1}. In both cases, S ′ is a
dominating set of G′ and |S ′| = |S| − 1, and so γ(G′) ≤ |S ′| = γ(G) − 1. Consequently,
γ(G) = γ(G′) + 1. 2

Lemma 3 For every i ≥ 4 where i ≡ 1 (mod 3), if G ∈ Fi, then γ(G) = (i+ 2)/3.

Proof. We proceed by induction on i ≥ 4. When i = 4, G = C4 and γ(G) = 2 = (i+2)/3.
This establishes the base case. Assume, then, that i ≥ 7 and i ≡ 1 (mod3), and that
the theorem holds for all i′ ≥ 4 where i′ ≡ 1 (mod3) and i′ < i. Let G ∈ Fi. Then
there is a graph G′ in the family Fi−3 that is a type-1 G-reducible graph or a type-2
G-reducible graph. By the induction hypothesis, γ(G′) = (i− 1)/3. By Lemmas 1 and 2,
γ(G) = γ(G′) + 1 = (i+ 2)/3. 2

Definition 4 Let F≤13 = F4 ∪ F7 ∪ F10 ∪ F13.

We close this section with the following useful properties of graphs in the family F≤13.

Lemma 4 Let G ∈ F≤13 have order n. Then the following hold:
(a) n ≤ 13.
(b) γ(G) = (n+ 2)/3.
(c) If G ∈ F10 ∪ F13, then γ(G) ≤ 2n/5.
(d) If G contains a triangle, then at most one vertex in this triangle has degree 2 in

G.

Proof. Statement (a) follows from the fact that each graph in Fi has order i. State-
ment (b) is a consequence of Lemma 3, while Statement (c) is a consequence of State-
ments (a) and (b). Statement (d) follows from the observation that if there is a triangle
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in G that contains two vertices of degree 2 in G, then every type-1 G-reducible graph and
every type-2 G-reducible graph must also contain a triangle that contains two vertices of
degree 2 in the resulting graph. Continuing this process, we would reach a contradiction
since the 4-cycle, which is the only graph in F4, contains no triangle. 2

2 Known Results

The decision problem to determine whether the domination number of a graph is at most
some given integer is known to be NP-complete. Hence it is of interest to determine upper
bounds on the domination number of a graph. In 1989, McCuaig and Shepherd [12]
presented the beautiful result that the domination number of a connected graph with
minimum degree at least 2 is at most two-fifths its order except for seven exceptional
graphs. These seven exceptional graphs are precisely the graphs in the family F4 ∪ F7.
Hence the McCuaig-Shepherd result can be stated as follows:

Theorem 1 (McCuaig and Shepherd [12]) If G is a connected graph of order n with
δ(G) ≥ 2 and G /∈ F4 ∪ F7, then γ(G) ≤ 2n/5.

Remark 1. Equality in the bound of Theorem 1 is obtained for infinitely many graphs
which are characterized in [12]. We remark that every extremal graph of large order that
achieves equality in the bound of Theorem 1 has induced 4-cycles or induced 5-cycles.
Remark 2. We remark that there are infinitely many 2-connected graphs that achieve
equality in the bound of Theorem 1. One such family can be constructed as follows: Let
k ≥ 2 be an integer and let G2conn be the family of all graphs that can be obtained from a
2-connected graph H of order 2k that contains a perfect matching M as follows. For each
edge e = uv in the matching M , duplicate the edge e, subdivide one of the duplicated
edges twice and subdivide the other duplicated edge once. (Hence each edge uv is deleted
from H and replaced by a 5-cycle containing u and v as nonadjacent vertices on the cycle.)
Let G denote the resulting graph of order n = 5k. Then, γ(G) = 2k = 2n/5. A graph in
the family G2conn with k = 4 that is obtained from an 8-cycle H is shown in Figure 3.
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Figure 3: A graph in the family G2conn.

The family G2conn we have constructed is a family of 2-connected graphs that achieve
equality in the bound of Theorem 1. We remark, however, that every vertex in a graph
that belongs to the family G2conn is contained in an induced 5-cycle in that graph. Further
every graph in G2conn contains two adjacent degree-2 vertices.
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In 1996, Reed [14] presented the important and useful result that if we restrict the
minimum degree to be at least three, then the upper bound in Theorem 1 can be improved
from two-fifths its order to three-eights its order.

Theorem 2 (Reed [14]) If G is a graph of order n with δ(G) ≥ 3, then γ(G) ≤ 3n/8.

The ratio 3/8 in the above theorem is best possible. Gamble gave infinitely many
connected graphs of minimum degree at least three with domination number exactly
three-eights their order (see [12, 14]). Several authors attempted to improve the 3/8 ratio
by restricting the structure of the graph. Kawarabayashi, Plummer, Saito [8] proved that
for a 2-edge-connected cubic graph G of girth at least 9, the 3/8 ratio can be improved to
11/30, while Kostochka and Stodolsky [10] proved that for every connected cubic graph
of order at least 10, the 3/8 ratio can be improved to 4/11. Kostochka and Stodolsky [9]
showed that the supremum of γ(G)/|V (G)| over connected cubic graphs is at least 8/23,
but have no guess what the exact value is. Stodolsky [17] showed that this supremum of
γ(G)/|V (G)| over 2-connected cubic graphs is at least 9/26.

Molloy and Reed [13] showed that the domination number of a random cubic graph of
order n lies between 0.236n and 0.3126n with asymptotic probability 1. Duckworth and
Wormald [1] present an algorithm for finding in a cubic graph of order n, drawn uniformly
at random, a dominating set of size at most 0.27942n asymptotically almost surely.

Löwenstein and Rautenbach [11] showed that if we relax the minimum degree condition
in Reed’s Theorem 2 from three to two, but impose a girth condition of girth g ≥ 5, then
the domination number γ satisfies γ ≤ (1

3
+ 2

3g
)n. Recently, Harant and Rautenbach [4]

proved the following result.

Theorem 3 (Harant, Rautenbach [4]) If G is a graph of order n with δ(G) ≥ 2 that does
not contain cycles of length 4, 5, 7, 10 or 13, then γ(G) ≤ 3n/8.

3 Main Results

The result we establish is a fundamental result on the domination number of a graph
that cannot be improved in any substantial way in the sense that we establish precisely
what structural properties force up the domination number, namely special types of cut-
vertices (whose removal produces an induced 4-cycle) and special types of 5-cycles. We
have several aims in this paper.

Our first aim is to improve the upper bound of McCuaig and Shepherd [12] in Theo-
rem 1 in two instances: First when G is a (C4, C5)-free connected graph with minimum
degree at least two. Secondly when G is a 2-connected graph satisfying dG(u)+dG(v) ≥ 5
for every two adjacent vertices u and v. As a byproduct of our results we also obtain
a different proof of the McCuaig-Shepherd Theorem 1. Since our proof uses Reed’s re-
sult, this shows that the beautiful McCuaig-Shepherd result can be deduced from Reed’s
important result.

Our second aim is to show that the ratio 3/8 in Reed’s Theorem 2 holds if we relax
the minimum degree condition from three to two, but restrict the structure of the graph
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by forbidding special types of cut-vertices whose removal produces induced 4-cycles and
forbidding special types of 5-cycles.

Our third aim is to show that it is unnecessary to forbid cycles of length 7, 10 or 13
in the Harant-Rautenbach result, namely Theorem 3, for order n ≥ 14.

To accomplish these aims, we shall need the concepts of an X-dominating set, an X-
cut-vertex, an X-special-cycle, as well as the definition of a family F of graphs (standing
for “forbidden graphs”).

3.1 Restricted Domination

Definition 5 An X-dominating set, abbreviated X-DS, in a graph G is a dominating
set S of vertices of G such that X ⊆ S. The X-domination number of G, denoted by
γ(G;X), is the minimum cardinality of an X-DS. An X-DS of G of cardinality γ(G;X)
is called a γ(G;X)-set.

Note that the ∅-dominating sets in G are precisely the dominating sets in G. Thus,
γ(G) = γ(G; ∅). We remark that the concept of an X-DS was introduced by Sanchis
in [15] who coined the term restricted domination in graphs since among all dominating
sets, we restrict our attention to those that contain the specified subset, X, of vertices.
The concept of restricted domination in graphs was studied further in [2, 7, 16] and
elsewhere.

3.2 Bad-Cut-Vertices

Definition 6 Let G be a graph and let X ⊆ V (G). A vertex x ∈ V (G) is called an
X-cut-vertex of G if x /∈ X and G − x contains a component, Cx, which is an induced
4-cycle and which does not contain any vertices from X. Furthermore x is adjacent to at
least one but at most three vertices on Cx. Let bc(G;X) (standing for ‘bad cut-vertex’)
denote the number of X-cut-vertices in G. When X = ∅, we call an X-cut-vertex of G a
bad-cut-vertex of G and we denote bc(G;X) simply by bc(G). Thus, bc(G) is the number
of bad-cut-vertices in G.

3.3 Special Cycles

We define a vertex in a graph G as small if has degree 2 in G and large if it has degree
more than 2 in G.

Definition 7 Let G be a graph and let X ⊆ V (G). We say that a cycle C in a graph G
is an X-special-cycle if C is a 5-cycle in G which does not contain any vertices from X
and such that if u and v are consecutive vertices on C, then at least one of u and v has
degree 2 in G. Note that if C is an X-special-cycle in G, then C contains at most two
large vertices and these two vertices are not consecutive vertices of C although they may
be adjacent in G. Let sc(G;X) (standing for ‘special cycle’) denote the maximum number
of vertex disjoint X-special-cycles in G that contain no X-cut-vertex. When X = ∅, we
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call an X-special-cycle of G a special cycle of G and we denote sc(G;X) simply by sc(G).
Thus, sc(G) is the maximum number of vertex disjoint special cycles in G that contain no
bad-cut-vertex.

3.4 The Function ψ

Definition 8 Let G be a graph and let X ⊆ V (G). Let δ1(G;X) denote the number of
degree-1 vertices in G that do not belong to X.

For any graph G, and for a subset X of vertices in G, let

ψ(G;X) =
1

8
(3|V (G)| + 5|X| + sc(G;X) + bc(G;X) + 2δ1(G;X)) .

To illustrate the definition of ψ(G;X), let G be the graph shown in Figure 4 and let
X = {x}. The vertex labelled v is a X-cut-vertex of G. As |V (G)| = 13, |X| = 1,
sc(G;X) = 1, bc(G;X) = 1, and δ1(G;X) = 1, we have ψ(G;X) = 6. Note that for this
graph G, γ(G;X) = 6 = ψ(G;X).
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Figure 4: A graph G.

The following observations will prove useful.

Observation 1 Let G be a graph with δ(G) ≥ 1 and let X ⊆ V (G). Then the following
hold:
(a) If δ(G) ≥ 2, then δ1(G;X) = 0.
(b) sc(G) + bc(G) ≤ |V (G)|/5.
(c) If G is (C4, C5)-free, then sc(G;X) = 0.
(d) If G is C4-free, then bc(G;X) = 0.
(e) If G is 2-connected and |V (G)| 6= 5, then bc(G;X) = 0.
(f) If dG(u) + dG(v) ≥ 5 for every two adjacent vertices u and v, then sc(G) = 0.

3.5 The Graph Family F

In this section we define a family F of graphs (standing for “forbidden graphs”). We
remark that there are 28076 non-isomorphic graphs in the family F≤13 defined in Sec-
tion 1.1. Of these 28076 graphs in F≤13 which we generated by a computer program, 41
of them possess bad-cut-vertices. We now define a family F of (forbidden) graphs. Let

F = {G ∈ F≤13 | bc(G) = 0};
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that is, F consists of the 28035 non-isomorphic graphs in the family F≤13 that do not
have a bad-cut-vertex. The following properties of graphs in the family F will prove to
be useful.

Lemma 5 Let G ∈ F and let {u, v} ⊂ V (G). Then G has the following properties:
(a) γ(G− v) = γ(G) − 1.
(b) There is a γ(G)-set containing v.
(c) There is a γ(G)-set containing both u and v.
(d) If uv /∈ E(G) and G+ uv /∈ F , then γ(G+ uv) = γ(G) − 1.

Proof. We only have a computer proof of (a), (c) and (d). By Property (a), every γ(G−
v)-set can be extended to a γ(G)-set by adding to it the vertex v, implying Property (b). 2

3.6 Statement of Main Result

We are now in a position to present our main result.

Theorem 4 Let G be a connected graph and let X ⊆ V (G). If dG(x) ≥ 1 for all x ∈
V (G) \X, then either X = ∅ and G ∈ F or γ(G;X) ≤ ψ(G;X).

Setting X = ∅ in Theorem 4, we have the following consequence of Theorem 4 and
Observation 1(a). This key result we state as a theorem due to its importance.

Theorem 5 If G is a connected graph with δ(G) ≥ 2, then G ∈ F or

γ(G) ≤
1

8
(3|V (G)| + sc(G) + bc(G)).

As a consequence of Theorem 5, we have the following results.

Corollary 1 If G is a connected graph of order n with δ(G) ≥ 2 that contains no special
cycle and no bad-cut-vertex, then either G ∈ F or γ(G) ≤ 3n/8.

Corollary 2 If G is a connected graph of order n ≥ 14 with δ(G) ≥ 2 that contains no
special cycle and no bad-cut-vertex, then γ(G) ≤ 3n/8.

Note that if G is a graph with δ(G) ≥ 3, then G contains no special cycle and no
bad-cut-vertex and G /∈ F . Hence Theorem 2 due to Reed is an immediate consequence
of Corollary 1. We also remark that Theorem 1 due to McCuaig and Shepherd [12] is an
immediate consequence of Theorem 5, Lemma 4(c) and Observation 1(b).

There are several other consequences of Theorem 5 which we list below. Corol-
lary 3 follows from Theorem 5 and Observations 1(c) and 1(d). Corollary 4 follows from
Lemma 4(a) and Corollary 3. Corollary 5 follows from Theorem 5 and Observations 1(e)
and 1(f).

the electronic journal of combinatorics 18 (2011), #P12 9



Corollary 3 If G /∈ F is a (C4, C5)-free connected graph of order n with δ(G) ≥ 2, then
γ(G) ≤ 3n/8.

Corollary 4 If G is a (C4, C5)-free connected graph of order n ≥ 14 with δ(G) ≥ 2, then
γ(G) ≤ 3n/8.

Corollary 5 If G is a 2-connected graph of order n ≥ 14 and dG(u) + dG(v) ≥ 5 for
every two adjacent vertices u and v, then γ(G) ≤ 3n/8.

We remark that there are several graphs in the family F that are (C4, C5)-free. The
simplest such examples are the cycles Cn, where n ∈ {7, 10, 13}. An example of a (C4, C5)-
free graph in the family F that is not a cycle is shown in Figure 5.
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Figure 5: A (C4, C5)-free graph in the family F .

3.7 Sharpness of Corollary 3 and Corollary 4

To illustrate the sharpness of Corollary 3 and Corollary 4, we define a cycle-unit to be a
graph that is isomorphic to a cycle C8 and a key-unit to be a graph that is isomorphic
to a key L7,1, where L7,1 is the graph of order 8 obtained from a cycle C7 by attaching
a pendant edge to a vertex in the cycle. In a cycle-unit, we select an arbitrary vertex v
and the two vertices at distance three from v in the unit and we call these three vertices
the attachers of the cycle-unit, while in a key-unit we call the vertex of degree one the
attacher of the key-unit.

Let G denote the family of all graphs G that are obtained from the disjoint union of
ℓ ≥ 2 cycle-unit or key-unit by adding ℓ − 1 edges in such a way that G is connected
and every added edge joins two attachers. Note that an attacher may be incident with
any number of link edges, including the possibility of zero. Every edge of G joining two
attachers we call a link edge of G and we call the resulting two attachers link vertices of
G. A graph in the family G with four cycle-units and two key-units is shown in Figure 6
with the link vertices indicated by the large darkened vertices. Note that every link edge
of G is a bridge of G and that the attacher in every key-unit of G is the link vertex of the
key-unit, while every cycle-unit of G has either one, two or three link vertices. We remark
that it is possible that an attacher is incident with no link edge and is therefore not a link
vertex. Thus every link vertex is an attacher, but every attacher is not necessarily a link
vertex. Every graph in the family G is a (C4, C5)-free connected graph with minimum
degree two and domination number exactly three-eights its order.
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Figure 6: A graph G in the family G.

3.8 Sharpness of Corollary 5

To illustrate the sharpness of Corollary 5, let k ≥ 2 be an integer and let H be the family
of all graphs that can be obtained from a 2-connected graph F of order 2k that contains
a perfect matching M as follows. Replace each edge e = uv in the matching M by an
8-cycle uavbcdefu with two added edges, namely be and cf . Let H denote the resulting
2-connected graph of order n = 8k. Then, γ(H) = 3k = 3n/8 and the set of degree-2
vertices in H form an independent set. A graph in the family H with k = 4 that is
obtained from an 8-cycle F is shown in Figure 7.
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Figure 7: A graph in the family H.

We remark that Corollary 5 can be restated as follows: If G is a 2-connected graph
of order n ≥ 14 such that the set of degree-2 vertices in G form an independent set, then
γ(G) ≤ 3n/8.

4 Proof of Theorem 4

Recall the statement of Theorem 4.
Theorem 4. Let G be a connected graph and let X ⊆ V (G). If dG(x) ≥ 1 for all
x ∈ V (G) \X, then either X = ∅ and G ∈ F or γ(G;X) ≤ ψ(G;X).

Since our detailed proof of Theorem 4 is very technical, we provide here only a sum-
mary of the main ideas of the proof. A detailed proof of Theorem 4 is provided in the
appendix.
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Summary of the proof of Theorem 4. We proceed by induction on the lexicographic
sequence (|V (G)| − |X|, |V (G)|). For notational convenience, for a graph G and a subset
X ⊆ V (G) and a graph G′ and a subset X ′ ⊆ V (G′), we denote the sequence (|V (G)| −
|X|, |V (G)|) by s(G) and the sequence (|V (G′)| − |X ′|, |V (G′)|) by s(G′).

When |V (G)|−|X| = 0, we have that V (G) = X, and γ(G;X) = |X| = ψ(G;X). This
establishes the base case. Assume, then, that |V (G)|− |X| ≥ 1 and that for all connected
graphs G′ and subsets X ′ ⊆ V (G′) for which dG′(x) ≥ 1 for every x ∈ V (G′) \ X ′ that
have lexicographic sequence s(G′) smaller than s, we have either X ′ = ∅ and G′ ∈ F or
γ(G′;X ′) ≤ ψ(G′;X ′). Let G be a connected graph and let X be a subset of vertices in
G such that dG(x) ≥ 1 for all x ∈ V (G) \X and with lexicographic sequence s(G) = s.
We proceed further with a series of claims that we may assume the graph G to satisfy if
the result does not hold.

We first show that |V (G)| ≥ 3 and that δ1(G;X) = 0. From this we deduce that
dG(x) ≥ 2 for all x ∈ V (G) \X. Thus if X = ∅, then δ(G) ≥ 2. We then establish that
there is no X-cut-vertex in G and no X-special-cycle in G; that is, bc(G;X) = 0 and
sc(G;X) = 0. We show next that no vertex of X is a cut-vertex of G.

Next we consider the set S of all vertices of G of degree 2 which do not belong to X;
that is, S = {x ∈ V (G) \X | dG(x) = 2}. We prove various properties of the set S. First
we show that S 6= ∅. Thereafter we prove that there is no path of length 2 in G[S]. Next
we establish that there is no path of length 1 in G[S]. Thus, S is an independent set in G.
Hence a neighbor of a vertex of S in G is a large vertex or belongs to X. We show then
that N(S)∩X = ∅, and so both neighbors of a vertex of S in G are large vertices and do
not belong to X; that is, if v ∈ S and u ∈ N(v), then u /∈ X and dG(u) ≥ 3. Thereafter
we establish that no two vertices of S belong to a common 4-cycle that contains a vertex
of degree at least 4 in G. We then prove that no two vertices of S belong to a common
4-cycle. Using our assumptions to date, we establish that the set S is a packing in G;
that is, every two distinct vertices in S are at distance at least 3 apart in G.

We then consider a vertex u ∈ S and let N(u) = {v, w}. By our earlier observations,
we note that {v, w} ∩ X = ∅ and every vertex within distance 2 from u in G that does
not belong to X has degree at least 3 in G. Let G′ = G − N [u] and let X ′ = X.
Thus, |V (G′)| = |V (G)| − 3 and |X ′| = |X|. Let G1 be a component of G′ and let
X1 = X ∩ V (G1). We then show that if γ(G1;X1) > ψ(G1;X1), then G′ = G1. Further,
we show that γ(G′;X ′) ≤ ψ(G′;X ′) and sc(G′;X ′) = 0. We show next that the degree-2
vertex u can be chosen so that bc(G′;X ′) = 0. Thus since every vertex at distance 2 from
u in G that does not belong to X has degree at least 3 in G, we have that dG′(x) ≥ 1 for all
x ∈ V (G′)\X ′. Finally, we show that δ1(G

′;X ′) = 0. Thus, ψ(G′;X ′) = ψ(G;X)−9/8 <
ψ(G;X) − 1. Every γ(G′;X ′)-DS can be extended to a X-DS of G by adding to it
the vertex u, and so γ(G;X) ≤ γ(G′;X ′) + 1 < ψ(G;X). This completes the proof of
Theorem 4. 2
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Detailed Proof of Theorem 4

We begin with a preliminary observation. Let G be an arbitrary graph. By attaching
a G8-unit to a specified vertex v of G, we mean adding a (disjoint) copy of the graph G8

of Figure 8 and identifying any one of its vertices that is in a triangle with v.

Figure 8: A cubic graph G8 with domination number 3

We will use the following observation in the proof of Theorem 4.

Observation 2 If G′ is obtained from a graph G by attaching a G8-unit to a vertex v,
then there exists a γ(G′)-set that contains v and two other vertices in the G8-unit.

To prove Theorem 4, we proceed by induction on the lexicographic sequence (|V (G)|−
|X|, |V (G)|). For notational convenience, for a graph G and a subset X ⊆ V (G) and a
graph G′ and a subset X ′ ⊆ V (G′), we denote the sequence (|V (G)| − |X|, |V (G)|) by
s(G) and the sequence (|V (G′)| − |X ′|, |V (G′)|) by s(G′).

When |V (G)|−|X| = 0, we have that V (G) = X, and γ(G;X) = |X| = ψ(G;X). This
establishes the base case. Assume, then, that |V (G)|− |X| ≥ 1 and that for all connected
graphs G′ and subsets X ′ ⊆ V (G′) for which dG′(x) ≥ 1 for every x ∈ V (G′) \ X ′ that
have lexicographic sequence s(G′) smaller than s, we have either X ′ = ∅ and G′ ∈ F or
γ(G′;X ′) ≤ ψ(G′;X ′). Let G be a connected graph and let X be a subset of vertices in
G such that dG(x) ≥ 1 for all x ∈ V (G) \X and with lexicographic sequence s(G) = s.
We proceed further with a series of claims that we may assume the graph G to satisfy if
the result does not hold.

Claim A |V (G)| ≥ 3.

Proof. Suppose G = K2. Then, |V (G)| = 2 and sc(G;X) = bc(G;X) = 0. Since
|V (G)| − |X| ≥ 1, we have that X = ∅ or |X| = 1. If X = ∅, then δ1(G;X) = 2
and γ(G;X) = 1 < 6/8 + 2/4 = 3|V (G)|/8 + δ1(G;X)/4 = ψ(G;X). If |X| = 1, then
δ1(G;X) = 1 and γ(G;X) = 1 = 6/8+1/4 = ψ(G;X). Hence if G = K2, then the desired
result holds. Hence we may assume that |V (G)| ≥ 3. 2

Claim B δ1(G;X) = 0.

Proof. Suppose that δ1(G;X) ≥ 1. Then there is a degree-1 vertex v in G such that
v /∈ X. Let u be the neighbor of v. By Claim A, dG(u) ≥ 2. Let G′ = G − v and
let X ′ = X ∪ {u}. Then, |V (G′)| = |V (G)| − 1 and |X ′| = |X| (if u ∈ X) or |X ′| =
|X| + 1 (if u /∈ X), and so |V (G′)| − |X ′| < |V (G)| − |X|. Further we note that |X ′| ≥
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1. Hence by induction there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). Since
u ∈ D′, the set D′ is also a X-DS in G, and so γ(G;X) ≤ |D′| ≤ ψ(G′;X ′). As
sc(G′;X ′) ≤ sc(G;X), bc(G′;X ′) ≤ bc(G;X) and δ1(G

′;X ′) = δ1(G;X)−1, we note that
ψ(G′;X ′) ≤ 3(|V (G)|−1)/8+5(|X|+1|)/8+sc(G;X)/8+bc(G;X)/8+(δ1(G;X)−1)/4 =
ψ(G;X)−3/8+5/8−1/4 = ψ(G;X). Thus, γ(G;X) ≤ ψ(G′;X ′) ≤ ψ(G;X), as desired. 2

As an immediate consequence of Claim B, we have the following claim.

Claim C dG(x) ≥ 2 for all x ∈ V (G) \X.

Note that if X = ∅, then Claim C implies that δ(G) ≥ 2.

Claim D bc(G;X) = 0.

Proof. Suppose bc(G;X) > 0. Let x be a X-cut-vertex in G and let H be a component
in G − x that is an induced 4-cycle not containing any vertices from X. By definition,
x /∈ X. Let u be a neighbor of x in V (H), and let v be the vertex at distance 2 from
u in the 4-cycle H . Let G′ = G − V (H) and let X ′ = X ∪ {x}. In particular, we note
that |X ′| ≥ 1. Since G is connected, so too is G′. By induction there is a X ′-DS D′ in
G′ such that |D′| ≤ ψ(G′;X ′). Let D = D′ ∪ {v}. Then, D is a X-DS in G, and so
γ(G;X) ≤ |D| = |D′| + 1 ≤ ψ(G′;X ′) + 1. As |V (G′)| = |V (G)| − 4, |X ′| = |X| + 1,
sc(G′;X ′) = sc(G;X), bc(G′;X ′) = bc(G;X)−1, and δ1(G

′;X ′) = δ1(G;X) = 0, we note
that ψ(G′;X ′) = [ψ(G;X) − 12/8 + 5/8 − 1/8] = ψ(G;X) − 1. Thus, γ(G;X) ≤ |D| ≤
ψ(G′;X ′) + 1 = ψ(G;X), as desired. 2

Claim E sc(G;X) = 0.

Proof. Suppose sc(G;X) > 0. Let C: v1v2v3v4v5v1 be an X-special-cycle in G. Renaming
vertices if necessary, we may assume that v2, v4, v5 are small vertices of G. Possibly,
v1 or v3 or both v1 and v3 are large vertices, and possibly v1v3 is an edge of G. Let
G′ = G[V (G) \ {v2, v4, v5}] ∪ {v1v3} and let X ′ = X ∪ {v1, v3}. In particular, we note
that |X ′| ≥ 2. Since G is connected, so too is G′. By induction there is a X ′-DS D′ in
G′ such that |D′| ≤ ψ(G′;X ′). As |V (G′)| = |V (G)| − 3, |X ′| = |X| + 2, sc(G′;X ′) =
sc(G;X) − 1, bc(G′;X ′) = bc(G;X) = 0, and δ1(G

′;X ′) = δ1(G;X) = 0, we note that
ψ(G′;X ′) = ψ(G;X) − 9/8 + 10/8 − 1/8 = ψ(G;X). Since D′ is an X-DS of G, we have
that γ(G;X) ≤ |D′| ≤ ψ(G;X), as desired. 2

Claim F No vertex of X is a cut-vertex of G.

Proof. Suppose that x ∈ X is a cut-vertex of G. Let H1, H2, . . . , Hℓ, ℓ ≥ 2, be the
components of G− x. For i = 1, 2, . . . , ℓ, let Gi = G[V (Hi) ∪ {x}]. Hence, G is obtained
from the disjoint union G1 ∪G2 ∪ · · · ∪Gℓ by identifying the vertex x from each graph Gi

into one common vertex. For i = 1, 2, . . . , ℓ, let Xi = X∩V (Gi), and note that x ∈ Xi and
that each Gi is a connected graph such that dGi

(x) ≥ 2 for all x ∈ V (Gi) \Xi. Applying
the inductive hypothesis to Gi, there is a Xi-DS Di in Gi such that |Di| ≤ ψ(Gi;Xi).
Since x ∈ Xi, we have that x ∈ Di for each i = 1, 2, . . . , ℓ. Let
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D =
ℓ
⋃

i=1

Di.

Then, D is a X-DS in G, and so

γ(G;X) ≤ |D| =

(

ℓ
∑

i=1

|Di|

)

− (ℓ− 1) ≤

(

ℓ
∑

i=1

ψ(Gi;Xi)

)

− (ℓ− 1). (1)

As

|V (G)| =
ℓ
∑

i=1

|V (Gi)| − (ℓ− 1),

|X| =
ℓ
∑

i=1

|Xi| − (ℓ− 1),

bc(G;X) + sc(G;X) =
ℓ
∑

i=1

(bc(Gi;Xi) + sc(Gi;Xi)),

δ1(G;X) =
ℓ
∑

i=1

δ1(Gi;Xi),

we have that

ℓ
∑

i=1

ψ(Gi;Xi) ≤ ψ(G;X) +
3

8
(ℓ− 1) +

5

8
(ℓ− 1) = ψ(G;X) + (ℓ− 1). (2)

Hence, by Equation (1) and Equation (2), we have that γ(G;X) ≤ ψ(G;X), as desired. 2

Let S be the set of all vertices of G of degree 2 which do not belong to X; that is,
S = {x ∈ V (G) \X | dG(x) = 2}.

Claim G S 6= ∅.

Proof. Suppose S = ∅. Then, dG(x) ≥ 3 for every vertex x ∈ V (G) \ X. Let G′ be
obtained from G by attaching a G8-unit to every vertex of X in G. Then, δ(G′) ≥ 3. Note
that |V (G′)| = |V (G)| + 7|X|, sc(G′;X ′) = sc(G;X) = 0, bc(G′;X ′) = bc(G;X) = 0,
and δ1(G

′;X ′) = δ1(G;X) = 0. By Reed’s Theorem 2, γ(G′) ≤ 3|V (G′)|/8 = 3(|V (G)| +
7|X|)/8. By Observation 2, there exists a γ(G′)-set D′ that contains X and two vertices
in each G8-unit that do not belong to X. Let D be the restriction of D′ to G; that
is, D = D′ ∩ V (G). Then, D is an X-DS of G. Hence, γ(G;X) ≤ |D| = |D′| − 2|X| =
γ(G′)−2|X| ≤ 3(|V (G)|+7|X|)/8−2|X| = 3|V (G)|/8+5|X|/8 = ψ(G;X), as desired. 2

Claim H There is no path of length 2 in G[S].

Proof. Suppose that there is a path, u1u2u3, of length 2 in G[S]. Let N(u1) = {u2, v1}
and N(u3) = {u2, v3}. We proceed further with the following subclaim.
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Subclaim H1 v1 6= v3.

Proof. Suppose v1 = v3. If dG(v1) = 2, then G = C4 and v1 ∈ X. In this case,
γ(G;X) ≤ |{u1, v1}| = 2 < 12/8+5/8 = ψ(G;X), as desired. Hence we may assume that
dG(v1) ≥ 3. Since v1 is a cut-vertex of G, v1 /∈ X by Claim F.

Suppose dG(v1) = 3. Let w1 be the neighbor of v1 different from u1 and u3. Then
w1 ∈ X, for otherwise w1 would be an X-cut-vertex, contradicting our assumption that
bc(G;X) = 0. If dG(w1) ≥ 2, then w1 would be a cut-vertex of G, contradicting Claim F.
Hence, dG(w1) = 1, and so |V (G)| = 5 and |X| = 1. Then {u2, w1} is an X-DS in G,
and so γ(G;X) ≤ 2 < 20/8 = 3|V (G)|/8 + 5|X|/8 = ψ(G;X), as desired. Hence we may
assume that dG(v1) ≥ 4.

Let G′ = G − {u1, u2, u3} and let X ′ = X. In particular, we note that dG′(v1) ≥ 2.
Since G is connected, so too is G′. Thus we can apply the inductive hypothesis to G′.

Suppose there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). Then, D′∪{u2} is a X-
DS in G, and so γ(G;X) ≤ |D′|+1 ≤ ψ(G′;X ′)+1. As |V (G′)| = |V (G)|−3, |X ′| = |X|,
sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1, and δ1(G

′;X ′) = δ1(G;X) = 0,
we have that γ(G;X) ≤ ψ(G′;X ′)+1 ≤ [ψ(G;X)−9/8+1/8]+1 = ψ(G;X), as desired.
Hence we may assume that there is no X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′).

By induction, X ′ = X = ∅ and G′ ∈ F . Let |V (G′)| = n′. Then, n′ ∈ {4, 7, 10, 13}.
By Lemma 4(b), γ(G′) = (n′ + 2)/3 = (|V (G)| − 1)/3. Any dominating set of G′ can
be extended to a dominating set of G by adding to it the vertex u2, and so γ(G;X) =
γ(G) ≤ γ(G′) + 1 = (|V (G)|+ 2)/3. If n′ = 13, then |V (G)| = 16 and γ(G;X) = γ(G) ≤
6 = 3|V (G)|/8 = ψ(G;X). If n′ ∈ {4, 7, 10}, then G ∈ F . 2

By Subclaim H1, v1 6= v3. Note that it is possible that v1v3 ∈ E(G). Suppose that
NG(v1) = {u1, v3} and v1 /∈ X. Then, C: v1u1u2u3v3v1 is an induced cycle in G with
at most one large vertex, namely the vertex v3. Since sc(G;X) = 0, the cycle C is not
a X-special-cycle in G, implying that v3 ∈ X. Let G′ = G − {u1, u2, u3, v1} and let
X ′ = X. Since v3 ∈ X ′, we note that |X ′| ≥ 1. Applying the inductive hypothesis to
G′, there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). The set D′ ∪ {u1} is a X-DS
in G, and so γ(G;X) ≤ |D′| + 1 ≤ ψ(G′;X ′) + 1. As |V (G′)| = |V (G)| − 4, |X ′| = |X|,
sc(G′;X ′) = sc(G;X) = 0, bc(G′;X ′) = bc(G;X) = 0, and δ1(G

′;X ′) = δ1(G;X) = 0, we
have that γ(G;X) ≤ ψ(G′;X ′) + 1 ≤ [ψ(G;X)− 12/8] + 1 < ψ(G;X), as desired. Hence
we may assume that if NG(v1) = {u1, v3}, then v1 ∈ X. Similarly, we may assume that if
NG(v3) = {u3, v1}, then v3 ∈ X.

Let G′ = (G− {u1, u2, u3}) ∪ {v1v3} and let X ′ = X. If dG′(v1) = 1, then, NG(v1) =
{u1, v3}, and so, by assumption, v1 ∈ X. Hence, dG′(v1) ≥ 2 or v1 ∈ X. Similarly,
dG′(v3) ≥ 2 or v3 ∈ X. Thus, dG′(x) ≥ 2 for all x ∈ V (G′) \X ′. Since G is connected, so
too is G′. Hence we can apply the inductive hypothesis to G′.

Suppose there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). If v1 ∈ D′, let D =
D′∪{u3}. If v1 /∈ D′ and v3 ∈ D′, let D = D′∪{u1}. If {v1, v3}∩D

′ = ∅, let D = D′∪{u2}.
In all cases, D is a X-DS of G, and so γ(G;X) ≤ |D| = |D′| + 1 ≤ ψ(G′;X ′) + 1. As
|V (G′)| = |V (G)| − 3, |X ′| = |X|, sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1,
and δ1(G

′;X ′) = δ1(G;X) = 0, we have that γ(G;X) ≤ ψ(G′;X ′)+1 ≤ [ψ(G;X)−9/8+
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1/8] + 1 = ψ(G;X), as desired. Hence we may assume that there is no X ′-DS D′ in G′

such that |D′| ≤ ψ(G′;X ′).
By induction, X ′ = X = ∅ and G′ ∈ F . Let |V (G′)| = n′. Then, n′ ∈ {4, 7, 10, 13}.

By Lemma 4(b), γ(G′) = (n′ + 2)/3 = (|V (G)| − 1)/3. Any dominating set of G′ can be
extended to a dominating set of G by adding one vertex from the set {u1, u2, u3}, and so
γ(G) ≤ γ(G′) + 1 = (|V (G)|+ 2)/3. If n′ = 13, then |V (G)| = 16 and γ(G;X) = γ(G) ≤
6 ≤ 3|V (G)|/8 = ψ(G;X). If n′ ∈ {4, 7, 10}, then G ∈ F . 2

Claim I There is no path of length 1 in G[S].

Proof. Suppose that there is a path, u1u2, of length 1 in G[S]. Let N(u1) = {u2, v1} and
N(u2) = {u2, v2}. We proceed further with the following subclaim.

Subclaim I1 v1 6= v2.

Proof. Suppose v1 = v2. If dG(v1) = 2, then G = K3 and v1 ∈ X. In this case,
γ(G;X) = |{v1}| = 1 < 9/8 + 5/8 = ψ(G;X), as desired. Hence we may assume that
dG(v1) ≥ 3. Since v1 is a cut-vertex of G, v1 /∈ X by Claim F. Let G′ = G − {u1, u2}
and let X ′ = X ∪ {v1}. By the inductive hypothesis, there is a X ′-DS D′ in G′ such that
|D′| ≤ ψ(G′;X ′). Since D′ is a X-DS in G, we have that γ(G;X) ≤ |D′| ≤ ψ(G′;X ′).
As |V (G′)| = |V (G)| − 2, |X ′| = |X| + 1, sc(G′;X ′) = sc(G;X) = 0, bc(G′;X ′) =
bc(G;X) = 0, and δ1(G

′;X ′) = δ1(G;X) = 0, we have that γ(G;X) ≤ ψ(G′;X ′) =
ψ(G;X) − 6/8 + 5/8 < ψ(G;X), as desired. 2

By Subclaim I1, v1 6= v2. (Possibly, v1v2 ∈ E(G).) Let G′ be obtained from G by
identifying v1 and v2 into one vertex w and by deleting {u1, u2}. Since G is connected,
so too is G′. Note that by identifying v1 and v2 we cannot generate a vertex of degree 1
as sc(G;X) = 0. If v1 or v2 belongs to X, then let X ′ = (X ∪ {w}) \ {v1, v2}. If
{v1, v2} ∩X = ∅, let X ′ = X. In both cases, we note that |X ′| ≤ |X|.

By Claim H, for i ∈ {1, 2}, dG(vi) ≥ 3 or vi ∈ X. Hence if dG′(w) = 0, then
G ∈ {P4, C4} and X = {v1, v2}. In this case, γ(G;X) = 2 < 22/8 = ψ(G;X). Hence
we may assume that dG′(w) ≥ 1. Let w′ be a neighbor of w in G′. The vertex w′ is
adjacent to at least one of v1 and v2 in G. Without loss of generality, we may assume
that v1w

′ ∈ E(G).
Suppose that dG′(w) = 1 and w /∈ X. Then, {v1, v2} ∩X = ∅, and so dG(vi) ≥ 3 for

i = 1, 2. Further, NG(v1) = {u1, v2, w
′} and NG(v2) = {u2, v1, w

′}. If w′ /∈ X, then the
vertex w′ is a X-cut-vertex of G, contradicting Claim D. Hence, w′ ∈ X. By Claim F, w′

is not a cut-vertex of G, and so |V (G)| = 5 and |X| = 1. Then {u1, w
′} is an X-DS in G,

and so γ(G;X) = 2 < 20/8 = 3|V (G)|/8 + 5|X|/8 = ψ(G;X), as desired. Hence we may
assume that dG′(w) ≥ 2 or w ∈ X. Since G is connected, so too is G′. Therefore we can
apply the inductive hypothesis to G′.

Suppose there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). If w ∈ D′, let D =
(D′ \ {w}) ∪ {v1, v2}). If w /∈ D′, then in order to dominate w there must be a neighbor
of w in D′. We may assume that w′ ∈ D′. We now let D = D′ ∪ {u2}. In both cases,
|D| = |D′|+1 and D is a X-DS in G. Thus, γ(G;X) ≤ |D| = |D′|+1 ≤ ψ(G′;X ′)+1. As
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|V (G′)| = |V (G)| − 3, |X ′| ≤ |X|, sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1,
and δ1(G

′;X ′) = δ1(G;X) = 0, we have that γ(G;X) ≤ ψ(G′;X ′)+1 ≤ [ψ(G;X)−9/8+
1/8] + 1 = ψ(G;X), as desired. Hence we may assume that there is no X ′-DS D′ in G′

such that |D′| ≤ ψ(G′;X ′).
By induction, X ′ = X = ∅ and G′ ∈ F . Let |V (G′)| = n′. Then, n′ ∈ {4, 7, 10, 13}.

By Lemma 4(b), γ(G′) = (n′ + 2)/3 = (|V (G)| − 1)/3. Let D′ be a dominating set of G′.
If w ∈ D′, let D = (D′ \ {w}) ∪ {v1, v2}). If w /∈ D′, then we may assume that w′ ∈ D′.
We now let D = D′ ∪{u2}. In both cases, |D| = |D′|+ 1 and D is a dominating set of G.
Thus, γ(G) ≤ |D| = |D′| + 1 = γ(G′) + 1 = (|V (G)| + 2)/3. If n′ = 13, then |V (G)| = 16
and γ(G;X) = γ(G) ≤ 6 = 3|V (G)|/8 = ψ(G;X). If n′ ∈ {4, 7, 10}, then G ∈ F . 2

By Claim I, we may assume that S is an independent set in G; that is, G[S] consists
of isolated vertices. In particular, we note that a neighbor of a vertex of S in G is a large
vertex or belongs to X.

Claim J N(S) ∩X = ∅.

Proof. Let v ∈ S and let N(v) = {w1, w2}. Suppose that {w1, w2} ∩ X 6= ∅. We may
assume that w1 ∈ X. Note that w2 ∈ X or dG(w2) ≥ 3.

Suppose that dG(w1) = 1. Let G2 = G− {v, w1} and let X2 = X \ {w1}. Then, G2 is
a connected graph such that dG2

(x) ≥ 2 for all x ∈ V (G2) \X2.
Suppose there is a X2-DS D2 in G2 such that |D2| ≤ ψ(G2;X2). Since D2 ∪ {w1} is a

X-DS in G, we have that γ(G;X) ≤ |D2|+ 1 ≤ ψ(G2;X2) + 1. As |V (G2)| = |V (G)| − 2,
|X2| = |X|−1, sc(G2;X2)+bc(G2;X2) ≤ 1 = sc(G;X)+bc(G;X)+1, and δ1(G2;X2) =
δ1(G;X) = 0, we have that γ(G;X) ≤ ψ(G2;X2)+1 ≤ [ψ(G;X)−6/8−5/8+1/8]+1 <
ψ(G;X), as desired. Hence we may assume that γ(G2;X2) > ψ(G2;X2).

By the inductive hypothesis, we must have that X2 = ∅ and G2 ∈ F . By our earlier
assumptions (see Claim D or Claim I), G2 6= C4. Hence, |V (G2)| ≥ 7, and so |V (G)| ≥ 9.
By Lemma 4(b), γ(G2) ≤ (|V (G2)|+2)/3 = |V (G)|/3. Any γ(G2)-set can be extended to
anX-DS of G by adding to it the vertex {w1}, and so γ(G;X) ≤ γ(G2)+1 = |V (G)|/3+1.
However since |X| = 1, ψ(G;X) = 3|V (G)|/8+5/8. Thus since |V (G)| ≥ 9, we have that
γ(G;X) ≤ ψ(G;X), as desired. Hence we may assume that dG(w1) ≥ 2.

Let G′ = G − v and let X ′ = X. By Claim F, w1 is not a cut-vertex of G. Hence,
G′ is connected. By the inductive hypothesis, there is a X ′-DS D′ in G′ such that |D′| ≤
ψ(G′;X ′). Since D′ is a X-DS in G, we have that γ(G;X) ≤ |D′| ≤ ψ(G′;X ′). As
|V (G′)| = |V (G)| − 1, |X ′| = |X|, sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1,
and δ1(G

′;X ′) = δ1(G;X) = 0, we have that γ(G;X) ≤ |D′| ≤ ψ(G′;X ′) ≤ ψ(G;X) −
3/8 + 1/8 < ψ(G;X), as desired. 2

By Claim J, both neighbors of a vertex of S in G are large vertices and do not belong
to X; that is, if v ∈ S and u ∈ N(v), then u /∈ X and dG(u) ≥ 3.

Claim K No two vertices of S belong to a common 4-cycle that contains a vertex of
degree at least 4 in G.
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Proof. Suppose that v1uv2vv1 is a 4-cycle in G where {u, v} ⊆ S and dG(v1) ≥ 4.
By Claim J, X ∩ {v1, v2} = ∅. Thus by our earlier assumptions, dG(v2) ≥ 3. Let
G′ = G− {u, v}.

Suppose that G′ is connected. Let X ′ = X ∪ {v2}. By the inductive hypothesis,
there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). Since D′ is a X-DS in G, we
have that γ(G;X) ≤ |D′| ≤ ψ(G′;X ′). As |V (G′)| = |V (G)| − 2, |X ′| = |X| + 1,
sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1, and δ1(G

′;X ′) = δ1(G;X) = 0,
we have that γ(G;X) ≤ ψ(G′;X ′) ≤ ψ(G;X) − 6/8 + 5/8 + 1/8 = ψ(G;X), as desired.
Hence we may assume that G′ is disconnected. Let G1 and G2 be the two components of
G′, where vi ∈ V (Gi) for i ∈ {1, 2}. Let X1 = X ∩ V (G1).

Suppose that there is a X1-DS D1 in G1 such that |D1| ≤ ψ(G1;X1). In this case, let
X2 = (X∩V (G2))∪{v2}. Note that for i ∈ {1, 2}, dGi

(x) ≥ 2 for all x ∈ V (Gi)\Xi. By the
inductive hypothesis, there is a X2-DS D2 in G2 such that |D2| ≤ ψ(G2;X2). Since v2 ∈
D2, the set D1∪D2 is a X-DS in G, and so γ(G;X) ≤ |D1|+|D2| ≤ ψ(G1;X1)+ψ(G2;X2).
As |V (G)| = |V (G1)| + |V (G2)| − 2, |X| = |X1| + |X2| + 1, (sc(G1;X1) + bc(G1;X1)) +
(sc(G2;X2) + bc(G2;X2)) ≤ sc(G;X) + bc(G;X) + 1, and δ1(G1;X1) = δ1(G2;X2) =
δ1(G;X) = 0, we have that γ(G;X) ≤ ψ(G1;X1) + ψ(G2;X2) ≤ ψ(G;X) − 6/8 + 5/8 +
1/8 ≤ ψ(G;X), as desired. Hence we may assume that γ(G1;X1) > ψ(G1;X1).

By the inductive hypothesis, we must have that X1 = ∅ and G1 ∈ F . By Claim I,
G1 6= C4. Hence, |V (G1)| ≥ 7. By Lemma 4(b), γ(G1) = (|V (G1)|+2)/3. By Lemma 5(b),
there is a γ(G1)-set S1 containing v1. If G2 ∈ F and X = ∅, then |V (G2)| ≥ 7 (and
so, |V (G)| ≥ 16) and γ(G2) = (|V (G2)| + 2)/3. In this case, let S2 be a γ(G2)-set
and let S = S1 ∪ S2. Since v1 ∈ S1, the set S is a dominating set of G. Thus since
|V (G)| = |V (G1)| + |V (G2)| + 2 ≥ 16, we have that γ(G;X) = γ(G) ≤ γ(G1) + γ(G2) =
(|V (G1)| + 2)/3 + (|V (G2)| + 2)/3 = (|V (G)| + 2)/3 ≤ 3|V (G)|/8 ≤ ψ(G;X), as desired.
Hence, we may assume that G2 /∈ F or G2 ∈ F and X 6= ∅.

By induction, there is a X-DS T2 in G2 such that |T2| ≤ ψ(G2;X). Since v1 ∈ S1, the
set S1 ∪ T2 is a X-DS of G, and so γ(G;X) ≤ |S1| + |T2| ≤ (|V (G1)| + 2)/3 + ψ(G2;X).
As |V (G2)| = |V (G)| − |V (G1)| − 2 and sc(G2;X2) + bc(G2;X2) + δ1(G2;X2) ≤ 1 =
sc(G;X) + bc(G;X) + δ1(G;X) + 1, we have that ψ(G2;X) ≤ ψ(G;X) − 3(|V (G1)| +
2)/8+1/4 = ψ(G;X)−3|V (G1)|/8−1/2. Hence, γ(G;X) ≤ (|V (G1)|+2)/3+ψ(G;X)−
3|V (G1)|/8 − 1/2 ≤ ψ(G;X) + (4 − |V (G1)|)/24 < ψ(G;X), as desired. 2

Claim L No two vertices of S belong to a common 4-cycle.

Proof. Suppose that v1uv2vv1 is a 4-cycle in G where {u, v} ⊆ S. By Claim J, X ∩
{v1, v2} = ∅. Thus by our earlier assumptions, both v1 and v2 are large vertices of G. By
Claim K, dG(v1) = dG(v2) = 3. If v1v2 ∈ E(G), then G = K4 − e and the desired result
follows readily. Hence we may assume that v1v2 /∈ E(G). Let NG(v1) = {u, v, w1} and let
NG(v2) = {u, v, w2}.

Suppose w1 = w2. Then w1 ∈ X, for otherwise w1 would be an X-cut-vertex, contra-
dicting our assumption that bc(G;X) = 0. If dG(w1) ≥ 3, then w1 would be a cut-vertex
of G, contradicting Claim F. Hence dG(w1) = 2, and so G = K2,3 and |X| = 1. Thus
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{v1, w1} is an X-DS in G, and so γ(G;X) = 2 < 20/8 = 3|V (G)|/8 + 5|X|/8 = ψ(G;X),
as desired. Hence we may assume that w1 6= w2.

Let G′ = (G−{u, v, v2})∪{v1w2}; that is, G is obtained from G−{u, v, v2} by adding
the edge v1w2. Let X ′ = X and note that dG′(x) ≥ 2 for all x ∈ V (G′) \X ′.

Suppose there is a X ′-DS D′ in G′ such that |D′| ≤ ψ(G′;X ′). If v1 ∈ D′, let
D = D′ ∪ {v2}. If v1 /∈ D′ and w2 ∈ D′, let D = D′ ∪ {v1}. If v1 /∈ D′ and w2 /∈ D′, let
D = D′ ∪ {v2} (note that in this case, w1 ∈ D′). In all three cases, D is an X-DS of G.
Thus, γ(G;X) ≤ |D| = |D′| + 1 ≤ ψ(G′;X ′) + 1. As |V (G′)| = |V (G)| − 3, |X ′| = |X|,
sc(G′;X ′) + bc(G′;X ′) ≤ 1 = sc(G;X) + bc(G;X) + 1, and δ1(G

′;X ′) = δ1(G;X) = 0,
we have that γ(G;X) ≤ ψ(G′;X ′)+1 ≤ [ψ(G;X)−9/8+1/8]+1 = ψ(G;X), as desired.
Hence we may assume that γ(G′;X ′) > ψ(G′;X ′).

By the inductive hypothesis, G′ ∈ F and X ′ = X = ∅. By Lemma 5(c), there is
a γ(G′)-set D′ containing both v1 and w2. By Lemma 4(b), |D′| = (|V (G1)| + 2)/3 =
(|V (G)| − 1)/3. Since the set D′ is also a dominating set of G, we have that γ(G;X) =
γ(G) ≤ |D′| = (|V (G)| − 1)/3 < 3|V (G)|/8 = ψ(G;X), as desired. 2

Recall that a set D is packing in a graph if every two distinct vertices in D are at
distance at least 3 apart in the graph.

Claim M The set S is a packing in G.

Proof. Suppose that {u, v} ⊆ S and d(u, v) ≤ 2. By our earlier assumptions, S is an
independent set, and so d(u, v) = 2. Let w be a common neighbor of u and v. Let
N(u) = {u′, w} and let N(v) = {v′, w}. By Claim L, u′ 6= v′. By our earlier assumptions,
if z ∈ N(u) ∪N(v), then z /∈ X and dG(z) ≥ 3.

Let G′ = G − {u, v}. Let Gu and Gv be the components of G′ containing u′ and
v′, respectively, and let Gw be the component of G′ containing w. We remark that the
components Gu, Gv, and Gw are not necessarily distinct. (One possibility, for example, is
that G′ = Gu = Gv = Gw.) We proceed further with the following subclaim.

Subclaim M1 If x ∈ {u, v} and Gx 6= Gw, then γ(Gx;Xx) ≤ ψ(Gx;Xx) where Xx =
X ∩ V (Gx).

Proof. For z ∈ {u, v, w}, let Xz = X ∩ V (Gz). Suppose that Gu 6= Gw and that
γ(Gu;Xu) > ψ(Gu;Xu). Then by the inductive hypothesis, Gu ∈ F and Xu = ∅. By
our earlier assumptions (see Claims I and L), Gu 6= C4. Hence, |V (Gu)| ≥ 7. We now
consider two possibilities depending on whether Gu = Gv or Gu 6= Gv.

Suppose Gu = Gv. Then, G′ consists of two components, namely the component
Gu, which contains both u′ and v′, and a component Gw containing w. Thus, |V (G)| =
|V (Gu)|+ |V (Gw)|+2. By Lemma 5(c), there is a γ(Gu)-set Du containing both u′ and v′.
By Lemma 4(b), |Du| = (|V (Gu)|+2)/3. If γ(Gw;Xw) > ψ(Gw;Xw), then by the inductive
hypothesis, Gw ∈ F and Xw = ∅. In particular, we note that X = ∅. By our earlier
assumptions, Gw 6= C4. Hence, |V (Gw)| ≥ 7, and so |V (G)| = |V (Gu)|+|V (Gw)|+2 ≥ 16.
Let Dw be a γ(Gw)-set. By Lemma 4(b), |Dw| = (|V (Gw)| + 2)/3. Then, Du ∪ Dw is
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a dominating set of G, and so γ(G;X) = γ(G) ≤ |Du| + |Dw| = (|V (G)| + 2)/3 ≤
3|V (G)|/8 ≤ ψ(G;X), as desired. Hence we may assume that γ(Gw;Xw) ≤ ψ(Gw;Xw).
Now, since Xw = X and bc(Gw;Xw) + sc(Gw;Xw) + δ1(Gw;Xw) ≤ 1 = bc(G;X) +
sc(G;X) + δ1(G;X) + 1, we have that ψ(Gw;Xw) ≤ ψ(G;X)− 3(|V (Gu)|+ 2)/8 + 1/4 =
ψ(G;X) − 3|V (Gu)|/8 − 1/2. Let Dw be a γ(Gw;Xw)-set and let D = Du ∪ Dw. Then,
D is an X-DS of G, and so γ(G;X) ≤ |Du| + |Dw| ≤ ψ(G;X) + (|V (Gu)| + 2)/3 −
3|V (Gu)|/8 − 1/2 = ψ(G;X) + (4 − |V (Gu)|)/24 < ψ(G;X). Hence if Gu = Gv, then
γ(G;X) ≤ ψ(G;X), as desired.

Suppose that Gu 6= Gv. Then the edge uu′ is a bridge of G and Gu is the component
of G− uu′ containing u′. Let Du be a γ(Gu − u′)-set. By Lemma 4(b) and Lemma 5(a),
|Du| = γ(Gu) − 1 = (|V (Gu)| − 1)/3. Let G1 be the component of G − uu′ containing
u, and let X1 = X ∪ {u}. By the inductive hypothesis, there is a X1-DS D1 in G1 such
that |D1| ≤ ψ(G1;X1). Note that u ∈ D1, and so D1 ∪ Du is a X-DS of G. Hence,
γ(G;X) ≤ |D1| + |Du| ≤ ψ(G1;X1) + (|V (Gu)| − 1)/3. As |V (G1)| = |V (G)| − |V (Gu)|,
|X1| = |X|+1, sc(G1;X1)+bc(G1;X1)+δ1(G1;X1) = sc(G;X)+bc(G;X)+δ1(G;X) = 0,
we have that ψ(G1;X1) ≤ ψ(G;X) − 3|V (Gu)|/8 + 5/8. Hence, γ(G;X) ≤ ψ(G1;X1) +
(|V (Gu)| − 1)/3 ≤ ψ(G;X) + (7 − |V (Gu)|)/24 ≤ ψ(G;X). Hence if Gu 6= Gv, then
γ(G;X) ≤ ψ(G;X), as desired.

We have shown, therefore, that if Gu 6= Gw and γ(Gu;Xu) > ψ(Gu;Xu), then
γ(G;X) ≤ ψ(G;X), as desired. Hence we may assume that if Gu 6= Gw, then γ(Gu;Xu) ≤
ψ(Gu;Xu) 2

We now return to the proof of Claim M. Consider the graph G′ = G− {u, v} defined
earlier, and let X ′ = X ∪ {w}. Note that dG′(x) ≥ 2 for all x ∈ V (G′) \ X ′. For
z ∈ {u, v, w}, let Xz = X ′ ∩ V (Gz). Since w ∈ Xw, we have by the inductive hypothesis
that γ(Gw;Xw) ≤ ψ(Gw;Xw). Hence by Subclaim M1, γ(Gu;Xu) ≤ ψ(Gu;Xu) and
γ(Gv;Xv) ≤ ψ(Gv;Xv). It follows that γ(G′;X ′) ≤ ψ(G′;X ′). Note that |V (G′)| =
|V (G)| − 2, |X ′| = |X| + 1, and δ1(G

′;X ′) = 0.

Subclaim M2 bc(G′;X ′) + sc(G′;X ′) = 2.

Proof. Suppose that bc(G′;X ′) ≥ 1. Let x be a X ′-cut-vertex in G′. Then, G′ − x
contains a component, Cx, which is an induced 4-cycle and which does not contain any
vertices from X ′. Since bc(G;X) = 0, the vertex x is not a X-cut-vertex in G. Thus, Cx

must contain u′ or v′.
Suppose that sc(G′;X ′) ≥ 1. Let C ′ be an X ′-special-cycle. In particular, we note

that no vertex of C ′ belongs to X ′ and that there are two consecutive vertices on C ′ that
both have degree 2 in G′. However since the set S is an independent set in G, at least
one of these two consecutive vertices on C ′ has degree 3 or more in G and therefore must
be one of u′ or v′.

Hence we have shown that if G′ has an X ′-cut-vertex x, then the resulting induced
4-cycle in G′−x which does not contain any vertices from X ′ must contain u′ or v′, and if
G′ has an X ′-special-cycle, then it must contain u′ or v′. Thus, bc(G′;X ′)+sc(G′;X ′) ≤ 2.
If bc(G′;X ′) + sc(G′;X ′) ≤ 1, then ψ(G′;X ′) ≤ ψ(G;X) − 6/8 + 5/8 + 1/8 = ψ(G;X).
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Since every γ(G′;X ′)-set is a X-DS of G, we have that γ(G;X) ≤ γ(G′;X ′) ≤ ψ(G′;X ′) ≤
ψ(G;X), as desired. Hence we may assume that bc(G′;X ′) + sc(G′;X ′) = 2. 2

Subclaim M3 sc(G′;X ′) = 0.

Proof. Suppose that sc(G′;X ′) ≥ 1. Let C ′ be an X ′-special-cycle C ′ in G′. By Sub-
claim M2, bc(G′;X ′) + sc(G′;X ′) = 2. As shown in the proof of Subclaim M2, the cycle
C ′ contains exactly one of u′ or v′, say u′. We may assume that C ′ is given by the cycle
u′v1v2v3v4u

′. Since bc(G;X) = 0 and since S is an independent set, we may assume
that each of u′, v1 and v3 has degree 2 in G′ and that both v2 and v4 are large vertices
in G′. The degrees of the vertices in G′ remain unchanged in G, except for u′, v′ and
w. In particular, we note that dG(u′) = 3, dG(v1) = dG(v3) = 2, while dG(v2) ≥ 3 and
dG(v4) ≥ 3. Thus, {v1, v3} ⊆ S, d(v1, v3) = 2, and v2 is the common neighbor of v1 and
v3.

Let G∗ = G − {v1, v3} and let X∗ = X ∪ {v2}. Proceeding as with the graph G′, we
may assume that γ(G∗;X∗) ≤ ψ(G∗;X∗). Note that |V (G∗)| = |V (G)|−2, |X∗| = |X|+1,
and δ1(G

∗;X∗) = 0. An identical proof as that of Subclaim M2 shows that if G∗ has an
X∗-cut-vertex x∗, then the resulting induced 4-cycle in G∗ − x∗ which does not contain
any vertices from X∗ must contain u′ or v4 (the neighbors of v1 and v3, respectively,
different from v2), and if G∗ has an X∗-special-cycle, then it must contain u′ or v4. Since
u′ and v4 are adjacent, it follows that bc(G∗;X∗) + sc(G∗;X∗) ≤ 1. Thus, ψ(G∗;X∗) ≤
ψ(G;X)−6/8+5/8+1/8 = ψ(G;X). Since every γ(G∗;X∗)-set is a X-DS of G, we have
that γ(G;X) ≤ γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤ ψ(G;X), as desired. Hence we may assume
that sc(G′;X ′) = 0. 2

We now return to the proof of Claim M. By Subclaims M2 and M3, bc(G′;X ′) = 2
and G′ contains two X ′-cut-vertices xu and xv such that G′ − xu contains an induced
4-cycle Cu which contains the vertex u′ and does not contain any vertices from X ′ while
G′ − xv contains an induced 4-cycle Cv which contains the vertex v′ and does not contain
any vertices from X ′. By definition of an X ′-cut-vertex, xu /∈ X ′ and xv /∈ X ′. Let Cu be
the cycle u′abcu′ and let Cv be the cycle v′defv′.

For the moment, we restrict our attention to the 4-cycle Cu (similar arguments will
hold for the 4-cycle Cv). The degree of the vertices a, b and c in G′ and G remain
unchanged. By Claim L, xu is adjacent to at least two of the vertices a, b and c (for
otherwise, Cu would be a 4-cycle in G that contains two vertices from S).

Subclaim M4 xu is adjacent to exactly two of a, b and c.

Proof. Suppose xu is adjacent to a, b and c. Let G∗ = G − V (Cu) and let X∗ =
X ∪{u, xu}. Then, dG∗(x) ≥ 2 for all x ∈ V (G∗) \X∗. Applying the inductive hypothesis
to G∗ (if G∗ is connected) or to the two components of G∗ (if G∗ is disconnected), we
have that γ(G∗;X∗) ≤ ψ(G∗;X∗). Since |V (G∗)| = |V (G)| − 4, |X∗| = |X| + 2, and
bc(G∗;X∗) + sc(G∗;X∗) + δ1(G

∗;X∗) = 0, we have that ψ(G∗;X∗) ≤ ψ(G;X) − 12/8 +
10/8 < ψ(G;X). Every γ(G∗;X∗)-set is an X-DS of G, and so γ(G;X) ≤ γ(G∗;X∗).
Therefore, γ(G;X) < ψ(G;X), as desired. Hence we may assume that xu is adjacent to
exactly two of a, b and c. 2
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Subclaim M5 xu is not adjacent to b.

Proof. Suppose that xu is adjacent to b. Without loss of generality, we may assume that
xu is adjacent to c. By Subclaim M4, xu is therefore not adjacent to a. Hence, dG(a) = 2
and bcxub is a triangle in G. Let G∗ = G− {a, u, u′} and X∗ = X.

Suppose γ(G∗;X∗) ≤ ψ(G∗;X∗). Since |V (G∗)| = |V (G)|−3, |X∗| = |X|, bc(G∗;X∗)+
sc(G∗;X∗) ≤ 1 and δ1(G

∗;X∗) = 0 = δ1(G;X), we have that ψ(G∗;X∗) ≤ ψ(G;X) −
9/8 + 1/8 = ψ(G;X) − 1. Every γ(G∗;X∗)-set can be extended to a X-DS of G by
adding to it the vertex u′, and so γ(G;X) ≤ γ(G∗;X∗) + 1 ≤ ψ(G∗;X∗) + 1 ≤ ψ(G;X),
as desired. Hence we may assume that γ(G∗;X∗) > ψ(G∗;X∗). Applying the inductive
hypothesis to G∗, we have that at least one component of G∗ must therefore belong to
the family F and this component of G∗ in F contains no vertex from X.

The graph G∗ has at most two components, namely a component Gb containing the
vertex b and a component Gw containing the vertex w. Possibly, Gb = Gw. Since bcxub is
a triangle in G∗ such that b and c are degree-2 vertices in G∗, by Lemma 4(d), Gb /∈ F .
Hence, Gb 6= Gw and Gw ∈ F . Further, X ∩ V (Gw) = ∅. Note that |V (Gw)| ≥ 7. By
Lemma 4(b) and Lemma 5(a), there is a set Dw that dominates the vertices in Gw − w
such that |Dw| = γ(Gw) − 1 = (|V (Gw)| − 1)/3.

If Gb = K3, then X = ∅ and γ(G;X) = γ(G) ≤ |Dw ∪{b, u}| = |Dw|+2 = (|V (Gw)|+
5)/3 = (|V (G)| − 1)/3 < ψ(G;X), as desired. Hence we may assume that xu is adjacent
to at least one vertex in Gb different from b and c. Let G1 = Gb − c and let X1 =
(X∩V (G1))∪{b}. Then, dG1

(x) ≥ 2 for all x ∈ V (G1)\X1. Note that |X1| ≥ 1. Applying
the inductive hypothesis to G1, we have that γ(G1;X1) ≤ ψ(G1;X1). Since |V (G1)| =
|V (G)| − |V (Gw)| − 4, |X1| = |X| + 1 and bc(G1;X1) + sc(G1;X1) + δ1(G1;X1) = 0, we
have that ψ(G1;X1) = ψ(G;X)−3(|V (Gw)|+4)/8+5/8 = ψ(G;X)−3|V (Gw)|/8−7/8.
Every γ(G1;X1)-set can be extended to a X-DS of G by adding to it the vertices in the
set Dw ∪ {u}, and so γ(G;X) ≤ γ(G1;X1) + |Dw|+ 1 ≤ [ψ(G;X)− 3|V (Gw)|/8− 7/8] +
(|V (Gw)| − 1)/3 + 1 = ψ(G;X) − (|V (Gw)| + 5)/8 < ψ(G;X), as desired. 2

We now return to the proof of Claim M. By Subclaims M5, xu is not adjacent to b and
is therefore adjacent to a and c. In particular, we note that dG(b) = 2 and that abcxua
is an induced 4-cycle in G that contains no vertex of X. Since bc(G;X) = 0, we note in
particular that u′ is not a X-cut-vertex of G. Hence, xu must be adjacent to some vertex
not on Cx. Possibly, xu is adjacent with u′. Identical arguments also hold for the 4-cycle
Cv. Hence we have the following subclaim:
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Figure 9: The graph HG.
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Subclaim M6 The graph HG shown in Figure 9 is a subgraph of G, where the edges u′xu

and v′xv may or may not be present in HG and where the degrees of the vertices of HG

different from xu, xv and w are unchanged in G. Further, V (HG) ∩ X = ∅ and each of
xu, xv and w is adjacent in G to at least one vertex in V (G) \ {a, b, c, d, e, f, u, u′, v, v′}
(possibly, wxu, wxv and xuxv are edges of G).

We return one last time to the proof of Claim M. Let G∗ = (G−{a, b, c})∪{u′xu} and
X∗ = X. Then, |V (G∗)| = |V (G)| − 3 and G∗ is a type-2 G-reducible graph. As shown
in Lemma 2, γ(G;X) ≤ γ(G∗;X∗) + 1.

Suppose G∗ ∈ F and X∗ = ∅. By Lemma 4(b), γ(G∗;X∗) = γ(G∗) = (|V (G∗)| +
2)/3 = (|V (G)| − 1)/3. Now either G∗ ∈ F10 ∪ F13. If G∗ ∈ F10, then G ∈ F13. Since G
has no bad-cut-vertex, we have that G ∈ F , as desired. If G∗ ∈ F13, then |V (G)| = 16
and γ(G;X) ≤ γ(G∗;X∗) + 1 = 6 = 3|V (G)|/8 = ψ(G;X), as desired. Hence we may
assume that if G∗ ∈ F , then |X∗| ≥ 1. Applying the inductive hypothesis to G∗, we
therefore have that γ(G∗;X∗) ≤ ψ(G∗;X∗). Since |V (G∗)| = |V (G)| − 3, |X∗| = |X|,
bc(G∗;X∗) + sc(G∗;X∗) ≤ 1 and δ1(G

∗;X∗) = 0, we have that ψ(G∗;X∗) ≤ ψ(G;X) −
9/8 + 1/8 = ψ(G;X) − 1. Hence, γ(G;X) ≤ γ(G∗;X∗) + 1 ≤ ψ(G∗;X∗) + 1 ≤ ψ(G;X),
as desired. This completes the proof of Claim M. 2

We now return to the proof of Theorem 4. Let u ∈ S and let N(u) = {v, w}. By
Claim J, {v, w} ∩X = ∅. By Claim M, every vertex within distance 2 from u in G that
does not belong to X has degree at least 3 in G. Let G′ = G−N [u] and let X ′ = X. Let
G1 be a component of G′ and let X1 = X ∩ V (G1).

Claim N If γ(G1;X1) > ψ(G1;X1), then G′ = G1.

Proof. Suppose that γ(G1;X1) > ψ(G1;X1) and G′ 6= G1. Then, G′ contains at least two
components. Without loss of generality, we may assume that v is adjacent to a vertex v1

in G1 and that w is adjacent to a vertex in a component of G′ different from G1. By the
inductive hypothesis, G1 ∈ F and X1 = ∅. Let D1 be a γ(G1 − v1)-set. By Lemma 4(b)
and Lemma 5(a), |D1| = γ(G1) − 1 = (|V (G1)| − 1)/3. Let G∗ = G− (V (G1) ∪ {u}) and
let X∗ = X ∪ {v}.

Subclaim N1 γ(G∗;X∗) ≤ ψ(G∗;X∗).

Proof. If G∗ is connected, then applying the inductive hypothesis to G∗ we have that
γ(G∗;X∗) ≤ ψ(G∗;X∗), as desired. Hence we may assume that G∗ is disconnected.
Then, G∗ contains two components, namely a component Gv containing the vertex v and
a component Gw containing w. Let Xv = (X ∩ V (Gv)) ∪ {v} and let Xw = X ∩ V (Gw).

Suppose that γ(Gw;Xw) > ψ(Gw;Xw). By the inductive hypothesis, Gw ∈ F and
Xw = ∅. Since S is an independent set, Gw 6= C4. Hence, |V (Gw)| ≥ 7. Let Dw be a
γ(Gw − w)-set. By Lemma 4(b) and Lemma 5(a), |Dw| = γ(Gw) − 1 = (|V (Gw)| − 1)/3.
We now consider the graph Gu = G − V (Gw) and let Xu = X ∪ {u}. By the inductive
hypothesis, there is a Xu-DS Du in Gu such that |Du| ≤ ψ(Gu;Xu). Note that Du ∪Dw
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is a γ(G;X)-DS of G. Hence, γ(G;X) ≤ |Du| + |Dw| ≤ ψ(Gu;Xu) + (|V (Gw)| − 1)/3.
As |V (Gu)| = |V (G)| − |V (Gw)|, |Xu| = |X|+ 1, sc(Gu;Xu) + bc(Gu;Xu) + δ1(Gu;Xu) =
sc(G;X) + bc(G;X) + δ1(G;X) = 0, we have that ψ(Gu;Xu) ≤ ψ(G;X)− 3|V (Gw)|/8 +
5/8. Hence, γ(G;X) ≤ ψ(Gu;Xu) + (|V (Gw)| − 1)/3 ≤ ψ(G;X) + (7 − |V (Gw)|)/24 ≤
ψ(G;X). Hence if γ(Gw;Xw) > ψ(Gw;Xw), then γ(G;X) ≤ ψ(G;X), as desired.

Therefore we may assume that γ(Gw;Xw) ≤ ψ(Gw;Xw). Applying the inductive
hypothesis to Gv, γ(Gv;Xv) ≤ ψ(Gv;Xv). Thus, γ(G∗;X∗) = γ(Gv;Xv) + γ(Gw;Xw) ≤
ψ(Gv;Xv) + ψ(Gw;Xw) = ψ(G∗;X∗), as claimed. 2

Note that it is possible that the vertex w belongs to anX∗-special-cycle in G∗. Further,
note that the vertex w has degree at least 3 in G and therefore at least 2 in G∗. Hence
since |V (G∗)| = |V (G)| − |V (G1)| − 1, |X∗| = |X| + 1, bc(G∗;X∗) + sc(G∗;X∗) ≤ 1 and
δ1(G

∗;X∗) = δ1(G;X) = 0, we have that ψ(G∗;X∗) ≤ ψ(G;X) − 3(|V (G1)| + 1)/8 +
5/8+1/8 = ψ(G;X)−3(|V (G1)|−1)/8. Every γ(G∗;X∗)-set can be extended to a X-DS
of G by adding to it the vertices in the set D1. Hence, γ(G;X) ≤ γ(G∗;X∗) + |D1| =
ψ(G;X)− 3(|V (G1)| − 1)/8 + (|V (G1)| − 1)/3 = ψ(G;X) + (1− |V (G1)|)/24 < ψ(G;X),
as desired. Thus we have shown that if γ(G1;X1) > ψ(G1;X1) and G′ 6= G1, then
γ(G;X) ≤ ψ(G;X). 2

Claim O γ(G′;X ′) ≤ ψ(G′;X ′).

Proof. Suppose that γ(G′;X ′) > ψ(G′;X ′). We may assume that γ(G1;X1) > ψ(G1;X1).
By Claim N, G′ = G1. In particular, note that G1 is connected. By the inductive
hypothesis, G1 ∈ F and X1 = X = ∅. Equivalently, G′ ∈ F and X ′ = ∅. Hence,
|V (G′)| ≥ 4 and V (G) = V (G′) ∪ {u, v, w}. Further, γ(G;X) = γ(G) and ψ(G;X) =
3|V (G)|/8. We wish therefore to show that γ(G) ≤ 3|V (G)|/8. If {v, w} dominates V (G),
then γ(G) = 2 < 3|V (G)|/8, as desired. Hence we may assume that at least one vertex
in V (G′) is not dominated by {v, w} in G.

Subclaim O1 vw is not an edge of G.

Proof. Suppose vw is an edge of G. Let v1 be a neighbor of v different from u and
w. Let D′ be a γ(G′ − v1)-set. By Lemma 4(b) and Lemma 5(a), |D′| = γ(G′) − 1 =
(|V (G′)|−1)/3 = (|V (G)|−4)/3. Since vw is an edge of G, the set D′∪{v} is a dominating
set of G, and so γ(G) ≤ |D′| + 1 = (|V (G)| − 1)/3 < 3|V (G)|/8, as desired. 2

Subclaim O2 N(v) ∩N(w) = {u}.

Proof. Suppose there is a vertex u′ ∈ V (G′) that is adjacent to both v and w in G. Let
G′′ be the graph obtained from G by deleting all edges from {v, w} to V (G)\{u, u′}. Thus,
G′′ is obtained from G′ by adding the vertices {u, v, w} and the edges {uv, uw, u′v, u′w}.
Note that u′vuw is a path in G′′ and that each of u, v and w has degree 2 in G′′. Since
G′ is a type-1 G′′-reducible graph and G′ ∈ F , the graph G′′ ∈ F . By Lemma 1,
γ(G′′) = γ(G′) + 1 = (|V (G)| − 1)/3 + 1. If we now restore the graph G from G′′ by
adding the deleted edges incident with v or w, we have that either G ∈ F or, by repeated
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applications of Lemma 5(d), we have that γ(G) ≤ γ(G′′)−1 = (|V (G)|−1)/3 < 3|V (G)|/8,
as desired. 2

Let v′ ∈ N(v) \ {u} and let w′ ∈ N(w) \ {u}. By Subclaim O2, v′ 6= w′.

Subclaim O3 v′w′ /∈ E(G′).

Proof. Suppose v′w′ ∈ E(G′). Let G′′ be the graph obtained from G by deleting all edges
from {v, w} to V (G) \ {u, v′, w′}. Thus, G′′ is obtained from G′ by adding the vertices
{u, v, w} and the edges {uv, uw, vv′, ww′}. Note that v′vuww′v′ is a cycle in G′′ and that
each of u, v and w has degree 2 in G′′. Since G′ is a type-1 G′′-reducible graph and
G′ ∈ F , the graph G′′ ∈ F . An identical argument as that in the proof of Subclaim O2,
shows that either G ∈ F or γ(G) < 3|V (G)|/8, as desired. 2

Subclaim O4 G′ + v′w′ ∈ F .

Proof. Suppose G′ + v′w′ /∈ F . Let D′ be a γ(G′ + v′w′)-set. By Lemma 4(b) and
Lemma 5(d), |D′| = γt(G

′) − 1 = (|V (G)| − 4)/3. Since γ(G′ + v′w′) < γ(G′), |D ∩
{v′, w′}| = 1. We may assume that v′ ∈ D′. Hence, D′ ∪ {w} is a dominating set of G,
and so γ(G) ≤ |D′| + 1 = (|V (G)| − 1)/3 < 3|V (G)|/8, as desired. 2

We now return to the proof of Claim O. Let G′′ be the graph obtained from G by
deleting all edges from {v, w} to V (G) \ {u, v′, w′}. Thus, G′′ is obtained from G′ by
adding the vertices {u, v, w} and the edges {uv, uw, vv′, ww′}. Note that v′vuww′ is a
path in G′′ and that each of u, v and w has degree 2 in G′′. Since G′ + v′w′ is a type-1
G′′-reducible graph and since, by Subclaim O4, G′ + v′w′ ∈ F , the graph G′′ ∈ F . An
identical argument as that in the proof of Subclaim O2, shows that either G ∈ F or
γ(G) < 3|V (G)|/8, as desired. This completes the proof of Claim O. 2

Recall that G′ = G−N [u] and X ′ = X. Further, G1 denotes a component of G′ and
X1 = X ∩ V (G1).

Claim P sc(G′;X ′) = 0.

Proof. Suppose that sc(G′;X ′) ≥ 1. We may assume that G1 contains an X1-special-
cycle C: v1v2v3v4v5v1. In particular, we note that V (C) ∩ X1 = ∅. Renaming vertices if
necessary, we may assume that v2, v4, v5 are degree-2 vertices in G1. Possibly, v1 or v3 or
both v1 and v3 are large vertices, and possibly v1v3 is an edge of G1. Since S is a packing
in G, at most one vertex in V (C) has degree 2 in G.

Claim P1 Every vertex in C has degree at least 3 in G.

Proof. Suppose that the cycle C contains a vertex v∗ that has degree-2 inG. Without loss
of generality, we may assume that v∗ ∈ {v2, v5}. Since S is a packing in G, every vertex in
V (C)\{v∗} has degree at least 3 in G. By assumption, each vertex in {v2, v4, v5}\{v

∗} has
degree 2 in G1 and is therefore dominated by the set {v, w}. Let G∗ = G−{v2, v5} and let

the electronic journal of combinatorics 18 (2011), #P12 27



X∗ = X ∪ {v1}. Then, dG∗(x) ≥ 2 for all x ∈ V (G∗) \X∗. In particular, δ1(G
∗;X∗) = 0.

LetW = {u, v, v3, v4, w}. Since v4 is dominated by {v, w}, G[W ] is connected and contains
a path P5 as a subgraph. By our earlier assumptions, bc(G;X) + sc(G;X) = 0. Hence
if G∗ has an X∗-special-cycle, then such a cycle must contain at least one vertex from
the set W , while if G∗ has an X∗-cut-vertex x∗, then the resulting 4-cycle component in
G∗ − x∗ must contain at least one vertex from the set W . From this we can deduce that
bc(G∗;X∗) + sc(G∗;X∗) ≤ 1.

We show that we may assume γ(G∗;X∗) ≤ ψ(G∗;X∗). If G∗ is connected, then by the
inductive hypothesis, γ(G∗;X∗) ≤ ψ(G∗;X∗) since |X∗| ≥ 1. Suppose G∗ is disconnected.
Then, G∗ contains exactly two components, namely a component F containing v1 and
a component H containing the vertices in the set W . Let XF = X∗ ∩ V (F ) and let
XH = X∗ ∩ V (H). Note that v1 ∈ XF and γ(F ;XF ) ≤ ψ(F ;XF ) by applying the
inductive hypothesis to F . If γ(H ;XH) ≤ ψ(H ;XH), then γ(G∗;X∗) = γ(F ;XF ) +
γ(H ;XH) ≤ ψ(F ;XF ) + ψ(H ;XH) = ψ(G∗;X∗), as desired. Hence we may assume that
γ(H ;XH) > ψ(H ;XH). By the inductive hypothesis, H ∈ F and XH = ∅. Note that
|V (H)| ≥ 7. By Lemma 5(c), there is a γ(H)-set DH that contains both v3 and v4. By
Lemma 4(b), |DH | = (|V (H)|+ 2)/3. We now let I = F and XI = X ∩ V (I) = X. Thus,
XI = XF \{v1}. Then, bc(I;XI)+sc(I;XI)+ δ1(I;XI) ≤ 1. If γ(I;XI) ≤ ψ(I;XI), then
γ(G;X) ≤ γ(I;XI) + |DH | ≤ ψ(I;XI) + |DH | = [ψ(G;X) − 3(|V (H)| + 2)/8 + 1/4] +
(|V (H)|+2)/3 = ψ(G;X)+(4−|V (H)|)/24 < ψ(G;X), as desired. Hence we may assume
that γ(I;XI) > ψ(I;XI). By the inductive hypothesis, I ∈ F and XI = ∅. By our earlier
assumptions, |V (I)| ≥ 7, and so |V (G)| ≥ 16. Let DI be a γ(I)-set. By Lemma 4(b),
|DI | = (|V (I)| + 2)/3 = (|V (G)| − |V (H)|)/3. In this case, DH ∪DI is a dominating set
of G, and so γ(G;X) = γ(G) ≤ |DH | + |DI | ≤ (|V (G)| − |V (H)|)/3 + (|V (H)| + 2)/3 =
(|V (G)| + 2)/3 ≤ 3|V (G)|/8 = ψ(G;X), as desired. Hence we have shown that we may
assume γ(G∗;X∗) ≤ ψ(G∗;X∗).

Since |V (G∗)| = |V (G)| − 2, |X∗| = |X| + 1, bc(G∗;X∗) + sc(G∗;X∗) ≤ 1 and
δ1(G

∗;X∗) = 0, we have that ψ(G∗;X∗) ≤ ψ(G;X) − 6/8 + 5/8 + 1/8 = ψ(G;X). Since
every γ(G∗;X∗)-set is an X-DS of G, we have that γ(G;X) ≤ γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤
ψ(G;X), as desired. Hence we may assume that every vertex in C has degree at least 3
in G. 2

By Claim P1, {v, w} dominates the set {v2, v4, v5}. Let Y = {v2, v4, v5}. We may
assume that |N(w) ∩ Y | ≥ |N(v) ∩ Y |. If w dominates Y , then let w∗ be an arbitrary
vertex in Y ; otherwise, let w∗ be a vertex in Y that is adjacent to v but not to w. Without
loss of generality, we may assume that w∗ ∈ {v2, v5}, and so v1w

∗ ∈ E(G). Further we
may assume that v is adjacent to w∗ if v has a neighbor in Y . Thus if v is not adjacent
to w∗, then N(v)∩ Y = ∅ (in which case w dominates Y ). We now let G∗ = G−{u, w∗}.
If v is adjacent to w∗, we let X∗ = X ∪ {v}; otherwise, we let X∗ = X ∪ {w}. Then,
dG∗(x) ≥ 2 for all x ∈ V (G∗) \X∗.

Claim P2 γ(G∗;X∗) ≤ ψ(G∗;X∗).

Proof. If G∗ is connected, then by the inductive hypothesis, γ(G∗;X∗) ≤ ψ(G∗;X∗) since
|X∗| ≥ 1. Hence we may assume that G∗ is disconnected. Then, G∗ contains exactly two
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components, namely a component F containing v and a component H containing w.
Since |N(w) ∩ Y | ≥ |N(v) ∩ Y |, our choice of w∗ implies that V (C) \ {w∗} ⊂ V (H) and
Y \ {w∗} ⊆ N(w). Let XF = X∗ ∩ V (F ) and let XH = X∗ ∩ V (H). Since dG(v) ≥ 3, we
have that dF (v) ≥ 1 if x ∈ XF and dF (v) ≥ 2 if x /∈ XF .

If v ∈ XF , then γ(F ;XF ) ≤ ψ(F ;XF ) by applying the inductive hypothesis to F . If
x /∈ XF , then w ∈ XH and γ(H ;XH) ≤ ψ(H ;XH) by applying the inductive hypothesis
to H . If γ(F ;XF ) ≤ ψ(F ;XF ) and γ(H ;XH) ≤ ψ(H ;XH), then γ(G∗;X∗) ≤ ψ(G∗;X∗),
as desired. Hence we may assume that γ(F ;XF ) > ψ(F ;XF ) or γ(H ;XH) > ψ(H ;XH).

Suppose that γ(F ;XF ) > ψ(F ;XF ). Then, w ∈ XH and γ(H ;XH) ≤ ψ(H ;XH). By
the inductive hypothesis, F ∈ F and XF = ∅. Note that |V (F )| ≥ 7. By Lemma 5(b),
there is a γ(F )-set DF that contains v. By Lemma 4(b), |DF | = (|V (F )|+ 2)/3. We now
let I = H andXI = X∩V (I) = X. Thus, XI = XH\{w}. Then, bc(I;XI)+sc(I;XI) ≤ 1
and δ1(I;XI) = 0. Proceeding now as in the second paragraph of the proof of Claim P1,
we can show that γ(G∗;X∗) ≤ ψ(G∗;X∗), as desired.

Suppose that γ(H ;XH) > ψ(H ;XH). Then, v ∈ XF and γ(F ;XF ) ≤ ψ(F ;XF ). By
the inductive hypothesis, H ∈ F and XH = ∅. Note that |V (H)| ≥ 7. By Lemma 5(c),
there is a γ(H)-set DH that contains both v1 and w. Note that {v1, w} dominates {u, w∗}
in G. By Lemma 4(b), |DH| = (|V (H)|+2)/3. We now let I = F andXI = X∩V (I) = X.
Thus, XI = XF \ {v1}. Then, bc(I;XI)+ sc(I;XI)+ δ1(I;XI) ≤ 1. Proceeding now as in
the second paragraph of the proof of Claim P1, we can show that γ(G∗;X∗) ≤ ψ(G∗;X∗),
as desired. 2

Claim P3 Both v1 and v3 are adjacent in G1 to at least one vertex not on C.

Proof. Suppose v1 or v3, say v1, is adjacent in G1 only to vertices in C. Then, NG1
(v1) =

{v2, v3, v5}. Let K = G− {u, v1, v2, v4, v5} and let XK = X ∪ {v, v3, w}. Then, |V (K)| =
|V (G)| − 5, |XK | = |X| + 3, and bc(K;XK) + sc(K;XK) + δ1(K;XK) = 0. Applying
the inductive hypothesis to K or to the components of K, we have that γ(G;X) ≤
γ(K;XK) ≤ ψ(K;XK) ≤ ψ(G;X) − 5 ∗ (3/8) + 3 ∗ (5/8) = ψ(G;X), as desired. 2

We now return to the proof of Claim P. Recall that G∗ = G − {u, w∗} and that
X∗ = X∪{v} if v is adjacent to w∗ and X∗ = X∪{w} if v is not adjacent to w∗ (in which
case, N(v)∩Y = ∅). Note that |V (G∗)| = |V (G)|−2, |X∗| = |X|+1, and δ1(G

∗;X∗) = 0.
By Claim P3 and since bc(G;X)+sc(G;X) = 0, we have that bc(G∗;X∗)+sc(G∗;X∗) ≤ 1.
Hence by Claim P2, γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤ ψ(G;X)−6/8+5/8+1/8 ≤ ψ(G;X). Since
every γ(G∗;X∗)-set is an X-DS of G, we have that γ(G;X) ≤ γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤
ψ(G;X), as desired. This completes the proof of Claim P. 2

Claim Q The degree-2 vertex u can be chosen so that bc(G′;X ′) = 0.

Proof. Suppose that bc(G′;X ′) ≥ 1. We may assume that bc(G1;X1) ≥ 1. Let x be
a X1-cut-vertex in G1. Then, x /∈ X1 and G1 − x contains a component, Cx, which is
an induced 4-cycle and which does not contain any vertices from X1. Furthermore x is
adjacent to at least one but at most three vertices on Cx. Since bc(G;X) = 0, the vertex
x is not a X-cut-vertex in G. Thus, at least one vertex in Cx is adjacent to v or w in G.
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For each vertex z in Cx, let z′ denote the vertex on Cx that is not adjacent with z. Let
Cx be the cycle v1v2v3v4v1. Thus, v′

1
= v3, v

′
2

= v4, v
′
3

= v1 and v′
4

= v2. We proceed
further with the following subclaim.

Subclaim Q1 Cx contains a degree-2 vertex in G.

Proof. Suppose that every vertex of Cx has degree at least 3 in G. This implies that
{v, w, x} dominates the set V (Cx) in G. Let G∗ = G − {u, v1, v2, v3, v4} and let X∗ =
X ∪ {v, w, x}. Every vertex in V (G∗) \ X∗ has degree at least 2 in G∗. Applying the
inductive hypothesis to each component in G∗, we have that γ(G∗;X∗) ≤ ψ(G∗;X∗). Note
that |V (G∗)| = |V (G)| − 5, |X∗| = |X|+3 and bc(G∗;X∗)+ sc(G∗;X∗)+ δ1(G

∗;X∗) = 0.
Hence, ψ(G∗;X∗) ≤ ψ(G;X)−5∗(3/8)+3∗(5/8) = ψ(G;X). Since every γ(G∗;X∗)-set is
an X-DS of G, we have that γ(G;X) ≤ γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤ ψ(G;X), as desired. 2

Subclaim Q2 |V (G1)| ≥ 6.

Proof. Suppose that V (G1) = V (Cx) ∪ {x}. Let G∗ = G − (V (G1) ∪ {u}) and let
X∗ = X ∪ {v, w}. Applying the inductive hypothesis to G∗, we have that γ(G∗;X∗) ≤
ψ(G∗;X∗). Let X∗ be an X∗-DS of G∗. Since |V (G∗)| = |V (G)| − 6, |X∗| = |X| + 2,
bc(G∗;X∗) + sc(G∗;X∗) + δ1(G

∗;X∗) = 0, we have that ψ(G∗;X∗) = ψ(G;X) − 18/8 +
10/8 = ψ(G;X) − 1. Renaming vertices, if necessary, we may assume that x is adjacent
with v1. Let v∗ ∈ V (G1). If {v, v∗, w} dominates V (G1), then X∗ ∪ {v∗} is a X-DS of
G, and so γ(G;X) ≤ |X∗| + 1 = γ(G∗;X∗) + 1 ≤ ψ(G∗;X∗) + 1 ≤ ψ(G;X), as desired.
Hence we may assume that if v∗ ∈ V (G1), then {v, v∗, w} does not dominate V (G1).

As observed earlier, at least one vertex in Cx is adjacent to v or w in G. If x is adjacent
to v or w in G, then let i, 1 ≤ i ≤ 4, be chosen so that vi is adjacent to v or w in G. Taking
v∗ = v′i, we have that {v, v∗, w} dominates V (G1), a contradiction. Hence, x is adjacent
to neither v nor w in G. Thus, N(x) ⊂ V (Cx). Hence, x is adjacent to at least two but at
most three vertices on Cx. If x is adjacent to exactly two vertices on Cx, then dG(x) = 2.
But then by Subclaim Q1, the set S is not a packing. Hence, x is adjacent to exactly
three vertices on Cx. Without loss of generality, we may assume that N(x) = {v1, v2, v3}.
Thus by Subclaim Q1, v4 is a degree-2 vertex in G, i.e., N(v4) = {v1, v3}. Since v2 is not
an X-cut-vertex of G, at least one of v1 and v3 must be adjacent to v or w in G. We may
assume that v1 is adjacent to v or w in G. Taking v∗ = v′

1
(= v3), we have that {v, v∗, w}

dominates V (G1), a contradiction. 2

We now return to the proof of Claim Q. By Subclaim Q1, Cx contains a degree-2
vertex in G. We may assume that dG(v1) = 2. Since S is a packing in G, each vertex in
{v2, v3, v4} has degree at least 3 in G. Thus, each vertex in {v2, v3, v4} is dominated by
{v, w, x}. Further at least one vertex in {v2, v3, v4} is adjacent to v or w in G, while x is
adjacent to at least one vertex in {v2, v3, v4}.

Subclaim Q3 x is adjacent to neither v2 nor v4.
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Proof. Suppose that x is adjacent to v2 or v4. Without loss of generality, we may
assume that x is adjacent with v4. Suppose v2 is adjacent to v or w, say to v. Let
G∗ = G − {u, v1, v2, v3} and let X∗ = X ∪ {v, v4}. Note that |V (G∗)| = |V (G)| − 4 and
|X∗| = |X| + 2. By Subclaim Q2, dG∗(x) ≥ 2. Thus, every vertex in V (G∗) \ X∗ has
degree at least 2 in G∗, except possibly for w.

Suppose dG∗(w) ≥ 1. Then bc(G∗;X∗) + sc(G∗;X∗) + δ1(G
∗;X∗) ≤ 1. If γ(G∗;X∗) ≤

ψ(G∗;X∗), then γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤ ψ(G;X)−12/8+10/8+1/4 = ψ(G;X). Since
every γ(G∗;X∗)-set is an X-DS of G, we have that γ(G;X) ≤ γ(G∗;X∗) ≤ ψ(G∗;X∗) ≤
ψ(G;X), as desired. Hence we may assume that γ(G∗;X∗) > ψ(G∗;X∗). Thus, G∗ is
disconnected and has a component Gw such that γ(Gw;Xw) > ψ(Gw;Xw) where Xw =
X ∩ V (Gw). Necessarily, w ∈ V (Gw) and {v, v4} ∩ V (Gw) = ∅. Applying the inductive
hypothesis to Gw, we have that Gw ∈ F and Xw = ∅. Let Dw be a γ(Gw − w)-set. By
Lemma 4(b) and Lemma 5(a), |Dw| = (|V (Gw)|−1)/3. Let F = G−V (Gw) and let XF =
X ∪ {u}. Applying the inductive hypothesis to F , we have that γ(F ;XF ) ≤ ψ(F ;XF )
since F is connected and |XF | ≥ 1. Since |V (F )| = |V (G)| − |V (Gw)|, |XF | = |X| + 1,
and bc(F ;XF ) + sc(F ;XF ) + δ1(F ;XF ) = 0, we have that γ(F ;XF ) ≤ ψ(F ;XF ) ≤
ψ(G;X)− 3|V (Gw)|/8 + 5/8. Let DF be an XF -DS of F . Then, DF ∪Dw is an X-DS of
G, and so γ(G;X) ≤ |DF | + |Dw| ≤ (ψ(G;X) − 3|V (Gw)|/8 + 5/8) + (|V (Gw)| − 1)/3 =
ψ(G;X) + (7 − |V (Gw)|)/24 ≤ ψ(G;X). Hence if dG∗(w) ≥ 1, then γ(G;X) ≤ ψ(G;X),
as desired.

Suppose that w is isolated in G∗; that is, NG(w) = {u, v2, v3}. Replacing v in X∗ with
w (and so, X∗ = X∪{v4, w}), we may in a similar manner assume thatNG(v) = {u, v2, v3}.
In this case, let G′′ = (G − {u, v1, v3, v4, w}) ∪ {xv} and let X∗ = X ∪ {v, v2, x}. Then,
G′′ is connected, |V (G′′)| = |V (G)| − 5 and |X ′′| = |X| + 3. Further, dG∗(z) ≥ 2 for
all z ∈ V (G′′) \ X ′′, and bc(G′′;X ′′) + sc(G′′;X ′′) + δ1(G

′′;X ′′) = 0. By the inductive
hypothesis, γ(G′′;X ′′) ≤ ψ(G′′;X ′′) ≤ ψ(G;X) − 5 ∗ (3/8) + 3 ∗ (5/8) = ψ(G;X). Since
every γ(G′′;X ′′)-set is an X-DS of G, we have that γ(G;X) ≤ γ(G′′;X ′′) ≤ ψ(G′′;X ′′) ≤
ψ(G;X), as desired. We have therefore shown that if v2 is adjacent to v or w, then
γ(G;X) ≤ ψ(G;X), as desired. Hence we may assume that v2 is adjacent to neither v
nor w. Thus, NG(v2) = {v1, v3, x}. Similarly, we may assume that NG(v4) = {v1, v3, x}.

We now consider the graph F = (G− {v1, v2, v4}) ∪ {xv3} and let XF = X. Then, F
is a connected graph. Note that |V (F )| = |V (G)| − 3 and that F is a type-2 G-reducible
graph. As shown in Lemma 2, γ(G;X) ≤ γ(F ;XF ) + 1. Suppose F ∈ F and XF = ∅.
By Lemma 4(b), γ(F ;XF ) = γ(F ) = (|V (F )| + 2)/3 = (|V (G)| − 1)/3. If F /∈ F13, then
G ∈ F , as desired. If F ∈ F13, then |V (G)| = 16 and γ(G;X) ≤ γ(F ;XF ) + 1 = 6 =
3|V (G)|/8 = ψ(G;X), as desired. Hence we may assume that if F ∈ F , then |XF | ≥ 1.

Applying the inductive hypothesis to F , we have γ(F ;XF ) ≤ ψ(F ;XF ). Note that
dF (z) ≥ 2 for all z ∈ V (F ) \ XF , and so δ1(F ;XF ) = 0. Further, |XF | = |X| and
bc(F ;XF ) + sc(F ;XF ) ≤ 1. Hence, ψ(F ;XF ) ≤ ψ(G;X) − 9/8 + 1/8 = ψ(G;X) − 1.
Hence, γ(G;X) ≤ γ(F ;XF ) + 1 ≤ ψ(F ;XF ) + 1 ≤ ψ(G;X). Hence we have shown that
if x is adjacent to v2 or v4, then γ(G;X) ≤ ψ(G;X), as desired. 2

By Subclaim Q3, N(x) ∩ V (Cx) = {v3}. Recall that v1 is a degree-2 vertex of G.
Hence since S is a packing in G, each of v2 and v4 is adjacent to v or w.
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Subclaim Q4 Each of v and w is adjacent to exactly one of v2 and v4.

Proof. Suppose that v is adjacent to both v2 and v4. Let G′′ be the graph obtained from
G by deleting the edges v2w and v4w if these edges are present in G, and let X ′′ = X.
Possibly, G′′ = G. Then, γ(G;X) ≤ γ(G′′;X ′′). Let G∗ = (G− {v1, v2, v4}) ∪ {vv3} and
X∗ = X. Then, |V (G∗)| = |V (G)| − 3 and G∗ is a type-2 G′′-reducible graph. As shown
in Lemma 2, γ(G′′;X ′′) ≤ γ(G∗;X∗) + 1.

Suppose G∗ ∈ F and X∗ = ∅. By Lemma 4(b), γ(G∗;X∗) = γ(G∗) = (|V (G∗)| +
2)/3 = (|V (G)| − 1)/3. If G∗ /∈ F13, then G′′ ∈ F . By Lemma 2, γ(G′′) = γ(G∗) + 1 =
(|V (G)| − 1)/3 + 1. If we now restore the graph G from G′′ by adding the deleted
edges incident with w, if any, we have that either G ∈ F or, by repeated applications of
Lemma 5(d), we have that γ(G) ≤ γ(G′′)−1 = (|V (G)|−1)/3 < 3|V (G)|/8, as desired. If
G∗ ∈ F13, then |V (G)| = 16 and γ(G) ≤ γ(G′′) = γ(G∗) + 1 = 6 = 3|V (G)|/8 = ψ(G;X),
as desired. Hence we may assume that if G∗ ∈ F , then |X∗| ≥ 1. Applying the inductive
hypothesis to G∗, we therefore have that γ(G∗;X∗) ≤ ψ(G∗;X∗). Note that every vertex
in G∗ has degree at least 2, except possibly for the vertex w. Hence, δ1(G

∗;X∗) ≤ 1.
Suppose that δ1(G

∗;X∗) = 1. Then, dG∗(w) = 1 and NG(w) = {u, v2, v4}. Inter-
changing the roles of v and w, if necessary, we may assume that NG(v) = {u, v2, v4}.
Hence the graph MG shown in Figure 10 is a subgraph of G, where the degrees of
the vertices in V (MG) \ {x} are unchanged in G. We now consider the graph Gx =
G − {u, v, v1, v2, v3, v4, w} and let Xx = X ∪ {x}. Then, Gx is a connected graph and
every vertex in V (Gx) \ Xx has degree at least 2 in Gx. Applying the inductive hy-
pothesis to Gx, we have that γ(Gx;Xx) ≤ ψ(Gx;Xx). Since |V (Gx)| = |V (G)| − 7,
|Xx| = |X|+1, and bc(Gx;Xx)+ sc(Gx;Xx)+ δ1(Gx;Xx) = 0, we have that ψ(Gx;Xx) ≤
ψ(G;X) − 21/8 + 5/8 = ψ(G;X) − 2. Every Xx-DS of Gx can be extended to an X-DS
of G by adding to it two vertices (for example, we can add v2 and w or we can add v and
v4). Thus, γ(G;X) ≤ γ(Gx;Xx) + 2 ≤ (ψ(G;X) − 2) + 2 = ψ(G;X), as desired. Hence
we may assume that δ1(G

∗;X∗) = 0.
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Figure 10: A subgraph MG of G.

Since |V (G∗)| = |V (G)|−3, |X∗| = |X|, bc(G∗;X∗)+sc(G∗;X∗) ≤ 1, and δ1(G
∗;X∗) =

0, we have that ψ(G∗;X∗) ≤ ψ(G;X) − 9/8 + 1/8 = ψ(G;X) − 1. Hence, γ(G;X) ≤
γ(G′′;X ′′) ≤ γ(G∗;X∗) + 1 ≤ ψ(G∗;X∗) + 1 ≤ ψ(G;X), as desired. 2

By Subclaim Q4, we have that G[{v, v2, v4, w}] = 2K2. We may assume v is adjacent
with v2 and that w is adjacent with v4; that is, N(v2) = {v, v1, v3} andN(v4) = {v1, v3, w}.
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Thus, |(N(v2) ∪ N(v4)) \ {v1}| = 3. Further, {v2, v4} ⊆ N(v) ∪ N(w). Hence we have
established that the graph LG shown in Figure 11 is a subgraph of G, where the edges
vv3 and wv3 may or may not be present in LG and where the degrees of the vertices u,
v1, v2 and v4 are unchanged in G. Further, V (LG) ∩X = ∅ and x is adjacent in G to at
least one vertex in V (G) \ V (LG).
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Figure 11: A subgraph LG of G.

However if we had considered the degree-2 vertex v1 instead of the degree-2 vertex u
in all our computations, we may analogously assume that dG(v) = 3 = dG(w) and that v
and w have a common neighbor z in G that is different from the degree-2 vertex u.

Subclaim Q5 z 6= v3.

Proof. Suppose that z = v3. Then, N(v) = {u, v2, v3} and N(w) = {u, v4, v3}. Let
G∗ = G−{u, v1, v2, w} and let X∗ = X ∪{v, v4}. Then, |V (G∗)| = |V (G)|−4 and |X∗| =
|X| + 2. Applying the inductive hypothesis to G∗, we have that γ(G∗;X∗) ≤ ψ(G∗;X∗).
Every vertex in V (G∗) \ X∗ has degree at least 2 in G∗, and so δ1(G

∗;X∗) = 0. Since
bc(G;X) + sc(G;X) = 0, we have that bc(G∗;X∗) + sc(G∗;X∗) = 0. Thus, ψ(G∗;X∗) =
ψ(G;X) − 12/8 + 10/8 < ψ(G;X). Since every γ(G∗;X∗)-DS of G∗ is a X-DS of G, we
have that γ(G;X) ≤ γ(G∗;X∗) < ψ(G;X), as desired. 2

By Subclaim Q5, z 6= v3. Thus, dG(v3) = 3 and, analogously, dG(z) = 3 (by considering
the degree-2 vertex v1 instead of the degree-2 vertex u). If z = x, then |V (G)| = 8 and
X = ∅. Further, {v, v4} is a dominating set of G, and so γ(G;X) = γ(G) = 2 < 3 =
ψ(G;X), as desired. Hence we may assume that z 6= x. Let y be the neighbor of z
different from v and w. Recall that neither v3 nor x belongs to X. Analogously, we may
assume that neither y nor z belongs to X. Hence we have established that the graph RG

shown in Figure 12 is a subgraph of G, where the degrees of the vertices in V (RG)\{x, y}
are unchanged in G. Further, V (RG) ∩X = ∅.

Let G∗ = G − {u, v, v1, v2, w, z} and X∗ = X ∪ {v4, y}. Applying the inductive
hypothesis to G∗, we have that γ(G∗;X∗) ≤ ψ(G∗;X∗). Note that |V (G∗)| = |V (G)| − 6
and |X∗| = |X| + 2. Every vertex in V (G∗) \ X∗ has degree at least 2 in G∗, and so
δ1(G

∗;X∗) = 0. Since bc(G;X)+sc(G;X) = 0, we have that bc(G∗;X∗)+sc(G∗;X∗) = 0.
Thus, ψ(G∗;X∗) = ψ(G;X) − 18/8 + 10/8 = ψ(G;X) − 1. Every γ(G∗;X∗)-DS can be
extended to a X-DS of G by adding to it the vertex v, and so γ(G;X) ≤ γ(G∗;X∗)+1 ≤
ψ(G;X), as desired. This completes the proof of Claim Q. 2
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Figure 12: A subgraph RG of G.

We now return to the proof of Theorem 4. Recall that G′ = G − N [u] and that
X ′ = X. Thus, |V (G′)| = |V (G)|−3 and |X ′| = |X|. By Claim O, γ(G′;X ′) ≤ ψ(G′;X ′).
By Claim P, sc(G′;X ′) = 0. By Claim Q, bc(G′;X ′) = 0. Since every vertex at distance 2
from u in G that does not belong to X has degree at least 3 in G, we have that dG′(x) ≥ 1
for all x ∈ V (G′) \X ′.

Claim R δ1(G
′;X ′) = 0.

Proof. Suppose that δ1(G
′;X ′) ≥ 1. Let v′ be a vertex of degree 1 inG′. Then, dG(v′) = 3

and {v, w} ⊂ NG(v′). We may assume that dG(v) ≥ dG(w). Let Nv = NG(v) \ {u}.
Then, |Nv| ≥ 2. Let G′′ be the graph obtained from G′ by adding all edges from v′ to
vertices in Nv \ {v′} that are not present in G. Suppose dG′(v′) = 1. Then, |Nv| = 2
and the neighbor w′ of v′ different from v and w is adjacent to both v and w. Further,
N(v) = N(w) = {u, v′, w′}. If w′ /∈ X, then w′ is an X-cut-vertex of G, a contradicting
Claim D that bc(G;X) = 0. Hence, w′ ∈ X. By Claim F, w′ is not a cut-vertex, and so
N(w′) = {v, v′, w}, |V (G)| = 5 and |X| = 1. Thus, γ(G;X) = 2 < 15/8+5/8 = ψ(G;X),
as desired. Hence we may assume that dG′′(x) ≥ 2 for all x ∈ V (G′′) \ X ′, and so
δ1(G

′′;X ′′) = 0. Note that bc(G′′;X ′′) + sc(G′′;X ′′) ≤ bc(G′;X ′) + sc(G′;X ′) + 1 = 1.
Let Gv be the component of G′′ containing v′ and let Xv = X ∩ V (Gv). If G′′ 6= Gv, let
Gw = G′′ − V (Gv) and let Xw = X ∩ V (Gw). Possibly, Gw is disconnected.

Claim R1 If G′′ 6= Gv, then γ(Gw;Xw) ≤ ψ(Gw;Xw).

Proof. Suppose G′′ 6= Gv. By construction, dGw
(x) ≥ 2 for all x ∈ V (Gw) \ Xw, and

so δ1(Gw;Xw) = 0. Note that if K is a component of Gw, then K is also a component
of G′, and so by Claim N and Claim O, γ(K;XK) ≤ ψ(K;XK) where XK = X ∩ V (K).
Further, by Claim P and Claim Q, we have that bc(Gw;Xw)+ sc(Gw;Xw) = bc(G′;X ′)+
sc(G′;X ′) = 0. Hence, γ(Gw;Xw) ≤ ψ(Gw;Xw). 2

IfG′′ 6= Gv, letDw be a γ(Gw;Xw)-set. By Claim R1, |Dw| = γ(Gw;Xw) ≤ ψ(Gw;Xw).
Let Gu = G[V (Gv) ∪ {u, v, w}] and let Xu = X ∩ V (Gu).

Claim R2 γ(Gu;Xu) ≤ γ(Gv;Xv) + 1

Proof. Let Dv be an γ(Gv;Xv)-set. If v′ ∈ Dv, let D = Dv ∪ {v}. If v′ /∈ Dv but
Dv contains a vertex in Nv, let D = Dv ∪ {w}. If Dv contains no vertex in Nv, let
D = Dv ∪ {u}. In all three cases, D is an γ(Gu;Xu)-DS of G. Hence, γ(Gu;Xu) ≤
|Dv| + 1 = γ(Gv;Xv) + 1. 2
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Claim R3 γ(Gv;Xv) ≤ ψ(Gv;Xv).

Proof. Suppose γ(Gv;Xv) > ψ(Gv;Xv). Applying the inductive hypothesis to Gv,
we have that Gv ∈ F and Xv = ∅. Thus, X = ∅ or, if G′′ 6= Gv, then X = Xw

(possibly, Xw = ∅). Further, γ(Gv;Xv) = γ(Gv) and γ(Gu;Xu) = γ(Gu). By Claim R2,
γ(Gu) ≤ γ(Gv) + 1. By Lemma 4(b), γ(Gv) = (|V (Gv)| + 2)/3.

If Gv ∈ F13, then |V (Gu)| = 16 and γ(Gu) ≤ γ(Gv) + 1 = 6 = 3|V (Gu)|/8 =
ψ(Gu;Xu). On the one hand, if G = Gu, then γ(G;X) = γ(G) = γ(Gu) ≤ ψ(Gu;Xu) =
ψ(G;X), as desired. On the other hand, if G 6= Gu, then γ(G;X) = γ(Gu)+γ(Gw;Xw) ≤
ψ(Gu;Xu)+ψ(Gw;Xw) = ψ(G;X), as desired. Hence we may assume Gv ∈ F4∪F7∪F10,
and so |V (Gv)| ∈ {4, 7, 10}. In particular, |V (Gu)| ≥ 7.

Let G′
u be obtained from Gu by deleting all edges, if any, in Gu that are incident with

w, except for the two edges uw and v′w. Note that v′wuv is a path in G′
u and that each of u

and w has degree 2 in G′
u. Since Gv is a type-1 G′

u-reducible graph and Gv ∈ F , the graph
G′

u ∈ F . By Lemma 1, γ(G′
u) = γ(Gv) + 1 = (|V (Gv)| + 2)/3 + 1 = (|V (Gu)| − 1)/3 + 1.

If we now restore the graph Gu from G′
u by adding the deleted edges incident with w,

we have that either Gu ∈ F or, by repeated applications of Lemma 5(d), we have that
γ(Gu) ≤ γ(G′

u) − 1 = (|V (Gu)| − 1)/3 < 3|V (Gu)|/8 = ψ(Gu;Xu).
If G = Gu, then either G ∈ F or γ(G;X) = γ(G) = γ(Gu) < ψ(Gu;Xu) = ψ(G;X),

as desired. Further if G 6= Gu and Gu /∈ F , then γ(G;X) ≤ γ(Gu) + γ(Gw;Xw) <
ψ(Gu;Xu) + ψ(Gw;Xw) = ψ(G;X), as desired. Hence we may assume that G 6= Gu and
Gu ∈ F . Let Du be a γ(Gu − w)-set. By Lemma 5(a), |Du| = γ(Gu − w) ≤ γ(Gu) − 1 =
(|V (Gu)| − 1)/3. We now let w′ ∈ N(w) \ V (Gu). Applying the inductive hypothesis
to Gw, we have that γ(Gw;Xw ∪ {w′}) ≤ ψ(Gw;Xw ∪ {w′}) = ψ(Gw;Xw) + 5/8 =
ψ(G;X) − 3|V (Gu)|/8 + 5/8. Every γ(Gw;Xw ∪ {w′})-set can be extended to an X-
DS of G by adding to it the set Du. Hence, γ(G;X) ≤ γ(Gw;Xw ∪ {w′}) + |Du| ≤
(ψ(G;X)−3|V (Gu)|/8+5/8)+(|V (Gu)|−1)/3 = ψ(G;X)+(7−|V (Gu)|)/24 ≤ ψ(G;X),
as desired. 2

By Claim R1 and Claim R3, we have that γ(G′′;X ′′) ≤ ψ(G′′;X ′′). As observed
earlier, bc(G′′;X ′′) + sc(G′′;X ′′) ≤ 1 and δ1(G

′′;X ′′) = 0. Since |V (G′′)| = |V (G)| − 3
and |X ′′| = |X|, we have that ψ(G′′;X ′′) ≤ ψ(G;X) − 9/8 + 1/8 = ψ(G;X) − 1. Every
γ(G′′;X ′′)-set can be extended to a X-DS of G by adding to it the vertex u, and so
γ(G;X) ≤ γ(G′′;X ′′) + 1 ≤ ψ(G;X), as desired. This completes the proof of Claim R. 2

We return to the proof of Theorem 4 one last time. As established earlier, |V (G′)| =
|V (G)| − 3, |X ′| = |X|, γ(G′;X ′) ≤ ψ(G′;X ′), sc(G′;X ′) = 0 and bc(G′;X ′) = 0. By
Claim R, δ1(G

′;X ′) = 0. Thus, ψ(G′;X ′) = ψ(G;X) − 9/8 < ψ(G;X) − 1. Every
γ(G′;X ′)-DS can be extended to a X-DS of G by adding to it the vertex u, and so
γ(G;X) ≤ γ(G′;X ′) + 1 < ψ(G;X). This completes the proof of Theorem 4. 2
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