
Acyclic sets in k-majority tournaments

Kevin G. Milans∗, Daniel H. Schreiber†, Douglas B. West‡

Submitted: Jul 31, 2010; Accepted: May 18, 2011; Published: May 30, 2011

Mathematics Subject Classification: 05C20, 06A05

Abstract

When Π is a set of k linear orders on a ground set X, and k is odd, the k-

majority tournament generated by Π has vertex set X and has an edge from u to
v if and only if a majority of the orders in Π rank u before v. Let fk(n) be the
minimum, over all k-majority tournaments with n vertices, of the maximum order
of an induced transitive subtournament. We prove that f3(n) ≥ √

n always and
that f3(n) ≤ 2

√
n− 1 when n is a perfect square. We also prove that f5(n) ≥ n1/4.

For general k, we prove that nck ≤ fk(n) ≤ ndk(n), where ck = 3−(k−1)/2 and
dk(n) → 1+lg lg k

−1+lg k as n → ∞.

1 Introduction

When Π is a set of linear orders on a ground set X, the majority digraph of Π has vertex
set X and has an edge from u to v if and only if a majority of the orders in Π rank u before
v. When Π has size k and k is odd, the majority digraph is a k-majority tournament. A
k-majority tournament is a model of the consensus preferences of a group of k individuals.

In studying generalized voting paradoxes, McGarvey [8] showed that every n-vertex
tournament is realizable as a k-majority tournament with k = 2

(

n
2

)

. Erdős and Moser [6]
improved this by showing that k = O(n/ logn) always suffices, and Stearns [9] showed
that k = Ω(n/ log n) is sometimes necessary.

In addition to modeling group preferences using a small number of criteria, the k-
majority tournaments for fixed k form a well-behaved class of tournaments. For example,
consider domination. The domination number of a directed graph D, denoted γ(D), is
the minimum size of a vertex subset S such that each vertex not in S has an immediate
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predecessor in S. In general, Erdős [5] showed that n-vertex tournaments can have domi-
nation number Ω(log n). In contrast, for k-majority tournaments the domination number
is bounded; Alon et al. [1] proved that every k-majority tournament has domination num-
ber at most O(k log k) and constructed k-majority tournaments with domination number
at least Ω(k/ log k).

A set of vertices in a tournament is acyclic if the subtournament induced by it contains
no cycle. Let a(D) denote the maximum size of an acyclic set in D. Erdős and Moser [6]
showed that every n-vertex tournament has an acyclic set of size at least ⌊lg n⌋+1, where
“lg” denotes log2. Furthermore, they showed that almost every n-vertex tournament T
satisfies a(T ) ≤ 2 ⌊lg n⌋ + 1.

In contrast, every n-vertex k-majority tournament has an acyclic set whose size is
bounded below by a polynomial in n. Let

fk(n) = min{a(T ) : T is an n-vertex k-majority tournament}.

We prove that f3(n) ≥ √
n always and that f3(n) ≤ 2

√
n − 1 when n is a perfect square.

We also prove that f5(n) ≥ n1/4. For general k, we prove that nck ≤ fk(n) ≤ ndk , where
ck = 3−(k−1)/2 and dk(n) → 1+lg lg k

−1+lg k
as n → ∞. In proving the upper bound on fk(n), we

use the existence of an r-vertex tournament T with a(T ) ≤ 2 lg r + 1.
In discussing acyclic sets in tournaments, we use the elementary characterizations of

such sets. A set is acyclic if and only if the subtournament induced by it is transitive,
which holds if and only if it induces no triangle, where a triangle is a (directed) 3-cycle.
We also use the Erdős–Szekeres Theorem.

Theorem (Erdős–Szekeres [7]). Every list of more than (r − 1)(s − 1) distinct integers
has an increasing sublist of length r or a decreasing sublist of length s.

Let Π be a set of linear orderings of a ground set X. A set of elements of X is Π-
consistent if it appears in the same order in each member of Π. When Π has even size, a
set S of elements of X is Π-neutral if for all distinct u, v ∈ S, element u appears before
element v in exactly half the members of Π. Note that if S is {π1, π2}-neutral, then π1

ranks the elements of S in reverse order from π2. We use the following rephrasing of the
Erdős–Szekeres Theorem.

Theorem (Erdős–Szekeres [7]). Given linear orderings π1 and π2 of a set X with |X| >
(r−1)(s−1), there is a {π1, π2}-consistent set of size r or a {π1, π2}-neutral set of size s.

Proof. Rename the elements of X so that π1 is the identity ordering (1, . . . , n), and apply
the Erdős–Szekeres Theorem to π2.

Acyclic sets in tournaments are related to independent sets and cliques in graphs;
let α(G) and ω(G) denote the maximum sizes of a clique and an independence set in a
graph G, respectively. Let [n] = {1, . . . , n}. Graphs and tournaments with vertex set [n]
correspond as follows: two vertices are adjacent in G if and only if the edge joining them
in T points from the smaller vertex to the larger. Every clique or independent set in G is
acyclic in T , so a(T ) ≥ max{α(G), ω(G)}.
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Although acyclic sets in T need not be cliques or independent sets in G, still the
Erdős–Szekeres Theorem yields an upper bound. Let S be a largest acyclic set in T .
Let π1 be the restriction to S of the usual ordering of [n], and let π2 be the transitive
order formed by S in T . Now any {π1, π2}-neutral set is an independent set in G, and
any {π1, π2}-consistent set is a clique in G. Hence the Erdős–Szekeres Theorem implies
max{α(G), ω(G)} ≥

√

|S|, or a(T ) ≤ (max{α(G), ω(G)})2.

2 k = 3 and k = 5

In this section, we prove bounds on fk(n) when k is 3 or 5. When k = 3, our upper and
lower bounds differ only by a factor of 2.

Beame and Huynh-Ngoc [3] gave a simple argument that when {π1, π2, π3} is a set of
three orderings of [n], there is a {πi, πj}-consistent set of size n1/3 for some i, j ∈ {1, 2, 3}.
Beame, Blais, and Huynh-Ngoc [2] proved that for integers n and k with k ≥ 3 and
n ≥ k2, there is a set of k orderings of [n] in which no two orderings have a consistent set
of size greater than 16(nk)1/3.

When two of three orderings are consistent on a set, that set is acyclic in the resulting
3-majority tournament. Thus f3(n) ≥ n1/3 using only sets that are consistent in two of
the orders. By considering also acyclic sets that are neutral in the first two orders, we
improve the lower bound.

Proposition 2.1. f3(n) ≥ √
n.

Proof. Let T be an n-vertex 3-majority tournament realized by {π1, π2, π3}. By the Erdős–
Szekeres Theorem, there is a {π1, π2}-consistent set of size at least

√
n or a {π1, π2}-neutral

set of size at least
√

n. In the first case, this set is acyclic.
Otherwise, let S be a {π1, π2}-neutral set of size at least

√
n. Since S is {π1, π2}-

neutral, it follows that S induces a transitive subtournament of T with vertices in the
same order as in π3. Hence S is acyclic.

Despite the simplicity of Proposition 2.1, the bound is not far from optimal.

Theorem 2.2. If n is a perfect square, then f3(n) ≤ 2
√

n − 1.

Proof. Let n = r2, and let X = [r] × [r]. View X as points in the first quadrant of the
plane, so that (x1, x2) gives (column, row) index pairs. We define orderings π1, π2, π3 of
X and argue that a(T ) ≤ 2r − 1, where T is the resulting 3-majority tournament on X.

(u1, u2) < (v1, v2) in π1 ⇐⇒ u2 < v2 or (u2 = v2 and u1 < v1)

(u1, u2) < (v1, v2) in π2 ⇐⇒ u2 > v2 or (u2 = v2 and u1 < v1)

(u1, u2) < (v1, v2) in π3 ⇐⇒ u1 > v1 or (u1 = v1 and u2 < v2).

Since these are all lexicographic orderings (up to symmetry), they are linear orderings.
Consider distinct vertices u and v, with u = (u1, u2) and v = (v1, v2). If u and v

differ in both coordinates, then uv ∈ E(T ) if and only if u1 > v1. Indeed, {u, v} is
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{π1, π2}-neutral; π3 breaks the tie by putting the vertex with larger first coordinate first.
If u2 = v2, then uv ∈ E(T ) if and only if u1 < v1. If u1 = v1, then uv ∈ E(T ) if and only
if u2 < v2.

For i, j ∈ [r], let Ri = {(u1, u2) ∈ X : u2 = i} and Cj = {(u1, u2) ∈ X : u1 = j}.
Let S be an acyclic subset of T . We prove |S| ≤ 2r − 1 by mapping the vertices in S to
represent distinct elements of {Ri : i ∈ [r] − {1}} ∪ {Cj : j ∈ [r]}. For each column Cj

that intersects S, let the lowest vertex in S ∩ Cj (smallest second coordinate) represent
Cj. Every other vertex in S represents the row containing it. No vertex represents R1,
because this vertex would be the lowest in its column and represent the column instead.

By construction, no two vertices represent the same column. If two vertices u and v
represent the same row Ri, then u = (u1, i) and v = (v1, i); we may assume that u1 < v1.
Since u represents Ri, some vertex w in S is in the same column as u but has a smaller
second coordinate. That is, w = (u1, k) with k < i. Now uv, vw, and wu are edges in T ,
contradicting that S is an acyclic set.

Proposition 2.1 and Theorem 2.2 combine to give general bounds on f3(n).

Corollary 2.3.
√

n ≤ f3(n) < 2
√

n + 1.

Proof. The lower bound is Proposition 2.1. For the upper bound, let n′ be the smallest
perfect square that is at least n; note that

√
n′ −√

n < 1. By the monotonicity of f and
Theorem 2.2, f3(n) ≤ f3(n

′) ≤ 2
√

n′ − 1 < 2
√

n + 1.

We now consider k = 5. Because adding a linear ordering and its reverse to Π does
not change the majority digraph, every k-majority tournament is a (k + 2)-majority
tournament, and hence fk+2(n) ≤ fk(n). This observation yields the best upper bound
we currently have on f5(n), which is f5(n) ≤ f3(n) < 2

√
n+1. One would expect f5(n) to

be strictly smaller than f3(n), and indeed our lower bound for f5(n) is smaller than that
for f3(n). We use the well-known fact that any poset of size r has a chain or an antichain
of size at least

√
r (by Dilworth’s Theorem, for example [4]).

Theorem 2.4. f5(n) ≥ n1/4.

Proof. Let T be an n-vertex 5-majority tournament realized by {π1, . . . , π5}. Apply the
Erdős–Szekeres Theorem to π1 and π2 to obtain a {π1, π2}-consistent or a {π1, π2}-neutral
set S of size at least

√
n. Let r = |S|. If S is {π1, π2}-neutral, then the subtournament

on S is an r-vertex 3-majority tournament realized by {π3, π4, π5}. By Proposition 2.1, S
contains an acyclic set of size

√
r, and therefore a(T ) ≥ n1/4.

Otherwise, S is {π1, π2}-consistent. Let P be the poset that is the intersection of the
orders π3, π4, and π5, so u <P v if and only if all three orders list u before v. Let P ′

be the subposet of P on S. The elements of any chain of size at least
√

r in P ′ form a
{π3, π4, π5}-consistent set, and this set is acyclic in T .

If there is no such chain, then P ′ has an antichain A of size at least
√

r. Any two
elements of A appear in both orders among {π3, π4, π5}. Thus, A induces a transitive sub-
tournament, ordered by the common restriction to A of π1 and π2. Again a(T ) ≥ n1/4.
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3 General odd k

In this section we present bounds on fk(n) for general k. Our bounds are far apart when
k is large, but they do show that fk(n) has polynomial growth (between powers of n) for
all fixed k. The exponents on n in the upper and lower bounds tend to zero as k grows.

Given a family Π of linear orders on [n], a set S ⊆ [n] is Π-homogeneous if there is
a linear order L on S and an integer h such that exactly h members of Π list u before
v whenever u <L v. Relative to L, we then say that h is the signature of S. When |Π|
is odd, a Π-homogeneous set is acyclic in the resulting |Π|-majority tournament. Our
argument for the lower bound finds a Π-homogeneous set inductively.

Theorem 3.1. Let k be an odd integer. For any family Π of k linear orders on an n-set,
there is a Π-homogeneous set of size at least nck , where ck = 3−(k−1)/2; hence fk(n) ≥ nck .

Proof. We use induction on k; the claim is trivial for k = 1. For k ≥ 3, let Π =
{π1, . . . , πk}. By the Erdős–Szekeres Theorem, there is a {πk−1, πk}-consistent set of size
at least n2/3 or a {πk−1, πk}-neutral set of size at least n1/3. Call this set S, and let
Π′ = {π′

1, . . . , π
′

k−2}, where π′

j is the restriction of πj to S. The induction hypothesis
yields within S a Π′-homogeneous set S ′ of size at least |S|ck−2.

If S is {πk−1, πk}-neutral, then S ′ is not only Π′-homogeneous but also Π-homogeneous.
We have |S ′| ≥ nck−2/3, which suffices since ck = ck−2/3.

Hence we may assume that S is {πk−1, πk}-consistent. We cannot conclude that S ′ is
Π-homogeneous, because the ordering L1 under which S ′ is Π′-homogeneous may differ
from the common ordering L2 of S ′ in πk−1 and πk. Applying the Erdős–Szekeres Theorem
to L1 and L2 yields an {L1, L2}-consistent or {L1, L2}-neutral set S ′′ of size at least

√

|S ′|.
Let h be the signature of S ′ relative to L1. Whether S ′′ is {L1, L2}-consistent or

{L1, L2}-neutral, S ′′ is Π-homogeneous relative to L1 with signature h + 2 or h − 2,
respectively. Furthermore, |S ′′| ≥

√

|S ′| ≥ ((n2/3)ck−2)1/2 ≥ nck−2/3 = nck .

Our upper bound on fk(n) for general odd k uses induction on n. We begin with a
(k+1)/2-vertex tournament T1 having no large acyclic set; it is a k-majority tournament.
We then compose copies of T1 to obtain larger k-majority tournaments having no large
acyclic sets.

For tournaments T and T ′, the composition T ◦ T ′ is the tournament obtained by
replacing each vertex u in T with a copy T ′(u) of T ′ and replacing each edge uv in T with
an orientation of a complete bipartite graph with all edges directed from T ′(u) to T ′(v).
Formally, if V (T ) = [r] and V (T ′) = [r′], then V (T ◦ T ′) = [r] × [r′], and (x, x′)(y, y′) is
an edge in T ◦ T ′ if and only if (1) xy ∈ E(T ) or (2) x = y and x′y′ ∈ E(T ′).

Proposition 3.2. If T and T ′ are k-majority tournaments, then T ◦ T ′ is a k-majority
tournament.

Proof. Let T and T ′ be k-majority tournaments on [r] and [r′], respectively. Let T
be realized by {π1, . . . , πk} and T ′ be realized by {σ1, . . . , σk}. We construct a realizer
{τ1, . . . , τk} for T ◦T ′ by letting τt be the linear ordering of [r]× [r′] obtained by replacing
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the occurrence of i ∈ [r] in πt with (i, σt(1)), (i, σt(2)), . . . , (i, σt(r
′)), where σt(j) is the

jth element of σt.
Consider an edge (x, x′)(y, y′) ∈ E(T ◦T ′). If x 6= y, then xy ∈ E(T ), and hence more

than half of π1, . . . , πk list x before y. The corresponding orders in {τ1, . . . , τk} list all
elements with first coordinate x before all elements with first coordinate y. If x = y, then
x′y′ ∈ E(T ′), and hence more than half of σ1, . . . , σk list x′ before y′. The corresponding
orders in {τ1, . . . , τk} list (x, x′) before (y, y′). It follows that τ1, . . . , τk realize T ◦ T ′.

Proposition 3.3. a(T ◦ T ′) = a(T )a(T ′).

Proof. If S is acyclic in T and S ′ is acyclic in T ′, then S × S ′ is acyclic in T ◦ T ′,
so a(T ◦ T ′) ≥ a(T )a(T ′). Conversely, if Ŝ is acyclic in T ◦ T ′, then let S = {u ∈
V (T ) : (u, v) ∈ Ŝ for some v ∈ V (T ′)}. Note that S is acyclic in T , since a cycle induced
by S lifts to a cycle induced by Ŝ. Also, for u ∈ V (T ), at most a(T ′) vertices with first
coordinate u lie in Ŝ. Thus a(T ◦ T ′) ≤ |S|a(T ′) ≤ a(T )a(T ′).

Proposition 3.4. Let T1 be an n-vertex tournament, and let α = a(T1). If Tj = Tj−1 ◦T1

for j > 1, then a(Tj) = |V (Tj)|
lg α

lg n .

Proof. Note that |V (Tj)| = nj. Since αj lg n = nj lg α, Proposition 3.3 yields a(Tj) = αj =

|V (Tj)|
lg α

lg n .

Proposition 3.4 provides a way of building larger k-majority tournaments from an
initial k-majority tournament T1; when a(T1) is small, also a(Tj) is small. A randomized
construction produces a tournament with a given number of vertices that has no large
acyclic set, but such tournaments typically are not k-majority tournaments. Nevertheless,
when the given number of vertices is at most (k− 1)/2, every tournament is a k-majority
tournament. Stronger results are known, but our result only needs the following simple
proposition.

Proposition 3.5. Every n-vertex tournament is a (2n − 1)-majority tournament.

Proof. Let T be an orientation of Kn. It is well known that Kn is n-edge-colorable.
Let M1, . . . , Mn be a decomposition of Kn into matchings. We first construct a real-
izer Π of T with |Π| = 2n. Each matching contributes two linear orders to Π. Let
Mj = {u1v1, . . . , utvt} with uivi ∈ E(T ), and let w1, . . . , wn−2t be the vertices not cov-
ered by Mj . The two orders generated by Mj are (u1, v1, . . . , ut, vt, w1, . . . , wn−2t) and
(wn−2t, . . . , w1, ut, vt, . . . , u1, v1).

All vertex pairs are neutral in the two orders except the edges of Mj itself. Each edge
of T appears in one matching. Hence if uv ∈ E(T ), then u appears before v exactly n+1
times, so Π realizes T . Furthermore, deleting any one member of Π leaves u before v in
at least n of the remaining 2n − 1 orders.

We now have the tools needed to prove our upper bound on fk(n) for general k.

Theorem 3.6. For k fixed, fk(n) ≤ ndk(n), where dk(n) → 1+lg lg k
−1+lg k

as n → ∞.
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Proof. Let k′ = (k + 1)/2. By the result of Erdős and Moser [6], there is a k′-vertex
tournament T1 with a(T1) ≤ 1 + 2 lg k′. Let α = a(T1). By Proposition 3.5, T1 is a
k-majority tournament. Note also that 1 + 2 lg k′ ≤ 2 lg k for k ≥ 3, so α ≤ 2 lg k.

Let n be a positive integer, and let n′ be the least power of k′ that is at least as large
as n. Note that n′ ≤ nk′. By Proposition 3.4, there is a k-majority tournament T on n′

vertices with a(T ) = (n′)
lg α

lg k′ . Also lg k′ > −1 + lg k. Hence

fk(n) ≤ fk(n
′) ≤ (n′)

lg α

lg k′ ≤ (nk′)
lg α

lg k′ = n
lg α

lg k′

“

1+ lg k
′

lg n

”

< n
1+lg lg k

−1+lg k
(1+ lg k

lg n
).

As desired, the exponent tends to 1+lg lg k
−1+lg k

as n → ∞.

Erdős and Moser [6] also proved that every n-vertex tournament is a k-majority tour-
nament for k = O(n/ logn); equivalently, for some constant c every tournament on ck log k
vertices is a k-majority tournament. Thus we could let T1 be a tournament with ck log k
vertices such that a(T1) ≤ 3 lg(ck log k). This would produce a very slight improvement
in our bound, increasing the denominator of the exponent by a lower order term.
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