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Abstract
The toughness of a non-complete graph G is the minimum value of |S|

ω(G−S) among
all separating vertex sets S ⊂ V (G), where ω(G − S) > 2 is the number of compo-
nents of G−S. It is well-known that every 3-connected planar graph has toughness
greater than 1/2. Related to this property, every 3-connected planar graph has
many good substructures, such as a spanning tree with maximum degree three,
a 2-walk, etc. Realizing that 3-connected planar graphs are essentially the same
as 3-connected K3,3-minor-free graphs, we consider a generalization to a-connected
Ka,t-minor-free graphs, where 3 6 a 6 t. We prove that there exists a positive
constant h(a, t) such that every a-connected Ka,t-minor-free graph G has toughness
at least h(a, t). For the case where a = 3 and t is odd, we obtain the best possible
value for h(3, t). As a corollary it is proved that every such graph of order n contains
a cycle of length Ω(logh(a,t) n).

1 Introduction

In this paper, all graphs are finite and simple. A graph H is a minor of a graph K if H
can be obtained from a subgraph of K by contracting edges.
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In the core of the seminal Graph Minor Theory of Robertson and Seymour lies a
powerful theorem capturing the “rough” structure of graphs excluding a fixed minor. This
result was used to prove Wagner’s Conjecture that finite graphs are well-quasi-ordered
under the graph minor relation. From the theoretical point of view there are two classes
of graphs for which one would like to understand the excluded minor structure in more
detail. These are the complete graphs Kt (t > 1) and complete bipartite graphs Ka,t,
where a is constant and t > 1.

The family of graphs containing no Ka,t-minors has attracted a lot of attention, even
when a is small, say a = 3. Graphs containing no K3,t-minor form an important class of
graphs in the theory of graph minors (related to surface embeddings). In [5], it is shown
that if G is a 3-connected graph with no K3,t-minor, then it has a large wheel. More
generally, it is shown in [2] that every sufficiently large 16a-connected graph contains a
Ka,t-minor. This means that large connectivity guarantees the existence of a Ka,t-minor
with only finitely many exceptions for each a and t.

In this paper we set a different goal. We study the “toughness” of graphs without a
Ka,t-minor.

We say that a vertex set S ⊂ V (G) is separating if G−S has at least two components.

We define the toughness of G as the minimum value of |S|
ω(G−S)

among all separating sets

S ⊂ V (G), where ω(G−S) > 2 is the number of component of G−S. If G is a complete
graph, then it has no separating vertex sets, and we define its toughness to be ∞. We
say that G is t-tough if its toughness is at least t.

Our main aim is to find out how small the toughness can be in the family of all a-
connected graphs without a Ka,t-minor. The graph Ka,t−1 is a-connected if t > a, has
toughness a

t−1
, and has no Ka,t-minor. As for the general case, it turns out that there is

a positive lower bound on the toughness in terms of a and t.
For t > a > 3, we define g(a, t) = 1

2
(a− 1)!(t− 1). We prove the following result.

Theorem 1 Let t > a > 3 be integers. If G is an a-connected Ka,t-minor-free graph,
then for every separating vertex set S of the vertices, the number of components of G−S
is at most g(a, t)(|S| − a + 1). Consequently, the toughness of G is at least 1/g(a, t).

Combining Theorem 1 with Win’s theorem in [7], which states that every 1
k−2

-tough
graph contains a spanning k-tree (recall that a k-tree is a tree with maximum degree at
most k), we obtain the following corollary.

Corollary 2 If G is an a-connected Ka,t-minor-free graph, then G contains a spanning
(g(a, t) + 2)-tree.

In particular for a = 3, we obtain the following result.

Corollary 3 If G is a 3-connected K3,t-minor-free graph, then G contains a spanning
(t + 1)-tree.

Corollaries 2 and 3 imply the following results that are of independent interest.
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Corollary 4 If G is an a-connected Ka,t-minor-free graph of order n, then G contains a
path of length at least 2 logg(a,t)+1 n, and a cycle of length at least 4

5
logg(a,t)+1 n.

Furthermore, if a = 3, then G contains a path of length at least 2 logt n, and a cycle
of length at least 4

5
logt n.

Proof. By Corollaries 2 and 3, there is a spanning tree of maximum degree at most l+1
in G, where l = g(a, t) + 1, and l = t for a = 3. This implies that G has a path of length
2 logl n. Bondy and Locke [3] proved that, if a 3-connected graph has a path of length k,
then it has a cycle of length at least 2k/5. This easily completes the proof.

The second conclusion in Corollary 4 is much weaker than the result by Chen et al. [4].
They proved that such a graph has a cycle of length at least nf(t) for some value f(t) > 0.
But as far as we know, when a > 4, this is the first result that shows the existence of a
long path and a long cycle for a > 4.

A 3-connected K3,3-minor-free graph is nothing but a 3-connected planar graph, or
K5. Barnette [1] proved in 1966 that every 3-connected planar graph contains a spanning
3-tree. Thus, Corollary 3 is not best possible for t = 3. However, in Section 3, we show
that Theorem 1 is best possible when t is odd.

Very recently, Ota and Ozeki [6] proved that if t > 4 is even, then every 3-connected
K3,t-minor-free graph contains a spanning (t − 1)-tree. This implies that for each odd
integer t > 3, every 3-connected K3,t-minor-free graph contains a spanning t-tree.

2 Bipartite Minors in Bipartite Graphs

In this section, we prove our main theorem.
For x ∈ V (G), we write N(x) for the neighbourhood of x in G. Suppose that a graph

G has an H-minor. Then G contains pairwise vertex-disjoint connected subgraphs Av,
v ∈ V (H) such that if u and v are adjacent in H then G has an edge joining Au and Av.
For v ∈ V (H), the subgraph Av (or its vertex set) is called a branch set of the H-minor
in G.

The following theorem is an essential part of our proof of Theorem 1. Recall that
g(a, t) = 1

2
(a− 1)!(t− 1).

Theorem 5 Let t > a > 3 be integers. Let G be a bipartite graph with partite sets X
and Y . Suppose that each vertex x ∈ X has degree at least a, and that

|X| > g(a, t)(|Y | − a + 1).

Then G has a Ka,t-minor, in which each of the branch sets corresponding to the vertices
in the partite set of order t of Ka,t is a singleton of X.

In order to prove Theorem 5, we first settle the case a = 3. Namely, we first prove the
following theorem.
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Theorem 6 Let G be a bipartite graph with partite sets X and Y satisfying |X| > (t −
1)(|Y | − 2). If every vertex of X has degree at least three, then G has a K3,t-minor, in
which each of the branch sets corresponding to the vertices in the partite set of order t of
K3,t is a singleton of X.

Proof. The proof is by induction on |Y |. If |Y | = 3, then the condition implies that G
contains a K3,t as a subgraph. Thus the result follows immediately.

Suppose now that |Y | > 4. We may assume that d(x) = 3 for every x ∈ X.
Let y1 and y2 be distinct vertices in Y that have a common neighbor in X. Let

A = N(y1) ∩N(y2) 6= ∅. If |A| 6 t− 1, then we contract {y1, y2} ∪A into a single vertex
y′, and delete all edges between y′ and Y \ {y1, y2} to obtain a bipartite graph G′ with
partite sets X ′ = X \ A and Y ′ = (Y \ {y1, y2}) ∪ {y′}. It is easy to see that dG′(x) = 3
for each x ∈ X ′, and

|X ′| > |X| − (t− 1) > (t− 1)(|Y | − 3) = (t− 1)(|Y ′| − 2).

By the induction hypothesis, G′ has a K3,t-minor with the desired condition, and so does
G.

Thus we may assume that |A| > t. If G−{y1, y2} is connected, then, since each vertex
in A has degree one in G − {y1, y2}, G − ({y1, y2} ∪ A) is connected. Let us contract
G− ({y1, y2}∪A) into a vertex. Then we obtain a K3,t as a minor of G with its t vertices
of degree three corresponding to a subset of A of cardinality t.

If G − {y1, y2} is disconnected, then, since |X| > (t − 1)|Y \ {y1, y2}|, there is a
component H of G− {y1, y2} satisfying

|V (H) ∩X| > (t− 1)|V (H) ∩ Y |.

Let G′′ be the subgraph of G induced by V (H) ∪ {y1, y2}. The partite sets of G′′ are
X ′′ = V (H) ∩X and Y ′′ = {y1, y2} ∪ (V (H) ∩ Y ), and

|X ′′| > (t− 1)|V (H) ∩ Y | = (t− 1)(|Y ′′| − 2).

By the induction hypothesis, G′′ has a K3,t-minor with the required properties, and so
does G.

Proof of Theorem 5. The proof is by induction on a and |Y |. The case when a = 3
was settled in Theorem 6, so we may assume that a > 4. If |Y | = a, then the condition
implies that G is the complete bipartite graph Ka,|X|, which contains Ka,t as a subgraph.

Suppose now that |Y | > a+1. We may assume that d(x) = a for every x ∈ X. Let y1

and y2 be distinct vertices in Y that have a common neighbor in X. Let A = N(y1)∩N(y2).
If |A| 6 g(a, t), then we contract {y1, y2} ∪ A into a single vertex y′, and delete all edges
between y′ and Y \ {y1, y2} to obtain a bipartite graph G′ with partite sets X ′ = X \ A
and Y ′ = (Y \ {y1, y2}) ∪ {y′}. It is easy to see that dG′(x) = a for each x ∈ X ′, and

|X ′| > |X| − g(a, t) > g(a, t)(|Y | − a) = g(a, t)(|Y ′| − a + 1).

By the induction hypothesis, G′ has a Ka,t-minor, and so does G.
Thus we may assume that
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(*) |N(y) ∩N(y′)| > g(a, t) for every pair of vertices y, y′ ∈ Y with N(y) ∩N(y′) 6= ∅.

We take a vertex y0 ∈ Y . Let X0 = N(y0) and let Y0 = N(X0) \ {y0}. Let G0 be the
subgraph induced by X0 ∪ Y0. Then, dG0(x) = a − 1 for every x ∈ X0. By (*), for each
vertex y ∈ Y0, dG0(y) > g(a, t). This implies that

|X0| =
|E(G0)|
a− 1

>
g(a, t)|Y0|

a− 1
= g(a− 1, t)|Y0|.

By the induction hypothesis, G0 has a Ka−1,t-minor, in which each of the branch sets
corresponding to the vertices in the partite set of order t in Ka−1,t is a singleton of X0.
Since y0 is adjacent to all vertices of X0, we find a Ka,t-minor in G with the desired
condition.

Proof of Theorem 1. Let S ⊂ V (G), and let C1, . . . , Cm be the components of G− S.
Contract each Ci into a single vertex, and delete all edges in S. Then we obtain a
bipartite graph G′ with partite sets S and X, where the vertices of X correspond to the
components C1, . . . , Cm. Since G is a-connected, dG′(x) > a for each x ∈ X. Moreover,
since G is Ka,t-minor-free, its minor G′ is also Ka,t-minor-free. By Theorem 5, we have
m = |X| 6 g(a, t)(|S| − a + 1), which proves the assertion of the theorem.

3 Sharpness

In this section, we discuss the sharpness of Theorems 1 and 5 for a = 3, while we do
not think that Theorem 1 is sharp when a > 4. The following proposition shows that
Theorem 1 is sharp when a = 3 and t is odd. Note that g(3, t) = t− 1.

Proposition 7 For each odd integer t > 3, there exist infinitely many 3-connected K3,t-
minor-free graphs G containing a subset S ⊂ V (G) such that the number of components
of G− S is (t− 1)(|S| − 2).

Proof. Let t = 2r + 1. Let H be a planar triangulation, and let n = |V (H)|. For each
face f of H, we add a set Xf of r new vertices, each of which is adjacent to the three
vertices on the boundary of f . Let G be the resulting graph on V (H) ∪

⋃
f∈F (H) Xf .

If we set S = V (H) ⊂ V (G), then the number of components of G− S is

r|F (H)| = r(2n− 4) = 2r(n− 2) = (t− 1)(|S| − 2).

On the other hand, we can show that G is K3,2r+1-minor-free. If r = 1, then the result
is obvious because G is planar. So we assume r > 2. Suppose that G contains a K3,2r+1-
minor. Let A1, A2, A3 and B1, B2, . . . , B2r+1 be the branch sets of the K3,2r+1-minor in G
such that each Ai is adjacent to every Bj. We may assume that Ai and Bj are chosen to
be minimal.

Claim. If a vertex x in
⋃

f∈F (H) Xf is in some branch set, then {x} = Bj for some j.
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Suppose x ∈ Xf and x is contained in a branch set B with |B| > 2. Since NG(x) is a
triangle, it is easy to see that B − x is connected, and that NG(B − x) \B = NG(B) \B.
Thus, we can replace B with B − x as a branch set of a K3,2r+1-minor, which contradicts
the minimality of the branch sets. Thus B = {x}. Since d(x) = 3, the branch set B
corresponds to a vertex of degree three in K3,2r+1. This proves the claim.

Now, let G′ be the graph obtained from G by identifying Xf into a single vertex vf

for each f ∈ F (H). Consider the identification image of the K3,2r+1-minor in G. Since
|Xf | = r, B1, B2, . . . , B2r+1 are identified into at least d(2r+1)/re = 3 sets, and we obtain
a K3,3-minor in G′, which contradicts that G′ is a planar graph. This proves that G does
not contain a K3,2r+1-minor.

On the other hand, Theorem 6 is best possible for every integer t > 3.

Proposition 8 There exists a K3,t-minor-free bipartite graph G having partite sets X
and Y with |X| = (t− 1)(|Y | − 2) such that each vertex in X has degree three.

Proof. Let X = {xij : 1 6 i 6 m, 1 6 j 6 t − 1} and Y = {z1, z2, y1, . . . , ym}. Let
G be a bipartite graph with partite sets X and Y such that N(xij) = {z1, z2, yi}. Then,
|X| = (t− 1)m = (t− 1)(|Y |− 2), and it is not difficult to see that G is K3,t-minor-free.

The graph in Proposition 8 is not 3-connected. We do not know whether Theorem 1
is sharp or not when a = 3 and t is even.
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