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Abstract

Recently, Han obtained two hook length formulas for binary trees and asked
for combinatorial proofs. One of Han’s formulas has been generalized to k-ary
trees by Yang. Sagan has found a probabilistic proof of Yang’s extension. We give
combinatorial proofs of Yang’s formula for k-ary trees and the other formula of Han
for binary trees. Our bijections are based on the structure of k-ary trees associated
with staircase labelings.
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1 Introduction

Motivated by the hook length formula of Postnikov [6], Han [4] discovered two hook length
formulas for binary trees. Han’s proofs are based on recurrence relations. He raised the
question of finding combinatorial proofs of these two formulas [3, 4]. Yang [9] generalized
one of Han’s formulas to k-ary trees by using generating functions. A probabilistic proof of
Yang’s formula has been found by Sagan [7]. By extending Han’s expansion technique to
k-ary trees, Chen, Gao and Guo [1] gave another proof for Yang’s formula. The objective
of this paper is to give combinatorial proofs of Yang’s formula for k-ary trees and the
other formula of Han for binary trees.

Recall that a k-ary tree is a rooted unlabeled tree where each vertex has exactly k
subtrees in linear order, where we allow a subtree to be empty. When k = 2 (resp., k = 3),
a k-ary tree is called a binary (resp., ternary) tree. A complete k-ary tree is a k-ary tree
for which each internal vertex has exactly k nonempty subtrees. The hook length of a
vertex u in a k-ary tree T , denoted by hu, is the number of vertices of the subtree rooted
at u. The hook length multi-set H(T ) of T is defined to be the multi-set of hook lengths of
all vertices of T . For example, Figure 1 gives an illustration of the hook length multi-set
of a binary tree.
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Figure 1: The multi-set of hook lengths of a binary tree.

Let Bn be the set of all binary trees with n vertices. Han [4] discovered the follow-
ing formulas. He also gave derivations of these formulas in [3] by using the expansion
technique.

Theorem 1.1 (Han [4]) For each positive integer n, we have∑
T∈Bn

1∏
h∈H(T ) h2h−1

=
1

n!
(1.1)

and ∑
T∈Bn

1∏
h∈H(T )(2h + 1)22h−1

=
1

(2n + 1)!
. (1.2)

As pointed out by Han [4], the above two formulas have a special feature that the hook
lengths appear as exponents. Yang [9] extended the above formula (1.1) to k-ary trees.

Theorem 1.2 (Yang [9]) For any positive integers n and k, we have∑
T

∏
h∈H(T )

1

hkh−1
=

1

n!
, (1.3)

where the sum ranges over k-ary trees with n vertices.

To give a combinatorial proof of (1.3), we shall define a set S(n, k) of staircase arrays
on [k] = {1, 2, . . . , k}. More precisely, we shall represent an array in S(n, k) in the form
(C0, C1, . . . , Cn−1), where C0 = ∅ and for 1 6 i 6 n − 1, Ci is a vector of length i with
each entry in [k].

We introduce the notion of staircase labelings of a k-ary tree, and we show that the
sequences in S(n, k) are in one-to-one correspondence with k-ary trees with n vertices
associated with staircase labelings. This leads to a bijective proof of formula (1.3). Based
on this bijection, we also obtain a combinatorial interpretation of formula (1.2).
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2 A combinatorial proof of (1.3)

Our combinatorial proof of Yang’s formula (1.3) is based on the following reformulation∑
T

n!k1+2+···+n∏
h∈H(T ) hkh

= k1+2+···+(n−1). (2.1)

It is clear that the right-hand side of (2.1) equals the number of sequences in S(n, k). As
will be seen, the left hand-side of (2.1) equals the number of k-ary trees with n vertices
associated with staircase labelings. We shall give a bijection between S(n, k) and the set
of k-ary trees with n vertices associated with staircase labelings.

More precisely, a staircase labeling of a k-ary tree is defined as follows. For a k-ary tree
T with n vertices, we use a set {C0, C1, . . . , Cn−1} of vectors on [k] to label the vertices
of T , where Ci contains i elements in [k]. Moreover, we impose the following restrictions:
for any vertex u with label Ci and a descent (not necessarily a child) v with label Cj, we
have i < j, that is, the labels on any path from the root to a leaf have increasing lengths;
and the (i + 1)-st entry of Cj is determined by the relative position of the child of u on
the path from u to v among its siblings. To be more specific, if the r-th child of u is on
the path from u to v, then the (i + 1)-st entry of Cj is set to be r.

For example, Figure 2 gives a staircase labeling of a ternary tree. For the label of
any vertex, the entries that are determined by the labels of its ancestors are written in
boldface.
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Figure 2: A staircase labeling of a ternary tree

Let I(n, k) denote the set of k-ary trees with n vertices associated with staircase
labelings. The following lemma shows that |I(n, k)| is equal to the left-hand side of (2.1).

Lemma 2.1 For n > 1,

|I(n, k)| =
∑

T

n!k1+2+···+n∏
h∈H(T ) hkh

, (2.2)

where the sum ranges over k-ary trees with n vertices.
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Proof. Let P ∈ I(n, k) be a k-ary tree with a staircase labeling. Suppose that the labels
of P are C0, C1, . . . , Cn−1, where Ci is a vector of length i. Define Q to be the k-ary tree
obtained from P by replacing a label Ci with i. Clearly, Q is an increasing k-ary tree in
the sense that the label of any internal vertex is smaller than the labels of its children.

We shall consider the question of determining the number of k-ary trees P with n
vertices associated with staircase labelings that correspond to a given increasing k-ary
tree Q. Clearly, P and Q have the same underlying k-ary tree, denoted by T . In other
words, we shall compute the number of staircase labelings of a k-ary tree T with given
label length for each vertex. For any vertex u of T , let fu denote the number of vertices
on the path from the root to u. We claim that there are

k1+···+n−
P

u∈T fu (2.3)

staircase labelings of T such that a vertex with label i in Q is associated with a vector
Ci of length i. To prove (2.3), let ui be the vertex of Q with label i. Recalling the
definition of a staircase labeling, we need to determine how many entries in Ci that are
determined by the ancestors of ui. It can be seen that there are fui

− 1 entries of Ci that
are determined by the ancestors of ui. The other entries can be any element in [k]. Hence
there are ki+1−fui choices for Ci. This implies (2.3).

Note that the number in (2.3) does not depend on the specific increasing labeling of
the k-ary tree T . To compute the number of staircase labelings of a k-ary tree T , it suffices
to determine the number of increasing labelings of T . It is known that the number of
increasing labelings of T equals

n!∏
h∈H(T ) h

,

see Knuth [5] or Gessel and Seo [2]. So we deduce that

|I(n, k)| =
∑

T

n!∏
h∈H(T ) h

k1+···+n−
P

u∈T fu , (2.4)

where T ranges over k-ary trees with n vertices.
To obtain formula (2.2), we need to establish the following relation∑

u∈T

hu =
∑
u∈T

fu. (2.5)

This can be justified by observing that both sides of (2.5) count the number of ordered
pairs (u, v), where v is a descendant of u in T under the assumption that u is a descendant
of itself. Substituting (2.5) into (2.4), we arrive at (2.2). This completes the proof.

We have the following correspondence.

Theorem 2.1 There is a bijection between S(n, k) and I(n, k).
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Proof. The map ϕ from I(n, k) to S(n, k) is straightforward, that is, for P ∈ I(n, k) with
a labeling set {C0, C1, . . . , Cn−1}, define

ϕ(P ) = (C0, C1, . . . , Cn−1).

We proceed to give the inverse map φ from S(n, k) to I(n, k). Given a sequence
(C0, C1, . . . , Cn−1) in S(n, k), we aim to construct a k-ary tree with n vertices associated
with a staircase labeling by using the labels C0, C1, . . . , Cn−1.

The map φ can be described as a recursive procedure. Let v0 be a vertex with label
C0 = ∅. Clearly, v0 and its label C0 form a k-ary tree with a staircase labeling. Let
C1 = (c1). Adding a vertex v1 as the c1-th child of v0 and assigning the label C1 to v1, we
get a k-ary tree labeled by C0 and C1, denoted by P1. It can be easily checked that P1 is
a k-ary tree with a staircase labeling. Assume that Pm−1 (m > 2) is a k-ary tree with a
staircase labeling with vertices v0, v1, . . . , vm−1 such that for 0 6 i 6 m− 1, the vertex vi

has label Ci. Now we construct a k-ary tree with a staircase labeling, denoted by Pm, by
adding the vertex vm to Pm−1 and assigning the label Cm to vm.

To determine the position of vm, we start with the root v0. Let Cm = (c1, c2, . . . , cm).
If the c1-th subtree of v0 is empty, then we add the vertex vm to Pm−1 as the c1-th child
of v0. Otherwise, we arrive at the c1-th child of v0, denoted by vj. Note that the label of
vj is Cj. If the cj+1-th subtree of vj is empty, then we add the vertex vm to Pm−1 as the
cj+1-th child of vj. If the cj+1-th subtree of vj is not empty, then we arrive at the cj+1-th
child of vj. Repeating this process, we get a k-ary tree Pm labeled by C0, C1, . . . , Cm. It
is clear that Pm is a k-ary tree with a staircase labeling.

Thus, we obtain a k-ary tree φ(C0, C1, . . . , Cn−1) = Pn−1, labeled by C0, C1, . . . , Cn−1.
It can be checked that the maps ϕ and φ are inverses of each other. This completes the
proof.

In particular, for k = 2, the proof of Theorem 2.1 reduces to a combinatorial proof of
Han’s formula (1.1) for binary trees. Figure 3 gives an illustration of the bijection φ for
n = 6, k = 2 and

(C0, C1, . . . , C5) = (∅, (2), (2, 1), (1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1, 2)) ∈ S(6, 2).

3 A combinatorial interpretation of (1.2)

In this section, we apply the bijection φ constructed in the previous section to give a
combinatorial interpretation of formula (1.2). To this end, we reformulate (1.2) in terms
of complete binary trees.

Clearly, one can add n + 1 leaves to a binary tree with n vertices to form a complete
binary tree with 2n + 1 vertices. Moreover, a vertex u with hook length hu in a binary
tree becomes an internal vertex with hook length 2hu + 1 in the corresponding complete
binary tree. Denote by Bc

2n+1 the set of complete binary trees with 2n + 1 vertices. Then
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Figure 3: An illustration of the bijection φ.

(1.2) is equivalent to the following formula∑
T∈Bc

2n+1

1∏
h∈H(T ) h2h−1

=
1

2n(2n + 1)!
. (3.1)

In fact, our combinatorial interpretation of (3.1) is based on the following form∑
T∈Bc

2n+1

(2n + 1)!21+2+···+(2n+1)∏
u∈H(T ) h2h

=
21+2+···+2n

2n
. (3.2)

Combinatorial proof of (3.2). By the argument in the proof of Lemma 2.1, we see that the
left-hand side of (3.2) is equal to the number of complete binary trees with 2n+1 vertices
associated with staircase labelings. Let S ′(2n+1, 2) be the set of sequences in S(2n+1, 2)
corresponding to complete binary trees with staircase labelings under the bijection φ. By
the construction of φ, we shall give an explanation of the following relation

|S ′(2n + 1, 2)| =
1

2n
|S(2n + 1, 2)|. (3.3)

Since |S(2n + 1, 2)| = 21+2+···+2n, we are led to a combinatorial proof of (3.2).
It remains to prove (3.3). To this end, we shall construct a sequence of subsets

M0, M1, . . . ,Mn of S(2n + 1, 2) such that

S(2n + 1, 2) = M0 ⊃ M1 ⊃ · · · ⊃ Mn = S ′(2n + 1, 2),

and for 1 6 i 6 n,

|Mi| =
1

2
|Mi−1|.
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Let us begin with the definition of the subset M1 of M0. Let (C0, C1, . . . , C2n) be a
sequence in M0, and let T be the corresponding binary tree with a staircase labeling under
the bijection φ. If both subtrees of the root of T have an odd number of vertices, then
we choose this sequence (C0, C1, . . . , C2n) to be in M1.

We proceed to prove the following relation

|M1| =
1

2
|M0|. (3.4)

Let (C0, C1, . . . , C2n) be a sequence in M1. Denote by T the corresponding binary tree
with a staircase labeling under the bijection φ. Assume that for 1 6 i 6 2n, si is the
first entry of the vector Ci. By the construction of φ, if si = 1 (resp., si = 2), then there
is a vertex with label Ci in the left (resp., right) subtree of the root of T . Since both
subtrees of the root of T have an odd number of vertices, there is an odd number of 1’s
(or, equivalently, 2’s) among s1, s2, . . . , s2n. Consider the set {1, 2}2n of vectors of length
2n with entries in {1, 2}. It is clear that there are as many vectors in {1, 2}2n with an
odd number of 1’s as vectors in {1, 2}2n with an even number of 1’s. This implies that
|M1| = |M0\M1|, and hence we obtain (3.4).

In general, we can define the subset Mj+1 of Mj for j > 1. Let (C0, C1, . . . , C2n) be
a sequence in Mj, and let T be the corresponding binary tree with a staircase labeling
under the bijection φ. Suppose that the vertices of T are v0, v1, . . . , v2n such that the
vertex vi is labeled by Ci. Let vt0 , vt1 , vt2 , . . . be the internal vertices of T such that the
indices are arranged in increasing order, that is, t0 < t1 < t2 < · · · . If both subtrees of
vtj have an odd number of vertices, then this sequence (C0, C1, . . . , C2n) is put in Mj+1.
Using the same argument as that for (3.4), we deduce that

|Mj+1| =
1

2
|Mj|.

Let (C0, C1, . . . , C2n) be a sequence in Mn, and let T be the corresponding binary tree
associated with a staircase labeling under the bijection φ. It can be seen that T is a
binary tree with a staircase labeling such that both subtrees of any internal vertex have
an odd number of vertices. It follows that T is a complete binary tree with a staircase
labeling, which implies that Mn = S ′(2n + 1, 2). This completes the proof.
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