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Abstract

A coloring of the vertices of a graph G is said to be distinguishing provided
that no nontrivial automorphism of G preserves all of the vertex colors. The dis-

tinguishing number of G, denoted D(G), is the minimum number of colors in a
distinguishing coloring of G. The distinguishing number, first introduced by Al-
bertson and Collins in 1996, has been widely studied and a number of interesting
results exist throughout the literature.

In this paper, the notion of distinguishing colorings is extended to that of list-
distinguishing colorings. Given a family L = {L(v)}v∈V (G) of lists assigning avail-
able colors to the vertices of G, we say that G is L-distinguishable if there is a dis-
tinguishing coloring f of G such that f(v) ∈ L(v) for all v. The list-distinguishing

number of G, Dℓ(G), is the minimum integer k such that G is L-distinguishable
for any assignment L of lists with |L(v)| = k for all v. Here, we determine the
list-distinguishing number for several families of graphs and highlight a number of
distinctions between the problems of distinguishing and list-distinguishing a graph.

Keywords: Distinguishing Coloring, List Coloring, List-Distinguishing Coloring

.

1 Introduction

A vertex coloring of a graph G, f : V (G) → {1, ..., r} is said to be r-distinguishing if no
nontrivial automorphism of the graph preserves all of the vertex colors. The distinguishing
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number of a graph G, denoted D(G), is the minimum integer r such that G has a r-
distinguishing coloring and was first introduced by Albertson and Collins in [AC96].

In this paper we introduce the list-coloring analogue to the distinguishing problem.
Given a family L = {L(v)}v∈V (G) of lists assigning available colors to the vertices of G,
we say that G is L-distinguishable if there is a distinguishing coloring f of G such that
f(v) ∈ L(v) for all v. The list-distinguishing number of G, written Dℓ(G), is the smallest
positive integer k such that G is L-distinguishable for any assignment L of lists with
|L(v)| = k for all v. Since all of the lists can be identical, we observe that D(G) ≤ Dℓ(G).

In some cases, the list-distinguishing number can easily be shown to equal the distin-
guishing number. For example, it is not difficult to see that D(Kn) = n = Dℓ(Kn) and
D(Kn,n) = n + 1 = Dℓ(Kn,n). In other cases, determining Dℓ(G) is not nearly as simple,
as the techniques needed to k-list-distinguish a graph can be significantly different from
those used to distinguish a graph. This is especially apparent when considering those
graphs G with distinguishing number exactly 2. Such a graph G necessarily has at least
one nontrivial automorphism, and hence must have distinguishing number at least two.
All that remains then is to demonstrate a 2-distinguishing coloring of G, which, to be
clear, is often a highly nontrivial task. However, when one attempts to 2-list-distinguish
the same G, it is not sufficient to simply demonstrate a coloring, as the lists assigned to
V (G) may be highly disparate in nature.

As an example, consider the problem of distinguishing Cn for n ≥ 6, which was shown
in [AC96] to be 2. The automorphism group of Cn is nontrivial, so clearly D(Cn) ≥ 2,
and the coloring in Figure 1, which generalizes to a coloring of Cn, suffices to complete
the proof.

Figure 1: A distinguishing coloring of C6.

The next proposition gives some indication of the increased difficulty one might en-
counter when considering list-distinguishing colorings.

Proposition 1. For n ≥ 6, Dℓ(Cn) = D(Cn) = 2.

Proof. Assign a list L(v) of two colors to each v ∈ V (Cn). If |
⋃
L(v)| = 2, then the

lists are identical, so we can color the vertices in a manner identical to the traditional
distinguishing coloring, and we are done. Assume then that |

⋃
L(v)| 6= 2 and let c be

the color that appears in the fewest lists. Choose a vertex with c in its list, label it v1,
and then continue labeling the vertices consecutively in numerical order. Color v1 with
c. Moving forward, no other vertex will receive color c, so that v1 will be fixed by every
color-preserving automorphism. Since c appears in the fewest lists, there are at least n

3
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vertices that do not have a c in their list. Choose a vertex, vi, such that c /∈ L(vi) and is
not antipodal to v1. Consider the vertex vn+2−i, which is the image of vi under the unique
non-identity automorphism that fixes v1. There exists x ∈ L(vn+2−i) such that x 6= c;
color vn+2−i with x. Now there is a y ∈ L(vi) such that y 6= x and we know that y 6= c,
so color vi with y. Color the remaining vertices with any element from their list that is
not c, as in Figure 2. Since any non-identity color-preserving automorphism must map
v1 to v1, vi must map to vn+2−i, but they are colored differently. Therefore the coloring
is list-distinguishing, and Dℓ(Cn) = D(Cn) = 2.

Figure 2: A 2-list-distinguishing coloring of Cn. The color c appears only on v1, and the
colors x and y are distinct.

While Proposition 1 indicates how different the problems of determining D(G) and
Dℓ(G) may be, at times it is possible to utilize existing techniques to obtain results
on Dℓ. For instance, Brooks-type theorems for the (traditional) distinguishing number
were given independently by Klavžar, Wong, and Zhu [KWZ06] and Collins and Trenk
[CT06]. We are able to modify the approach from [KWZ06] to give a Brooks-type theorem
for list-distinguishing colorings. Interestingly, we are able to show that the traditional
distinguishing problem is precisely what prevents the exceptional graphs Kn, Kn,n and C5

from being ∆-list-distinguishable.

Proposition 2. Let G be a connected graph and let L = {L(v)} be an assignment of lists
of size ∆(G) to V (G). Then G can be L-distinguished unless G is one of Kn, Kn,n, or C5

and |
⋃
L(v)| = ∆(G). In these exceptional cases, G can be colored from any assignment

of lists of length ∆(G) + 1.

Our proof relies on the following lemma from [KWZ06].

Lemma 1. Suppose (G, ℓ) is a connected, vertex-colored graph such that ℓ(v) is the color
for v ∈ V (G). Let every vertex of the set X ⊆ V (G) be fixed by every automorphism of
(G, ℓ). Let x ∈ X and set S = NG(x) \X. If ℓ(u) 6= ℓ(v) for any pair of distinct vertices
u and v in S, then every vertex of S is fixed by every automorphism of (G, ℓ).
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Proof. (of Proposition 2) Assign list L(v) to each vertex v ∈ V (G) such that |L(v)| =
∆(G), and assume |

⋃
L(v)| 6= ∆(G). Since G is connected, there exist two vertices, x

and y, such that L(x) 6= L(y) and xy ∈ E(G). Let cx ∈ L(x)−L(y), and color x with cx.
Going forward, no other vertex but x will receive color cx, assuring that x will be fixed by
every color-preserving automorphism of G. Construct a breadth first search spanning tree
of G rooted at x. Since |NG(x)| ≤ ∆(G), we can color each vertex w ∈ NG(x) − y with
a unique color, cw ∈ L(w), such that cw 6= cx. Since |L(y)| = ∆(G) and cx /∈ L(y), there
exists a color, cy ∈ L(y) such that cy 6= cw for all w ∈ NG(x) − y; color y with cy. From
here each vertex has at most ∆(G) − 1 children in the spanning tree. Therefore we can
color each sibling of the spanning tree uniquely from its list, never using the color cx. By
an inductive application of Lemma 1, the coloring so constructed is a list-distinguishing
coloring of G.

It remains to consider when |
⋃
L(v)| = ∆(G), which is the same as distinguishing

coloring. Therefore from [CT06] and [KWZ06], we have that if G is Kn, Kn,n, or C5 then
Dℓ(G) = ∆(G) + 1 and if not then Dℓ(G) = ∆(G).

Proposition 2 immediately yields the following Brooks-type result.

Theorem 1. Let G is a graph with maximum degree ∆. Then Dℓ(G) ≤ ∆ unless G is
one of C5, Kn or Kn,n, in which case Dℓ(G) = ∆ + 1.

2 Dihedral Groups

Let G be a graph and let Γ be a group. If Aut(G), the automorphism group of G, is
isomorphic to Γ then we will say that G realizes Γ. Given a group element g ∈ Aut(G)
and a vertex v in G, we let vg denote the result of the action of g on v. For a vertex v in
G, we let St(v) = {h ∈ Γ | vh = v} and O(v) = {b ∈ V (G) | v = bh for some h ∈ Γ} be
the stabilizer and orbit of v under the action of Γ on G. The order of the orbit of v under
the action of Γ on G is |Aut(G)|/|St(v)|. Also, we let NG(x) denote the set of vertices
adjacent to x.

We let Dn denote the dihedral group of order 2n, which is the group of symmetries
of a regular n-gon. Throughout this section, we use the standard presentation Dn =<
σn, τn|σ

2n
n = τ 2

n = e, σnτn = τnσ
−1
n > where σn and τn denote the appropriate rotation and

reflection of the n-gon, respectively and e denotes the identity element. We will frequently
write τn = τ and σn = σ if the context is clear. When there is no danger of ambiguity,
we will also let e denote the identity element of an arbitrary group Γ.

In this section, we study the list-distinguishing number of graphs realizing Dn for some
n ≥ 3. It is clear that Cn realizes Dn, but there are many other graphs that realize the
dihedral group (see Figure 3).

Albertson and Collins [AC96] proved that if G realizes Dn then D(G) = 2 unless
n = {3, 4, 5, 6, 10} in which case D(G) is either 2 or 3. The main result of this section is
as follows.
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Figure 3: Two graphs that realize D6.

Theorem 2. Let G be a graph realizing Dn. Then D(G) = Dℓ(G).

One interesting, and useful, consequence of our proof of Theorem 2 is that we determine
precisely those graphs that realize Dn and have (traditional) distinguishing number 3.

We also point out at this time that the lemmata developed here to prove Theorem 2
appear nearly identical to those utilized to prove the corresponding theorem in [AC96].
However, the techniques used here frequently vary greatly from those in [AC96], illustrat-
ing further the distinctions between the distinguishing and list-distinguishing numbers.

Lemma 2. Let G realize group Γ and suppose u1, . . . , ut are vertices from different vertex
orbits of G. If

⋂t

i=1 St(ui) = {e}, then Dℓ(G) = 2.

Proof. For each ui, select a color ci ∈ L(ui) and then color each other vertex in O(ui) with
any color other than ci. Let g be any nonidentity element in Γ. Since

⋂t

i=1 St(ui) = {e},
at least one ui is not fixed by G. Since uig is not colored ci, this is a 2-list-distinguishing
coloring.

The following lemmas, the first of which appears in [AC96], will be useful as we proceed.

Lemma 3. Let G realize Dn, and suppose that G has t vertex orbits. If u1, . . . , ut are
vertices from the t different vertex orbits of G, then

〈σ〉 ∩ St(u1) ∩ · · · ∩ St(ut) = {e}.

Lemma 4. Let G realize Dn. If there is a vertex u in G such that St(u) = 〈σj〉 then
Dℓ(G) = 2.

Proof. The proof of this lemma is identical to the proof of the corresponding lemma in
[AC96]. Let u1, . . . , ut be vertices from each of the different orbits of G. Then

⋂
i St(ui) ⊆

St(u), which implies that
⋂

i St(ui) = {e}, completing the proof by Lemma 2.

At this point we begin to more seriously modify the techniques from [AC96] in order
to better fit our list-coloring framework.

Lemma 5. Let G realize Dn and let u be a vertex in G such that St(u) is either 〈σj, τσi〉
or 〈τσi〉. If |O(u)| ≥ 6, then O(u) is 2-list-distinguishable.
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Proof. Regardless of whether St(u) = 〈σj , τσi〉 or St(u) = 〈τσi〉, we have that O(u) =
{u, uσ, uσ2, . . . , uσj−1} for some j, and hence we assume that j ≥ 6. Consider the set
A = {u, uσ2, uσ3} and select a color cu ∈ L(u). If possible, color uσ2 and uσ3 with cu as
well. We will demonstrate that it is possible to extend this to a 2-distinguishing coloring
without using cu on any vertex in V (G) − A.

Case 1: All three vertices in A are colored with cu.

We proceed by coloring the vertices in V (G) − A using any color in their respective
lists except cu. Any automorphism g in Dn that fixes this coloring of O(u) must permute
the vertices in A, and specifically must map u to some element of A. Therefore g must lie
in St(u), St(u)σ2 or St(u)σ3. As was demonstrated in [AC96], the only automorphisms
from these sets that permute A actually fix all of O(u). Thus this is a 2-list-distinguishing
coloring of O(u).

Case 2: The vertex u is the only one in A colored with cu.

Suppose that St(u) = 〈σj , τσi〉. Then j divides n, so the assumption that j ≥ 6 implies
that uσ2 6= uσn−2, which also holds when St(u) = 〈τσi〉. In either case, we extend the
coloring of A by first assigning the vertex uσn−2 any color c 6= cu in L(uσn−2). Since we
utilize the color cu on the vertices in A wherever possible, and u is the only vertex of
G that receives color cu, we conclude that cu 6∈ L(uσ2). Therefore there is a color c′ in
L(uσ2), different from both c and cu. Color uσ2 using color c′ and color the remaining
vertices of G with any color aside from cu in their respective lists.

We now show that this coloring distinguishes O(u). Since u is the unique vertex of color
cu, any color-preserving automorphism g ∈ Dn must lie in St(u). Then either g = σdj or
g = τσi+dj , with d being necessarily zero when St(u) = 〈τσi〉. Note that σdj fixes O(u)
and that, for any d, τσi+dj takes uσ2 to uσn−2. Since we have constructed our coloring so
that uσ2 and uσn−2 have different colors, this is a 2-list-distinguishing coloring of O(u).

Case 3: The vertices u and uσ2 are the only ones in A colored with cu.

As above, if St(u) = 〈σj, τσi〉, then j divides n. Consequently, the assumption that
j ≥ 6 implies that uσ3 6= uσn−1, which again also holds when St(u) = 〈τσi〉. In this case,
we extend the coloring of u and uσ2 in a similar manner to Case 1, with two exceptions.
We make no special color assignment to uσn−2, save the standard assumption that it does
not receive color cu. Instead, we assign different colors to the vertices uσ3 and uσn−1 such
that neither vertex is colored with cu. As above, this is possible since cu 6∈ L(uσ3), or else
we would have used it to color uσ3.

Now, every automorphism g ∈ Dn that preserves the colors on O(u) must either fix
or interchange u and uσ2. As discussed in the previous case, any element of St(u) will
either fix all of O(u) or will map uσ2 to uσn−2. Thus as uσn−2 is not colored with cu, any
color preserving automorphism g must interchange u and uσ2. This implies that g has
the form g′σ2, where g′ is an element of St(u). Specifically, either g′ = σdj or g = τσi+dj

for some integer d, with d = 0 if St(u) = 〈τσi〉. In either case, g′σ2 takes uσ3 to uσn−1,
implying that this coloring 2-list-distinguishes O(u).

Case 4: The vertices u and uσ3 are the only ones in A colored with cu.
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Suppose first that St(u) = 〈τσi〉. We wish, as above, to extend our coloring of A to a
list-distinguishing coloring of O(u) in which no vertices aside from u and uσ3 receive color
cu. Any element g ∈ Dn that fixes such a coloring must either stabilize u or exchange u
and uσ3. Consequently, either g = τσi or g = τσi+3, so consider the outcomes when these
elements are applied to A:

Aτσi = {u, uσn−2, uσn−3}
Aτσi+3 = {uσ3, uσ, u}.

Therefore, we would like to choose colors x ∈ L(uσ) and y ∈ L(uσn−2), x, y 6= cu and
choose a color z 6= x, y from L(uσ2). We would then extend our coloring of A by assigning
these colors to their respective vertices and then coloring the remaining vertices in G
using any color except cu. This is possible unless all of the following hold: L(uσ) =
{cu, x}, L(uσn−2) = {cu, y} and L(uσ2) = {x, y}. In this case, suppose L(u) = {cu, c

′

u}.
We will then recolor u with c′u and again color uσ2 and uσ3 with these colors if possible.
Then, the analysis conducted thus far assures that we can construct a 2-list-distinguishing
coloring of O(u), as we cannot have L(uσ) = {c′u, x}, L(uσn−2) = {c′u, y} and L(uσ2) =
{x, y} for x = y, and this was the only obstacle preventing us from constructing the
desired coloring when St(u) = 〈τσi〉.

Hence we assume that St(u) = 〈σj , τσi〉. In this case, j divides n, and we may assume
that n > j ≥ 6. Again, we wish to extend our coloring of A to a distinguishing coloring
of G in which no vertices aside from u and uσ3 receive color cu. If g ∈ Dn fixes such a
coloring then either g ∈ St(u) or g = g′σ3 for some g′ ∈ St(u). Thus for some d ≥ 0,
g = σdj , either σdj+3, τσi+dj or τσi+dj+3. Applying each of these elements to A, we obtain

Aσdj = A
Aσdj+3 = {uσ3, uσ5, uσ6}
Aτσdj+i = {u, uσn−2, uσn−3}
Aτσdj+i+3 = {uσ3, uσ, u}.

Since j divides n and n is at least seven, uσn−3 6= uσ3. Therefore g = τσdj+i cannot
preserve our proposed coloring. Additionally, σdj fixes all ofO(u), so we need only consider
the cases where g = σdj+3 or g = τσdj+i+3.

If j > 6, then since σdj+3 takes uσ3 to uσ6 this choice of G cannot distinguish u. Thus
when j > 6 is suffices to assume that g = τσi+dj and thus we need only to distinguish uσ
from uσ2 without assigning cu to uσ, which is clearly possible as we have assumed that
cu 6∈ L(uσ2).

Thus we assume that j = 6 and that either g = σdj or g = τσi+dj+3. We would
like to choose colors x ∈ L(uσ) and y ∈ L(uσ5), x, y 6= cu and choose a color z 6= x, y
from L(uσ2). We would then extend our coloring of A by assigning these colors to their
respective vertices and then coloring the remaining vertices in G using any color except cu.
As above, this is possible unless L(uσ) = {cu, x}, L(uσ5) = {cu, y} and L(uσ2) = {x, y}.
However, in this case we proceed by changing our initial coloring of A by using the color
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c′u 6= cu in L(u). As when St(u) = 〈τσi〉, this allows us to construct a coloring that will
distinguish O(u), and therefore completes the proof.

The following lemma is a slight modification of the corresponding lemma in [AC96].

Lemma 6. Let G realize Dn and let u be a vertex such that u ∈ V (G) and St(u) =<
σj , τσi > or < τσi >. If |O(u)| ≥ 6, then Dℓ(G) = 2.

Proof. Assign lists of length two to each vertex in G. If St(u) =< τσi >, then the
intersection of the subgroups conjugate to St(u) is the identity. Applying Lemma 5, O(u)
is 2-list-distinguishable and thus by Lemma 2 , Dℓ(G) = 2.

Therefore, assume St(u) =< σj, τσi >. Since O(u) is 2-list-distinguishable, we need
only consider the automorphisms that act trivially on O(u). These are the intersection
of the stabilizers of vertices of O(u), which is Λ =< σj >. The group action of Λ on G
creates vertex orbits U1, U2, .., Ut. From each orbit Ui such that |Ui| > 1, select a vertex
ui and color it with any color ci ∈ L(ui). Then color the remaining vertices of Ui with
any color other than ci, construct a distinguishing coloring of O(u) from its assigned lists
and color all other uncolored vertices in G with any color from their respective lists. If a
nontrivial automorphism in Λ fixes ui, then it must fix all of Ui. Thus each g 6= e in Λ
must move some ui to another vertex in its orbit, implying that the only color preserving
automorphism is the identity. Consequently, this is a 2-list-distinguishing coloring of G,
so Dℓ(G) = 2.

Lemmas 2–5 provide the necessary machinery to complete the proof of Theorem 2, and
we do so now.

Proof. (of Theorem 2) When n > 10 there must be an orbit of order at least 6, so it
remains to show that the theorem holds when n = 3, 4, 5, 6 or 10. Suppose first that G
realizes Dn, where n = 3 or 5 and select a vertex u with nontrivial orbit in G. By the
above lemmas, we may assume that every vertex u in G has St(u) = 〈τσi〉 or 〈σj , τσi〉.
However, as n is prime, if σj fixes u, then j = 0 or j = 1. Consequently, we may assume
that j = 0, as 〈σ, τσi〉 = Dn, and by assumption u has a nontrivial orbit.

Note as well that if τσi is in St(u), then τ is in St(uσx) where 2x ≡ n − i (mod n).
Such an x exists for all i when n = 3 or 5, so we may assume that St(u) = 〈τ〉. Then,
since the orbit of u is by assumption nontrivial, O(u) = {u, uσ, . . . , uσn−1} and the only
element of Dn that fixes all of O(u) is e.

If G has exactly one nontrivial orbit, then necessarily D(G) = 3, and since this orbit
is precisely O(u) = {u, uσ, . . . , uσn−1}, it is straightforward to show that Dℓ(G) = 3
as well. Suppose then that G has vertices u and v with distinct nontrivial orbits and
that we have also assigned lists of length 2 to the vertices of G. We may furthermore
assume, via the above discussion, that St(u) = St(v) = 〈τ〉. If it is not possible to
color each vertex in O(u) with a unique color, then each vertex in O(v) must have list
L(uσi) = {c1, c2}. We then color u with color c1 and color both uσ and uσ2 with color c2.
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If g, a nonidentity element of Dn, fixes this coloring of O(u), then g ∈ St(u). However,
since O(v) is nontrivial, g must exchange two elements in O(v), say vσi and vσj. Assigning
these vertices distinct colors from their respective lists serves to 2-list-distinguish G, and
thus implies that D(G) = Dℓ(G) = 2.

Next, let G be a graph that realizes D4 and furthermore assume that there is no vertex
u in G such that St(u) = 〈σj〉 or |O(u)| ≥ 6. Lemmas 2 and 3 imply that if there are
vertices u and v in distinct orbits of G such that τσi ∈ St(u) but τσi 6∈ St(v), then
D(G) = Dℓ(G) = 2.

Suppose that τ stabilizes some element in every orbit of G (the case where some other
τσi stabilizes an element in every orbit is handled similarly). Under our assumptions,
every nontrivial orbit in G must have order either two or four. If every nontrivial orbit
has two elements, then τ stabilizes every vertex in G, a contradiction. Therefore, there
is some vertex u such that St(u) = 〈τ〉 and O(u) = {u, uσ, uσ2, uσ3}. If possible, color
the orbit of u in a manner consistent with the traditional distinguishing coloring of C4,
specifically, for some i, color uσi and uσi+1 with the same color c and then color the other
two vertices in O(u) with distinct colors other than c. Since no element of D4 fixes all of
O(u), this would suffice to 2-list-distinguish G and also shows that Dℓ(G) ≤ 3. Thus we
may assume that L(uσi) = {c1, c2} for all i implying that if O(u) is the only nontrivial
orbit of G, D(G) = Dℓ(G) = 3.

Next, assume that there is some vertex v, not in O(u), such that O(v) is nontrivial and
assign lists of length two to each vertex in v. We claim that it is possible to construct a
distinguishing coloring of v from these lists. If |O(v)| = 4, then O(v) = {v, vσ, vσ2, vσ3}
and we may assume that L(vσi) = {c′1, c

′

2} for all i. Without loss of generality, suppose
that τ stabilizes v (and therefore vσ2). Color u and uσ with color c1, uσ

2 and uσ3 with
color c2, v and vσ2 with color c′1 and, finally, vσ and vσ3 with color c′2. Then the only
automorphism that fixes the colors in both O(u) and O(v) is e, so this coloring 2-list-
distinguishes G.

We may therefore suppose that O(v), and every nontrivial orbit of G aside from O(u)
has exactly two elements, and hence that St(v) = 〈σ2, τ〉 (as, again, the case where
St(v) = 〈σ2, τσj〉 is similar) and O(v) = {v, vσ}. We will color u and uσ with color c1,
uσ2 and uσ3 with color c2 and color v and vσ with distinct colors. The only nonidentity
automorphism of G that preserves this coloring of O(u) is τσ3. However, this interchanges
the elements of O(v), which received different colors, so this coloring 2-list-distinguishes
G.

Next we consider the penultimate case that G realizes D6. By the above lemmas, we
may assume that there is no vertex u in G has St(u) =< σj > or |O(u)| ≥ 6. If there
exists a u ∈ V (G) such that St(u) =< τσi >, then |O(u)| = 6, therefore we assume that
every vertex u in G has St(u) =< σj , τσi >. Given this stabilizer, it is not hard to show
that for every vertex u in G, |O(u)| = 1, 2 or 3. This implies that G can easily be 3-list-
distinguished, as it is possible to all of the vertices in a given orbit with distinct colors.
Furthermore, if there is no orbit of order 3, then it is not difficult to 2-list-distinguish G.

Therefore, let us first assume there is exactly one orbit of order 3. Specifically, let u be
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a vertex such that |O(u)| = 3 and observe that necessarily O(u) = {u, uσ, uσ2}. Suppose
first that for each x ∈ O(u) there is some φx ∈ Aut(G) ∩ St(x) such that the following
hold:

1. φx interchanges the two vertices in O(u)− x, and

2. φx fixes all of V (G) − O(u).

In this case, we cannot 2-distinguish G with any 2-coloring, as without loss of gener-
ality both uσ and uσ2 will receive the same color. However, then the automorphism φu

described above is nontrivial and color-preserving, regardless of how the remainder of G
is colored.

If there is some x ∈ O(u) for which no such φx exists, then we claim that G is 2-list-
distinguishable (and hence 2-distinguishable). In this case, we assign distinct colors to
all pairs of vertices lying in orbits of order two and also color all vertices of O(u) with
distinct colors, if this is possible. If it is not possible to color O(u) in this way, then each
vertex in O(u) must be assigned identical lists, say {c1, c2}. We then color x with c1 and
the vertices in O(u) − x with c2. Due to the assumptions that O(u) is the unique orbit
of order three and that there is no φx as described above, any nontrivial automorphism
g ∈ Aut(G) that preserves this coloring of O(u) must interchange the elements of an orbit
of order two. However, all such orbits have been colored with distinct colors, so g is not
color-preserving. It follows that Dℓ(G) = 2

Suppose then thatG has more than one orbit of order 3, and assign lists of order 2 to the
vertices of G. Choose vertices u and v in distinct orbits such that |O(u)| = |O(v)| = 3. If
it is not possible to color each vertex in O(u) with a distinct color, then each vertex in O(u)
must have the same list, {c1, c2}. We then color u with c1 and the other two vertices with
color c2. If g, a nonidentity element of D6, fixes this coloring of O(u), then g ∈ St(u).
However, since |O(v)| = 3, g must exchange two elements in O(v). Assigning these
vertices distinct colors from their respective lists serves to 2-list-distinguish G. Therefore,
D(G) = Dℓ(G) = 2.

Suppose lastly thatG realizesD10 and that there is no vertex u inG such that St(u) =<
σj > or |O(u)| ≥ 6. If there exists a u ∈ V (G) such that St(u) =< τσi >, then
|O(u)| = 10, therefore we may assume that every vertex u in G has St(u) =< σj , τσi >.
Given this stabilizer, it is not hard to show that for every vertex u in G, |O(u)| = 1, 2 or
5.

Furthermore, as every orbit of order 5 in V (G) has the form O(u) = {u, uσ, . . . , uσ4}
and stabilizer 〈σ5, τσj〉 for some j, it is not difficult to see that the action of D10 on any
such orbit of order five can be viewed precisely as the action of D5 on the vertices of C5.
We observe that this implies that G is 3-list-distinguishable, as then we may color each
orbit of order five such that three vertices receive distinct colors and also color the orbits
of order two so that both vertices receive distinct colors. Keeping in mind the action of
Aut(G) on O(u), we can see that this is a distinguishing coloring.
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Again we can easily 2-list-distinguish G if there are no orbits of order 5, so we first
assume there is exactly one orbit of order 5. Specifically, let u be a vertex such that
|O(u)| = 5 and recall that necessarily O(u) = {u, uσ, . . . , uσ4}. Suppose as well for every
x ∈ O(u) there is some φx ∈ St(x) such that the following hold:

1. φx interchanges the pairs (xσ, xσ4) and (xσ2, xσ3), and

2. φx fixes all of V (G) − O(u).

As in the previous case, we claim that the existence of these φx implies that G is
not 2-distinguishable. In any 2-coloring of O(u), there is some vertex x such that the
pairs (xσ, xσ4) and (xσ2, xσ3) are monochromatic. However, then the automorphism φx

described above is nontrivial and color-preserving, regardless of how the remainder of G
is colored. It follows that G is not 2-list-distinguishable and, by our above observation,
that G must therefore be 3-list-distinguishable.

Suppose therefore, without loss of generality, that there is no such φu ∈ Aut(G) and
assign lists of length two to V (G). We color each orbit of length two with distinct colors,
and if possible assign distinct colors to three vertices in O(u). If it is not possible to
color three vertices with distinct colors, then each vertex in O(u) must have the same list,
{c1, c2}. We will then color u with color c1 and color uσ, uσ2, uσ3 and uσ4 with color c2.
Given the action of D10 on O(u), the only nontrivial automorphisms that would fix this
coloring of O(u) necessarily fixes u and exchanges the pairs (uσ, uσ4) and (uσ2, uσ3). By
the assumption that there is no φu satisfying conditions (1) and (2), such an automorphism
must exchange the vertices in an orbit of order two and is therefore not color-preserving.
It follows that G is 2-list distinguishable.

Now assume there is more than one orbit of order 5 and assign lists of length 2 to the
vertices of G. Choose vertices u and v in distinct orbits such that |O(u)| = |O(v)| = 5.
If it is possible to color three vertices in O(u) with distinct colors, then such a coloring
can be extended to a 2-list-coloring of G. If it is not possible to color three vertices with
distinct colors, then again each vertex in O(u) must have the same list, {c1, c2}. We then
color two vertices, v and w, with c1 and the rest with color c2. If g, a nonidentity element
of D10, fixes this coloring of O(u), then either g ∈ St(v) ∩ St(w) or g interchanges v and
w. However, since |O(v)| = 5, g must exchange two elements in O(v). Assigning these
vertices distinct colors from their respective lists serves to 2-list-distinguish G. Therefore,
D(G) = Dℓ(G) = 2.

As a consequence of the proof of Theorem 2, we obtain the following.

Theorem 3. Let G be a graph realizing Dn such that V (G) has no orbit of order greater
than five, and also such that G does not satisfy the hypotheses of Lemma 2 or Lemma 4.
Then D(G) = 3 if and only if G has exactly one nontrivial orbit O satisfying one of the
following:

1. n ∈ {3, 4, 5} and |O| = n, or
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2. n = 6, |O| = 3, and for each x ∈ O there is some φx ∈ St(x) such that the following
hold:

(a) φx interchanges the two vertices in O(u) − x, and

(b) φx fixes all of V (G) −O(u), or

3. n = 10, |O| = 5, and for each x ∈ O there is some φx ∈ St(x) such that the following
hold:

(a) φx interchanges the pairs (xσ, xσ4) and (xσ2, xσ3), and

(b) φx fixes all of V (G) −O(u).

3 Cartesian Products of Graphs

We use the standard definition for Cartesian products of graphs G and H , (for example

see [Wes01]) which we denote by G�H . A fiber G
(g1,...,gk)
i of G1� . . .�Gk is the subgraph

induced by the vertex set {(g1, . . . , x, . . . , gk) | x ∈ Gi}.

The automorphism group of Cartesian products is well understood. If G = (G1�G2)
and φ ∈ Aut(G1), then φ

′

: V (G) → V (G) defined by φ
′

: (ui, vj) 7→ (φui, vj) is an
automorphism of G. If G1

∼= G2, then α : (ui, vj) 7→ (vj , ui) is also an automorphism of
G. In fact, the automorphisms of a factor and the exchange of isomorphic factors generate
Aut(G) [Imr67].

We now turn our attention to the Cartesian product of two cycles, also known as the
toroidal grid. We label a vertex of Cn�Cm as (ui, vj) if it is in fibers Ci

n and Cj
m, but for

simplicity, we denote L((u, v)) as L(u, v). We also define Sc(G) = {v ∈ V (G) | c ∈ L(v)}
and will write Sc(G) = Sc if the context is clear. If n 6= m, the automorphism group
of Cn�Cm is generated by the Cartesian product of the generators of Cn and Cm. This
leads us to the following elementary lemma, given without proof, about the action of an
automorphism of a cycle factor Cn, which will be used in subsequent proofs.

Lemma 7. Let G = (Cn�Cm) such that n 6= m. Let φ ∈ Aut(Cn), ψ ∈ Aut(Cm) and
φ

′

∈ Aut(Cn�Cm) such that φ
′

: (ui, vj) 7→ (φui, ψvj). If φ
′

: (ui, vj) 7→ (uk, ψvj), then
φ

′

: (ui, vp) 7→ (uk, ψvp) for all p ∈ {1, . . . , m}.

The distinguishing number of Cartesian products has been extensively studied. In
[BC04] Bogstad and Cowen determined that D(Qd) = 2 if d ≥ 4 for the d-dimensional
hypercube, Qd. Using the motion lemma, a probabilistic result of Russell and Sundaram
[RS98], Albertson extended Bogstad and Cowen’s result by showing that for an arbi-
trary graph G, D(Gr) = 2 if r ≥ 4 [Alb05]. This result was improved by Klavžar and
Zhu in [KZ07] and was further strengthened by Imrich and Klavžar who demonstrated
that D(Gr) = 2 when r ≥ 2 and G 6= K2, K3 [IK06]. Other interesting results about
distinguishing Cartesian products of graphs appear in [Bou09] and [CHK10].
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To prove that D(Cn�Cm) = Dℓ(Cn�Cm) for all n and m, we use the following lemma,
which says that if we can 2-list-distinguish any fiber in a specific way then the entire
graph can be 2-list-distinguished.

Lemma 8. Let G = Cn�Cm, and assign a list L(ui, vj) of size two to each (ui, vj) ∈
V (Cn�Cm). If there exists a fiber that can be L-list-distinguished with a vertex that has
a unique color in that fiber, then G can be L-list-distinguished.

Proof. Let G = Cn�Cm, and assign a list L(ui, vj) such that |L(ui, vj)| = 2 to each
(ui, vj) ∈ V (Cn�Cm). Assume we can color C1

n so that color c1 is used on the vertex
(u1, v1) but on no other vertex of C1

n.

Case 1: Suppose V (C2
n) ⊆ Sc1 .

Color each vertex (ui, v2) ∈ C2
n with c1. Assign list L

′

(ux, vy) = L(ux, vy) − c1 to all
uncolored vertices, and L

′

-list-color these vertices arbitrarily.

Case 2: There exist vertices (ui, v2), i 6= 1 and (u1, vj), j 6= 1 such that (ui, v2), (u1, vj)
/∈ Sc1.

For all uncolored vertices, assign list L
′

(ux, vy) = L(ux, vy) − c1. Color (ui, vm) with
some c2 ∈ L

′

(ui, vm), color (ui, v2) with some c3 ∈ L
′

(ui, v2) such that c3 6= c2, and L
′

-
list-color the rest of the vertices. Since they are the only two fibers with a vertex colored
c1, C

1
n must map to C1

m in any non-trivial color-preserving automorphism; furthermore,
C1

n has been list-distinguished, so there is at most one automorphism, α, that could map
C1

n to C1
m. Assume that α(ui, v1) 7→ (u1, vj), and let the vertex (ui, v1) be colored ck. The

vertex (u1, vj) /∈ Sc1 , so recolor (u1, vj) with ca ∈ L
′

(u1, vj) such that ca 6= ck.

Case 3: There exists a vertex (ui, v2), i 6= 1, such that (ui, v2) /∈ Sc1, and (u1, vj) ∈ Sc1

for all j 6= 1.

Color (u1, v2) with c1, and assign list L
′

(ux, vy) = L(ux, vy)−c1 to all uncolored vertices.
Let vertex (ui, v1) be colored cp, and color (ui, v2) with cb ∈ L

′

(ui, v2) such that cb 6= cp.
Now L

′

-list-color the rest of the vertices.

We claim that in each of the three cases above the coloring is list-distinguishing. First
consider an automorphism of the form (σa

nτ
b
n, e), σ

a
nτ

b
n 6= e, which maps (ut, v1) to (ur, v1)

for some t 6= r by Lemma 7. The graph induced by the vertices of C1
n has been assigned

a distinguishing coloring. Thus an automorphism of this form does not preserve colors.

Also by Lemma 7, the automorphism (e, σc
mτ

d
m), σc

mτ
d
m 6= e, maps either (ui, v2) to

(ui, vj), 2 6= j for all i ∈ {1, . . . , n} or (u1, v1) to (u1, vj), 1 6= j. However in case 1, n − 1
vertices of C2

n are colored c1, and this is the only fiber with such a coloring. The vertex
(u1, v1) is colored c1 while the rest of the fiber C1

n is not; again this is the only fiber with
such a coloring. In Case 2, (u1, v1) is the only vertex colored c1, and we know that (ui, v2)
must map to (ui, vm), which are colored differently. In Case 3, (u1, v1) and (u1, v2) are the
only two vertices colored c1, so any non-trivial automorphism must interchange (u1, v1)
and (u1, v2), which will also interchange (ui, v1) and (ui, v2), which have different colors.
Therefore in each of these cases, automorphisms of this type are not color-preserving.
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The automorphism (σa
nτ

b
n, σ

c
mτ

d
m) is equal to (e, σc

mτ
d
m) ◦ (σa

nτ
b
n, e). In Case 1, the au-

tomorphism (σa
nτ

b
n, e) will map (u1, v1) to (uj, v1) for some j ∈ {1 . . . n} and (ui, v2) to

(uk, v2) for all i ∈ {1, . . . , n}. But n− 1 vertices of C2
n are colored with c1 and the vertex

(u1, v1) is in fiber C1
n, so we are in the previous case when performing (σa

nτ
b
n, e). Cases 2

and 3 will similarly result in the previous case when performing (σa
nτ

b
n, e). Therefore in

each of these cases, automorphisms of this type are not color-preserving.

If n = m consider the automorphism α, such that α(ui, v1) 7→ (u1, vj) for some i and
j, which would map C1

m to C1
n. In Case 1, C2

n has n−1 vertices colored c1 and there is no
Cm fiber with this number of vertices colored c1. In Case 2, we have broken α by coloring
(ui, v1) and (u1, vj) differently. In Case 3, C1

m has two vertices colored c1 and no Cn fiber
has more than one vertex colored c1. Therefore in each of these cases, automorphisms of
this type are not color-preserving.

In every case, colors can be chosen from the list of size 2 to list-distinguish Cn�Cm. If
there exists a fiber that can be L-list-distinguished, |L(v)| = 2 for all v ∈ V (G), with a
vertex that has a unique color for that fiber, then G can be L-list-distinguished.

In Figure 4, ∼c refers to any color that is not c.

Figure 4: Examples of colorings described in Lemma 8. Vertices represented by open
circles cannot be colored black.

Lemma 9. Let n ≥ 3 and m ≥ 3 such that at most one of n and m is 3. Then
Dℓ(Cn�Cm) = 2.
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Proof. Assign a list L(ui, vj) such that |L(ui, vj)| = 2 to each (ui, vj) ∈ V (Cn�Cm). If
| ∪ L(ui, vj)| = 2, then color the vertices as in [BC04] if n = m = 4 or as in [IK06]
otherwise. If not, then there must be two vertices whose lists are different. Since Cn�Cm

is connected, there exist two adjacent vertices with different lists, and these two vertices
are either on the same Cn or Cm fiber. Without loss of generality, assume they are the
vertices (u1, v1) and (u2, v1) on C1

n. Color the vertex (un, v1) with c3 ∈ L(un, v1). Since
their lists are not the same, color vertices (u1, v1) and (u2, v1) from their list such that
the colors are different and both not c3, say c1 and c2 respectively. Color the rest of the
vertices of C1

n anything from their list other than c1.

Since (u1, v1) is the only vertex with color c1, any color-preserving automorphism on
the fiber C1

n must map (u1, v1) to itself. Therefore, either (un, v1) 7→ (u2, v1) or (un, v1) 7→
(un, v1). In the former case, the automorphism does not preserve the colors. This leaves us
with only the latter, which is the trivial automorphism, so this is an L-list-distinguishing
coloring on C1

n that uses a unique color c1. By Lemma 8, we know that we can extend
this coloring to a L-list-distinguishing coloring of Cn�Cm. Therefore, Dℓ(Cn�Cm) = 2 if
at most one of n and m is 3.

Lemma 10. Dℓ(C3�C3) = D(C3�C3) = 3.

Proof. Assign list L(ui, vj) such that |L(ui, vj)| = 3 to each ui, vj ∈ V (C3�C3). Color the
vertices (ui, v1), i ∈ {1, 2, 3} from their list such that each vertex received a unique color.
Let vertex (ui, v1) for i ∈ {1, 2, 3} be colored ci, and we will not use the color c1 on any
other vertex. If one of the vertices (u1, v2) and (u1, v3) has a color that is not c1, c2, or c3
in its list, say c4, then use that color. Then color the other anything from its list that is
not c1. If both of their lists are {c1, c2, c3}, then color them both c2. Lastly, color (u3, v2)
and (u3, v3) from their list such that the colors are different and both not c1, and then
color the remaining vertices anything from their list that is not c1.

By Lemma 7 and since C1
3 has a list-distinguishing coloring, there is no color-preserving

automorphism of the form (σa
nτ

b
n, e). Since (u1, v1) is the only vertex with color c1, the

only non-trivial automorphism of the form (e, σc
mτ

d
m) or (σa

nτ
b
n, σ

c
mτ

d
m) would map (u3, v2)

to (u3, v3). However, these vertices are colored differently. Lastly, the automorphism
α : (ui, vj) 7→ (vj , ui) must map (u1, v1) to itself. However, (u2, v1) and (u3, v1) are colored
differently than (u1, v2) and (u1, v3). Thus the only color preserving automorphism is the
identity, and Dℓ(C3�C3) = D(C3�C3) = 3.

The proof of the next theorem follows immediately from Lemma 9 and Lemma 10.

Theorem 4. Dℓ(Cn�Cm) = D(Cn�Cm) for all n,m ≥ 3.

Klavžar and Zhu [KZ07] and Fischer and Isaak [FI08] independently determined the dis-
tinguishing number of Cartesian products of complete graphs. Again, list-distinguishing
this class of graphs has proved more difficult. For instance, a tedious (yet straightforward)
case analysis yields Dℓ(K3�K4) = 2. As we feel that the development of more broadly
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applicable techniques may increase the overall understanding of the list-distinguishing
number, we pose the following problem.

Problem 1. Determine Dℓ(Kn�Km).

4 Conclusion

When presenting a list variant pℓ of a graph parameter p, it is natural to ask whether p
and pℓ differ significantly. For instance, it is well known that the list chromatic number
and the chromatic number can differ by an arbitrarily large amount [Alo93, ERT80].
On the other hand, the list coloring conjecture states that the edge chromatic number
and edge-list-chromatic number are always equal and remains one of the foremost open
problems in chromatic graph theory. With this in mind, we pose the following question.

Question 1. Does there exist a graph G such that D(G) < Dℓ(G)?

Amusingly, the first author feels that no such graph G exists, while the third author
believes that Question 1 can be answered in the affirmative. As such, we make no formal
conjecture related to Question 1 here.

Acknowledgment: The authors would like to thank Dan Cranston and Stephen Hartke
for their input on this paper, and in particular for their part in Proposition 1, which
was proved jointly with the first author during a discussion at the 2008 SIAM Discrete
Mathematics Meeting.
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