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Abstract

We derive upper and lower bounds on the isoperimetric numbers and bisection
widths of a large class of regular graphs of high degree. Our methods are com-
binatorial and do not require a knowledge of the eigenvalue spectrum. We apply
these bounds to random regular graphs of high degree and the Platonic graphs
over the rings Zn. In the latter case we show that these graphs are generally non-
Ramanujan for composite n and we also give sharp asymptotic bounds for the
isoperimetric numbers. We conclude by giving bounds on the Cheeger constants of
arithmetic Riemann surfaces. For a large class of these surfaces these bounds are
an improvement over the known asymptotic bounds.

1 Introduction

Let G be a graph and let A ⊆ V (G). The boundary of A, denoted by ∂A, is the set of
edges of G having precisely one endpoint in A. The isoperimetric number of G is

h(G) = inf
A

|∂A|
|A| ,

where the infimum is taken over all subsets A ⊂ V (G) satisfying |A| ≤ 1
2
|V (G)|. The

isoperimetric number of a graph was introduced by Buser in [4] as a discrete analog of
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the Cheeger constant used to study the eigenvalue spectrum of a Riemannian manifold.
The bisection width bw(G) is infA|∂A| where n − 2|A| ≤ 1.

For a regular graph of degree k, it is now standard to estimate h(G) in terms of the
second largest eigenvalue of the adjacency matrix of G as in [7], [16] and [17]. This ap-
proach is especially suited to Cayley graphs (and quotients of Cayley graphs) of groups
whose character tables are readily determined, as in [16]. In these cases one can obtain
spectral information about the graph following the representation theoretic methods of
[2]. However, this method is more difficult for Cayley graphs of groups whose represen-
tations are less tractable. Recently, combinatorial and elementary methods have been
used to construct explicit families of expanders as in [1] and [19]. In this paper we use
combinatorial methods to obtain upper and lower bounds on the isoperimetric number
for large classes of regular graphs. We then give applications to random regular graphs
of high degree and to the Platonic graphs. We use the latter results to study the Cheeger
constants of arithmetic Riemann surfaces.

Our main results are Theorems 1 and 3 and Corollary 2 below. We show that for
a highly connected regular graph, specifically any graph in which an arbitrary vertex is
connected by a 2-path to at least half of the other vertices, we can derive upper and lower
bounds for the isoperimetric number. From Corollary 1 we see that these estimates are
asymptotically sharp for most graphs of high degree.

Theorem 1. Let G be a k-regular graph with |V (G)| = n. Assume that for any v ∈ V (G)
there are at least r paths of length 2 from v to every vertex in a set of size n − m, where
0 ≤ m ≤ n/2 and m does not depend on v. Also assume that k2 ≥ r(n − m). Then

i)
1

2

(

k +
√

k2 − r(n − 2m)
)

≥ h(G) ≥ 1

2

(

k −
√

k2 − r(n − 2m)
)

ii)
n

4

(

k +

√

k2 − r

(

n − 4m2

n

)

)

≥ bw(G) ≥ n

4

(

k −
√

k2 − r

(

n − 4m2

n

)

)

.

Note that in the case of a graph G with the properties that m = 0, r = 1 and k =
√

n
(exactly) then we have the exact values h(G) = k/2 and bw(G) = kn/4.

We apply Theorem 1 to two classes of graphs: random regular graphs of high degree
as in [11], and Platonic graphs as in [8], [9], [13], and [15]. This gives Corollary 1 and
Theorem 3.

The model Gn,k of random regular graphs consists of all regular graphs of degree k on
n vertices with the uniform probability distribution. As in [3] we use Gn,k to denote both
the probability space and a random graph in the space.

We say that a statement depending on n occurs almost always asymptotically (a.a.s.)
if the statement occurs with probability approaching 1 as n goes to ∞.

Corollary 1. Let ω(n) denote any function that grows arbitrarily slowly to ∞ with n.
Suppose that k2 > ω(n)n log(n) and k ∈ o(n). Then a.a.s.

k

2

(

1 + O

(

1

n

))

≥ h(Gn,k) ≥
k

2

(

1 − O

(

1
√

ω(n)

))

.
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Note that this is essentially Corollary 2.10 in [11].
Recall that a k-regular graph G is called Ramanujan if for all eigenvalues λ of the

adjacency operator where |λ| 6= k we have |λ| ≤ 2
√

k − 1. In the sequel we let λ1 denote
the largest eigenvalue less than k.

Let R be a finite commutative ring with identity and define

SR = {(α, β) ∈ R2 | there exist x, y ∈ R such that ax − by = 1}.

The Platonic graphs πR are defined by V (πR) = {(α, β) ∈ R2 | (α, β) ∈ SR} and (α, β) is
adjacent to (γ, δ) if and only if det

(

α β
γ δ

)

= ±1. These graphs have been well-studied and
are related to the geometry of modular surfaces [5], [6], [13]. Further, for certain rings R
the Platonic graphs πR provide examples of elementary Ramanujan graphs as in [9]. In
particular, for Fq the finite field with q elements we have the following:

Theorem 2 ([8, 9, 15]). Let p be an odd prime and let q = pr. Then πFq
is Ramanujan.

This was proved by determining the spectrum of these graphs from the character table
of GL2(Fq) as in [16]. The character table of GL2(R) for R = Fq is well-known, see [18] for
example. For other rings, in particular for R = ZN with N composite, the representations
of GL2(R) and SL2(R) are more complicated. See [12] for a study of the characters of
SL2(Zpn), for example.

Although the graphs πZN
form families of expanders [13], it is expected that they are

generally not Ramanujan for composite N . Further, as presented in the discussion at the
end of Section 4 in [9], it is not known precisely which πZN

are Ramanujan. It is noted
there that πZN

is not Ramanujan for N = pq with q sufficiently larger than p.
In the following we give upper and lower bounds of the same order for h(πZN

). We
apply Theorem 1 to give lower bounds on certain h(πZN

) of the same order as the upper
bounds. Then we show that in general the graphs πZN

are not Ramanujan.

Theorem 3. i) For odd, composite N we have

N

2
− 1
∏

p|N

(

1 + 1
p

) ≥ h(πZN
) ≥ N

2



1 −
√

√

√

√1 − 2
∏

p|N

(

1 − 1

p

)

+
∏

p|N

(

1 − 1

p2

)



 .

Thus for any ǫ > 0 and sufficiently large N with
∏

p|N

(

1 + 1
p

)

sufficiently close to 1 we

have
N

2
− 1 + ǫ ≥ h(πZN

) ≥ N

2
(1 − ǫ).

ii) For odd, composite N with
∏

p|N

(

1 + 1
p

)

sufficiently large we have h(πZN
) ≤ cN

for some c < 1/2. Thus, for such N , πZN
is not Ramanujan.

We can also obtain estimates on the bisection width of πZN
using (ii) of Theorem 1.

Note that the upper bound in (i) of Theorem 3 was first shown for primes p ≡ 1 (mod 4)
in [5] and extended to odd prime powers in [13].
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Recall that the group ΓN = PSL2(ZN) acts on the complex upper half plane H via
linear fractional transformations. Let ΓN\H denote a fundamental domain for this action.
The Cheeger constants h(ΓN\H) of these surfaces have been well-studied [4], [5], and [6].
Precise definitions of these surfaces and their Cheeger constants are given in Section 5.
Using probabilistic methods, Brooks and Zuk in [6] showed that h(ΓN\H) ≤ 0.4402 for
sufficiently large N . From (i) of Theorem 3 and inequality (12) in Section 4 we have a
sharper bound for the cases N = 3, 32, and 5r. Further, we have:

Corollary 2. For sufficiently large odd composite N with
∏

p|N

(

1 + 1
p

)

sufficiently large,

h(ΓN\H) ≤ A

where A < 0.4402 can be given explicitly and depends on N .

In Section 2 we prove Theorem 1 and use a result from [11] to give a new proof of
Corollary 1. In Section 3 we show that the Platonic graphs are isomorphic to certain
quotients of Cayley graphs of PSL2(R). This allows us to apply counting arguments to
πR. In Section 4 we prove Theorem 3 and investigate the asymptotic properties of h(πZN

).
Finally, in Section 5 we discuss the arithmetic Riemann surfaces under consideration and
prove Corollary 2.

2 Proof of Theorem 1

Let G be a simple regular graph of degree k and let |V (G)| = n. Let A ⊂ V (G) with
|A| ≤ n/2 and let B = V (G) \ A. Let ∂A denote the boundary of A. For v ∈ A define

∂v = {e ∈ ∂A | e is incident with v}.

Note that |∂A| =
∑

v∈A |∂v|.
Let e ∈ ∂A with e = (ve, we) where ve ∈ A and we ∈ B. Let

∂Ae = {e′ ∈ ∂A | e′ incident with ve},
∂Be = {e′ ∈ ∂A | e′ incident with we}.

Note that in any path of length 2 having one endpoint in A and one endpoint in B, it
must be the case that one of the edges is in ∂A (equivalently ∂B), while the other edge
either has both endpoints in A or both endpoints in B. When the non-boundary edge
lies entirely within A we shall say that the path “begins in A,” otherwise the path will
be said to “begin in B.”

Let e ∈ ∂A be in a path of length 2 from A to B. Let e = (v, w) with v ∈ A and
w ∈ B. If v is the midpoint of a path of length 2 then the path must begin in A, as
otherwise it would begin and end in B. Thus there are k−|∂Ae| choices for the beginning
vertex of the path. Similarly, if w is the midpoint, then there are k−|∂Be| choices for the
endpoint of the path. Therefore, an edge e ∈ ∂A from v ∈ A to w ∈ B lies in

(k − |∂Ae|) + (k − |∂Be|) = 2k − |∂Ae| − |∂Be|
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paths of length 2 from A to B. It follows that there are no more than
∑

e∈∂A 2k−|∂Ae|−
|∂Be| paths of length 2 from A to B. By hypothesis, there are at least r paths of length
2 from any v ∈ A to a subset of B of size |B| −m, where m does not depend on v. Thus
there exist (at least) r|A|(|B| − m) paths of length 2 connecting A to B. It follows that

∑

e∈∂A

2k − |∂Ae| − |∂Be| ≥ r|A|(|B| − m). (1)

Note that

∑

e∈∂A

|∂Ae| =
∑

v∈A

∑

e∈∂A
e incident with v

|∂Ae| =
∑

v∈A

∑

e∈∂A
e incident with v

|∂v|

=
∑

v∈A

|∂v|
∑

e∈∂A
e incident with v

1 =
∑

v∈A

|∂v|2

and
∑

e∈∂A |∂Be| =
∑

e∈∂B |∂Be|.
Let t = |∂A|/|A|, a = |A|, and b = |B|. By the Cauchy-Schwartz inequality,

|A|∑v∈A |∂v|2 ≥ |∂A|2 and so
∑

e∈∂A |∂Ae| ≥ at2. Thus (1) gives

r(b − m) ≤ 1

a

∑

e∈∂A

2k − |∂Ae| − |∂Be| ≤ 2kt − t2 − t2
a

b
= 2kt − t2

(

1 +
a

b

)

.

Now, 2k−t
(

1 + a
b

)

> 0. To see this assume otherwise and note that t < k. Since a ≤ n/2
we have b ≥ n/2. It follows that 2k ≤ tn/b < kn/b ≤ 2k which gives a contradiction. As
k2 ≥ r(n − m) we can apply the quadratic formula to get

b

n

(

k +

√

k2 − nr
(

1 − m

b

)

)

≥ t ≥ b

n

(

k −
√

k2 − nr
(

1 − m

b

)

)

. (2)

This holds for 0 < a ≤ n/2 and so for all n > b ≥ n/2. Define

f(x) =
n − x

n

(

k −
√

k2 − nr

(

1 − m

n − x

)

)

.

Then

f ′(x) = −1

n

(

k −
√

k2 − nr

(

1 − m

n − x

)

)

−
(

n − x

n

)

1

2
√

k2 − nr
(

1 − m
n−x

)

m

(n − x)2

which is less than 0 for n > x > 0. Thus f(x) is decreasing and as n > n − x = b ≥ n/2
then n/2 ≥ x > 0 and so the right hand side of (2) is maximal at x = n/2. This gives
the lower bound from (i) of Theorem 1. Note that similar, but significantly weaker, lower
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bounds on the isoperimetric constant were found in [14]. Since h(G) is an infimum we
have from (2) that

b

n

(

k +

√

k2 − rn
(

1 − m

b

)

)

≥ t ≥ h(G)

for any n > b ≥ n/2. Taking b = n/2 gives the upper bound, and this completes the proof
of (i) of Theorem 1.

In the case where the isoperimetric set satisfies n − 2a ≤ 1 we have a ≥ m. We can
count the 2-paths from m remaining vertices in B to a − m vertices in A. Thus there
exist at least ra(b − m) + rm(a − m) = r(an − m2) 2-paths from A to B. Applying the
same analysis as above we get

b

n

(

k +

√

k2 − nr

(

1 − m2

ab

)

)

≥ t ≥ b

n

(

k −
√

k2 − nr

(

1 − m2

ab

)

)

.

This completes the proof of Theorem 1.
To prove Corollary 1, we recall the main result from [11]. For v ∈ V (G) let N(v)

denote the set of vertices adjacent to v. Then codeg(u, v) = |N(u) ∩ N(v)|. Recall that
a set of graphs An are a.a.s. in the space Gn,k if limn→∞ P (An) = 1.

Theorem 4 (Theorem 2.1, [11]). Let ω(n) denote any function that grows arbitrarily
slowly to ∞ with n. Suppose that k2 > ω(n)n log(n).

(i) If k < n − cn/ log(n) for some c > 2/3 then a.a.s.

maxu,v

∣

∣

∣

∣

codeg(u, v) − k2

n

∣

∣

∣

∣

< C
k3

n2
+ 6

k
√

log(n)√
n

where C is an absolute constant.
(ii) If k ≥ cn/ log(n) then a.a.s.

maxu,v

∣

∣

∣

∣

codeg(u, v) − k2

n

∣

∣

∣

∣

< 6
k
√

log(n)√
n

.

(iii) If 3 ≤ k = O(n1−δ) then codeg(u, v) < max(k1−ǫ(δ), 3).

It follows that for sufficiently large n and for k2 > ω(n)n log(n), the number of paths
of length 2 from u to v is a.a.s. greater than or equal to

k2

n
−
(

C
k3

n2
+ 6

k
√

log(n)√
n

)

.

Note that since k ∈ o(n) the above expression is greater than 0, and in fact grows arbi-
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trarily large with n. From (i) of Theorem 1, we have that a.a.s.,

h(Gn,k) ≥
1

2



k −

√

√

√

√k2 −
(

k2

n
− C

k3

n2
− 6

k
√

log(n)√
n

)

n





=
1

2



k − k

√

C
k

n
+ 6

√

n log(n)

k





=
k

2



1 − O





√

√

n log(n)

k







 .

The upper bound from Corollary 1 derives from random methods and is well-known.

3 Quotients of Cayley Graphs of Matrix Groups

To study the Platonic graphs πR for a finite commutative ring R with identity, we show
how to express them as quotients of Cayley graphs of PSL2(R). This allows us to deter-
mine explicit formulas for the orders of πR for certain R, as well as related quantities.

Let Γ be a finite group and let S be a generating set for Γ. If S = S−1 then we say that
S is symmetric. The Cayley graph of Γ with respect to the symmetric generating set S,
denoted G(Γ, S), is defined as follows: The vertices of G are the elements of Γ. Distinct
vertices γ1 and γ2 are adjacent if and only if γ1 = ωγ2 for some ω ∈ S. Cayley graphs are
|S|-regular. Since the permutation of the vertices induced by right multiplication by a
group element is easily shown to be a graph automorphism, it follows that Cayley graphs
are vertex-transitive. If g1 and g2 are adjacent vertices in a Cayley graph, then we will
write g1 ∼ g2

Let R be a finite commutative ring with identity and let R× be the group of units of
R. Let

ΓR = PSL2(R) =

{(

a b
c d

) ∣

∣

∣

∣

ad − bc = 1

}

/

〈±1〉 .

Set

NR =

{

(

1 x
0 1

) ∣

∣

∣

∣

x ∈ R

}

and let Z(R) denote the semigroup of zero divisors of R.
Let ω ∈ R× and let SR be a symmetric generating set for ΓR containing

(

0 ω
−ω−1 0

)

∈ SR,
with all other ξ ∈ SR in NR. Let GR = G(ΓR, SR) denote the corresponding Cayley graph.

If g is any element in ΓR then left multiplication by elements of NR does not change
the bottom row of g. It follows that elements of Γ′

R = NR\ΓR can be indexed by

Γ′
R
∼= {(α, β) | α, β ∈ R, (α, β) 6∈ Z(R)2}/〈±1〉.
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Consider the quotient graph G′
R = NR\GR (i.e. the multigraph whose vertices are given

by the cosets in Γ′
R, with distinct cosets NRγ1 and NRγ2 joined by as many edges as

there are edges in GR of the form (v1, v2), where v1 ∈ NRγ1 and v2 ∈ NRγ2). Since Γ′
R is

not a group (NR is not normal in ΓR), these quotient graphs are not themselves Cayley
graphs. They are, however, induced from the Cayley graph GR. In the sequel we make
no distinction between a vertex in our graph and the group element it represents.

Lemma 1. Let (α, β) and (γ, δ) be vertices in G′
R. Then (α, β) ∼ (γ, δ) if and only if

det

(

α β
γ δ

)

= ±ω,±ω−1.

Proof. Let g ∈ V (GR). Left multiplication of g by elements of NR preserves the bottom
row of g. Therefore, g′ ∈ G′

R is adjacent to precisely those elements attainable from it by
left multiplication by ξ ∈ SR, with ξ 6∈ NR. Observe that

(

0 ω
−ω−1 0

)

( a b
c d ) =

(

ωc ωd
−ω−1a −ω−1b

)

.

Thus if (α, β) ∼ (γ, δ) then we must have det
(

α β
γ δ

)

= ±ω,±ω−1 as was to be shown.
For the reverse direction, note that if αδ − βγ = ±ω,±ω−1, then we must have that

(

ǫα ǫβ
γ δ

)

∈ ΓR for some ǫ ∈ {±ω,±ω−1}. But then it is clear that left multiplication by
an element of SR − NR will take (α, β) to ǫ′(γ, δ) with ǫ′ ∈ {±ω,±ω−1} and the proof is
complete.

As a consequence we see that if ω = ±1 then πR is isomorphic to G′
R.

Lemma 2. Let (α, β), (α′, β ′) ∈ V (G′
R) satisfy det

(

α β
α′ β′

)

∈ R×. If ω2 = 1 (resp. 6= 1)

then there are exactly 2 (resp. 4) paths of length 2 joining (α, β) to (α′, β ′).

Proof. From Lemma 1, a path of length 2 joining (α, β) to (α′, β ′) is given by a vector (γ, δ)

such that det
(

α β
γ δ

)

≡ ±ω,±ω−1 and det
(

γ δ
α′ β′

)

≡ ±ω,±ω−1. Set ξ = det
(

α β
α′ β′

)

∈ R×.

By elementary linear algebra, there are nonzero elements c1, c2 ∈ R so that (γ, δ) =
c1(α, β) + c2(α

′, β ′). A straightforward computation shows that

det

(

α β
γ δ

)

= c2 det

(

α β
α′ β ′

)

= c2ξ

and

det

(

γ δ
α′ β ′

)

= c1 det

(

α β
α′ β ′

)

= c1ξ.

This leads to 4 or 8 ordered pairs (c1, c2) for which the vector (γ, δ) has the desired
properties. Since vectors differing only by a factor of −1 are identical, these pairs represent
2 or 4 distinct paths in G′

R.

Lemma 3. Let (α, β) ∈ Γ′
R, then

#

{

(α′, β ′) ∈ Γ′
R

∣

∣

∣

∣

det

(

α β
α′ β ′

)

∈ R×

}

=
|R||R×|

2
.
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Proof. If α′, β ′ ∈ Z(R) then there is some nonzero z ∈ Z(R) so that zα′ = zβ ′ = 0. It
follows that if αβ ′−βα′ ∈ R× then one of α′ or β ′ cannot be in Z(R) and so (α′, β ′) ∈ Γ′

R.
First we count the number of (α′, β ′) so that αβ ′ − βα′ = 1. If α ∈ R× then (α′, β ′) =

(α−1(1 + ββ ′), β ′) works and if β ∈ R× then (α′, β−1(αα′ − 1)) works for any β ′ (resp.

α′) in R. Thus there are |R| possible choices of (α′, β ′) ∈ Γ′
R so that det

(

α β
α′ β′

)

= 1.

For each such choice, there are |R×| further choices for det
(

α β
α′ β′

)

∈ R×. This gives the

result.

4 Applications to Platonic Graphs

Set R = ZN , U = ( 1 1
0 1 ) and V = ( 0 1

−1 0 ). Then SN = {U, U−1, V } is a symmetric
generating set for ΓN = PSL2(ZN) satisfying the requirements of the previous section
[13]. Following that notation, define GN = G(ΓN , SN) to be the Cayley graph of ΓN with
respect to this generating set and G′

N = ΓN/〈U〉 to be the quotient obtained by collapsing
the N -cycles generated by powers of U . Then πZN

∼= G′
R. We now prove the upper bound

of Theorem 3. For A, B ⊂ V (G) we denote the set of edges from A to B by E(A, B).
For G = πZN

we have |R| = N and |R×| = φ(N) where φ is Euler’s totient function.
We also have the formula |ΓN | = (N3/2)

∏

p|N(1− 1/p2), as shown in [10]. It follows that

|V (πZN
)| =

N2

2

∏

p|N

(

1 − 1

p2

)

. (3)

Further, πZN
is regular of degree N .

Let (α, β) ∈ V (πZN
). By Lemma 2 and Lemma 3, the number of vertices of πZN

connected to (α, β) by 2 paths of length 2 is

|R||R×|
2

=
Nφ(N)

2
=

N2

2

∏

p|N

(

1 − 1

p

)

.

Given our definitions of n and m from Section 1, this last number is equal to n−m. From
(3) we obtain

n − m =
N2

2

∏

p|N

(

1 − 1

p2

)

− m =
N2

2

∏

p|N

(

1 − 1

p

)

. (4)

It follows that

m =
N2

2

∏

p|N

(

1 − 1

p

)





∏

p|N

(

1 +
1

p

)

− 1



 .

For α ∈ Z
×
N let Hα denote the subgraph induced by {(0, α)} ∪ {(α−1, β) | β ∈ ZN}.

It is easily shown that given α, α′ ∈ Z
×
N we have that Hα and H ′

α are either identical or
disjoint.
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Let CN denote the subgraph of πZN
induced by the set V (CN) =

⊔

α∈Z
×

N
/〈±1〉 Hα. Since

|V (Hα)| = N + 1 we have

|V (CN)| =
φ(N)

2
(N + 1). (5)

Let ON be the subgraph in πZN
induced by the vertex set {(z, β) | (z, N) 6= 1, (z, β) ∈

πZN
}. It is clear that V (πZN

) = V (ON) ⊔ V (CN). It follows that we have

|V (ON)| =
N

2
φ(N)

∏

p|N

(

1 +
1

p

)

− φ(N)

2
(N + 1). (6)

One can picture the subgraph CN as a central “core” for πZN
, in which the highly connected

Hα’s are arranged in the form of a complete multigraph. The vertices of ON “orbit” this
core (hence our choice of C and O for notation).

Note that (α−1, β) ∈ Hα is adjacent to (α′−1, x) ∈ Hα′ if and only if x ≡ α(α′−1β ± 1)
(mod N). It follows that there are 2 edges from (α−1, β) ∈ Hα to vertices in Hα′ for
every α ∈ Z

×
N/〈±1〉. Therefore, if Hα and H ′

α are distinct, then there are 2N edges with
one endpoint in Hα and the other in H ′

α. Since CN consists of φ(N)/2 copies of Hα, this
accounts for

(

φ(N)/2
2

)

2N edges. Since |E(Hα)| = 2N we conclude that

|E(CN )| =

(

φ(N)/2

2

)

2N + 2N
φ(N)

2
=

Nφ(N)

4
(φ(N) + 2). (7)

The number of vertices in CN that are of the form v = (α−1, β) with α ∈ Z
×
N is

Nφ(N)/2. For any copy of Hα′ not containing v in CN , there are two edges connecting v

with vertices in Hα′ . This gives 2(φ(N)
2

− 1) = φ(N) − 2 edges connecting v to vertices in
other copies of Hα. As v is adjacent to 3 other vertices in Hα and every vertex has degree
N , we find a total of N − φ(N) − 1 edges connecting v with vertices in ON . It follows
that the number of edges with one endpoint in CN and the other in ON is given by

|E(CN ,ON)| =
Nφ(N)

2
(N − φ(N) − 1). (8)

It is a further consequence of Lemma 2 that if α is such that v ∈ Hα, then v is adjacent
to three vertices within Hα. This gives a total of φ(N) + 1 edges connecting v to other
vertices within CN .

Note that

|E(πZN
)| =

N3

4

∏

p|N

(

1 − 1

p2

)

=
N2

4
φ(N)

∏

p|N

(

1 +
1

p

)

.
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Thus from (7) and (8) we have

|E(ON)| = |E(πZN
)| − |E(CN)| − |E(CN ,ON)|

=
N2φ(N)

4

∏

p|N

(

1 +
1

p

)

− Nφ(N)

4
(φ(N) + 2) − Nφ(N)

2
(N − φ(N) − 1)

=
Nφ(N)

4



N
∏

p|N

(

1 +
1

p

)

+ φ(N) − 2N



 . (9)

Note that the subgraph induced by CN has the structure of the complete multigraph
K2N

φ(N)/2 where each “vertex” is actually a copy of Hα. Therefore, we can divide the copies

of Hα arbitrarily into 2 sets of size φ(N)/4 and so V (CN) = AC ⊔ BC and |AC| = |BC| =
|V (CN )|/2 = φ(N)(N + 1)/4. Each copy of Hα in AC contributes 2Nφ(N)/4 edges to
∂AC . Since there are φ(N)/4 copies of Hα in BC this gives a total of 2N(φ(N)/4)2 edges
in ∂AC .

Lemma 4. There exists a bipartition VO = AO ⊔ BO satisfying

|E(AO, BO)| ≤ |E(ON)|/2.

Proof. Assume that |E(AO, BO)| > |E(ON)|/2 for every bipartition of VO. Let VO =
AO⊔BO be a bipartition for which |E(AO, BO)| is minimal. We will also use the notation
AO and BO to denote the subgraphs induced by the sets of vertices in our bipartition.

It is an immediate consequence of our determinant criterion for adjacency that there
must be vertices in VO that are not adjacent to any other vertices in VO. Denote the set
of all such vertices by S. The elements of S have degree zero in the induced graphs AO

and BO.
There must be at least one vertex in VO with the property that more than half its

edges are in E(AO, BO). This follows from S 6= ∅ and our assumptions that |E(AO, BO)| >
|E(ON)|/2 and |AO| = |BO|. Without loss of generality we can assume that there is such
a vertex v in AO.

If there is a vertex w ∈ S ∩ BO then we could switch v and w to get a new decom-
position with a smaller value for |E(AO, BO)|, thus contradicting the minimality of our
decomposition. It follows that S ⊂ AO. Further, all of the vertices in BO must have at
most the same number of edges incident with AO as with other vertices in BO. A vertex
in BO not satisfying this condition could be switched with a vertex in S to get a new
decomposition, contradicting our minimality assumption.

For v ∈ AO let v+ denote the edges of v incident with an edge in E(AO, BO) and
let v− denote the other edges incident with v. For w ∈ BO let w− be the edges of w
incident with an edge in E(AO, BO) and w+ the remaining edges of w. Now, assume for
a contradiction that

∑

v∈AO

v+ − v− <
∑

w∈BO

w+ − w−.
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We have that

∑

v∈AO

v+ − v− =
∑

v∈AO

v+ −
∑

v∈AO

v− = |E(AO, BO)| − 2|E(AO)|

and
∑

w∈BO

w+ − w− =
∑

w∈BO

w+ −
∑

w∈BO

w− = 2|E(BO)| − |E(AO, BO)|.

It follows that

|E(AO, BO)| − 2|E(AO)| < 2|E(BO)| − |E(AO, BO)|

which implies that |E(AO, BO)| < |E(AO)| + |E(BO)|. However, since |E(AO, BO)| >
|E(ON)|/2 this gives

|E(ON )| = |E(AO, BO)| + |E(AO)| + |E(BO)| >
|E(ON)|

2
+

|E(ON )|
2

which is a contradiction. Therefore we must have

∑

v∈AO

v+ − v− ≥
∑

w∈BO

w+ − w−.

As ∅ 6= S ⊂ AO, there must be some v ∈ AO and some w ∈ BO for which v+ − v− >
w+ −w−. If we switch v to BO and w to AO then we get a new bipartition A′

O , B′
O with

|E(A′
O, B′

O)| < |E(AO, BO)|, again contradicting our minimality condition. It follows
that there must be some bipartition satisfying |E(AO, BO)| ≤ |E(ON )|/2, as was to be
shown.

Lemma 4 assures us that we can decompose V (ON) = AO ⊔ BO in such a way that

|AO| = |BO| =
Nφ(N)

4

∏

p|N

(

1 +
1

p

)

− (N + 1)φ(N)

4

and so that |E(AO, BO)| ≤ |E(ON)|/2.
Now

|E(CN ,ON)| = |E(AO, AC)| + |E(AO, BC)| + |E(BO, AC)| + |E(BO, BC)|,

and it follows that one of |E(AO, AC)| + |E(BO, BC)| or |E(AO, BC)| + |E(BO, AC)| must
be less than or equal to 1

2
|E(CN ,ON )|. Thus one of the sets AO ⊔ AC or AO ⊔ BC must
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have boundary less than or equal to

1

2
|E(CN ,ON)| + 1

2
|E(ON)| + 2N

(

φ(N)

4

)2

=
Nφ(N)

4
(N − φ(N) − 1)

+
Nφ(N)

8



N
∏

p|N

(

1 +
1

p

)

+ φ(N) − 2N



 +
Nφ(N)2

8

=
Nφ(N)

4





N

2

∏

p|N

(

1 +
1

p

)

− 1





where we applied (8) and (9). From (5) and (6), the number of vertices in each of the
sets above is

|V (CN)|
2

+
|V (ON)|

2
=

Nφ(N)

4

∏

p|N

(

1 +
1

p

)

.

Thus we have

h(πZN
) ≤

Nφ(N)
4

(

N
2

∏

p|N

(

1 + 1
p

)

− 1
)

Nφ(N)
4

∏

p|N

(

1 + 1
p

) =
N

2
− 1
∏

p|N

(

1 + 1
p

) .

This proves the upper bound of (i) of Theorem 3. To prove the lower bound of (i) note

that by (4) the condition k2 ≥ r(n − m) applied to πZN
gives 1 ≥ ∏

p|N

(

1 − 1
p

)

which

always holds. The result then follows from a direct application of (i) Theorem 1.
Let {N} denote an increasing sequence such that

∏

p|N(1 + 1
p
) → 1 as N → ∞. Then

for any ǫ > 0 we have
√

√

√

√1 − 2
∏

p|N

(

1 − 1

p

)

+
∏

p|N

(

1 − 1

p2

)

< ǫ

for sufficiently large N . This result and a direct application of the upper and lower bounds
from (i) of Theorem 3 gives the rest of part (i).

We have

|E(ON)|
|V (ON)| =

N

2





∏

p|N

(

1 + 1
p

)

+
∏

p|N

(

1 − 1
p

)

− 2

∏

p|N

(

1 + 1
p

)

− 1 − 1
N



 =
N

2
CN .

For ǫ > 0 let the primes p|N be large enough so that 1/
∏

p|N

(

1 + 1
p

)

< ǫ. Let ǫ(N)

denote any function that goes to 0 as N → ∞. From Corollary 3.1 in [6] there exists
some AO ⊆ V (ON) with |AO| = |V (ON)|/2 and so that

|∂AO| =
N

2
CN |AO| + ǫ(N)|AO|.
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Therefore, as in part (i) we have

h(πZN
) ≤

Nφ(N)
4

(n − φ(N) − 1) + N
2
cN

|V (ON )|
2

+ ǫ(N) |V (ON )|
2

+ Nφ(N)2

8

Nφ(N)
4

∏

p|N

(

1 + 1
p

)

=
N

2
CN





∏

p|N

(

1 + 1
p

)

− 1 − 1
N

∏

p|N

(

1 + 1
p

)



 +
N

∏

p|N

(

1 + 1
p

) − φ(N)

2
∏

p|N

(

1 + 1
p

)

+ ǫ(N)

∏

pN

(

1 + 1
p

)

− 1 − 1
N

∏

p|N

(

1 + 1
p

)

≤ N

2
C(N) + ǫN − ǫφ(N)

2
+ ǫ(N)

∏

p|N

(

1 + 1
p

)

− 1 − 1
N

∏

p|N

(

1 + 1
p

) (10)

where

C(N) =

∏

p|N

(

1 + 1
p

)

+
∏

p|N

(

1 − 1
p

)

− 2

∏

p|N

(

1 + 1
p

) (11)

and 0 < C(N) < 1. This proves the first part of (ii).
To show that πZN

is not Ramanujan it suffices to show that h(πZN
) is sufficiently

small with respect to the degree. In [13] it was shown that for R = Zpr with prime p ≡ 1
(mod 4) we have

pr(p − 1)

2(p + 1)
≥ h(πR). (12)

Since h(G) ≥ (k−λ1)/2 from Theorem 1.2.3 of [7], for example, we have pr(p−1)/(p+1) >
pr − λ1. It follows that if

p2r

pr − 1
≥ (p + 1)2

then πR is not Ramanujan. It is easy to see that this holds for r, p ≥ 3. From [7] and
(10), for sufficiently large odd composite N there is some c < 1

2
so that cN > N−λ1

2
. Thus

λ1 > N(1 − 2c) ≥ 2
√

N − 1 for such N . This proves (ii) of Theorem 3.

5 Applications to Arithmetic Riemann Surfaces

Recall that the group ΓN acts on the complex upper half plane H = {z = x + iy | y > 0}
via linear fractional transformations. Let FN denote a fundamental domain for this action.

the electronic journal of combinatorics 18 (2011), #P164 14



It is possible to construct FN so that FN consists of copies of

F1 =

{

z = x + iy ∈ H
∣

∣ |z| > 1, −1

2
≤ x <

1

2

}

⊔

{

z = x + iy ∈ H
∣

∣ |z| = 1, −1

2
≤ x ≤ 0

}

that do not overlap. That is, one can consider that copies of F1 tile FN . Note that FN

can be viewed as a Riemann surface, and we denote this surface by ΓN\H.
We can associate to ΓN\H a graph whose vertices are the copies of the tiles F1. Two

vertices are connected by an edge if and only if the respective tiles share a boundary. The
graphs constructed in this manner are isomorphic to the Cayley graphs of PSL2(ZN ) with
respect to the generators that define the fundamental domains. (An explicit isomorphism
is shown in [20].)

The Cheeger constant of a closed, compact Riemannian manifold M is defined by

h(M) = inf
S

area(S)

min(vol(A), vol(B))

where S runs over all hypersurfaces that divide M into disjoint pieces A and B. The
isoperimetric number of a graph is a discrete version of the Cheeger constant of a manifold.
Upper bounds on the isoperimetric numbers of the Cayley graphs GN associated to ΓN\H
immediately give upper bounds on the Cheeger constants of ΓN\H. In fact, Buser [4]
introduced the discrete version of h(M) to study the Cheeger constants of these manifolds.

More precisely, if A ⊂ V (GN) then every edge in ∂A represents a boundary edge of a
fundamental domain. Since each such edge of the fundamental domain has length log(3),
see [5] for example, and a fundamental domain has area π/3 this gives

h(ΓN\H) ≤ 3 log(3)

π
h(GN ).

In [5] this estimate (for N a prime congruent to 1 modulo 4) was used to show that
this discrete approach would be ineffective to tackle Selberg’s eigenvalue conjecture. In
particular, they showed that for such N , h(ΓN\H) ≤ .5245... and hence was too small
to improve known bounds on the smallest eigenvalue of the Laplacian on ΓN\H. From
Section 3 we have that h(GN) ≤ h(πZN

)/N . Combining this with the upper bound on
h(πZN

) from (i) of Theorem 3 gives h(ΓN\H) ≤ 0.5245 for all N . Furthermore, from the
probabilistic methods of [6] we have the asymptotic result that, for sufficiently large N ,

h(ΓN\H) ≤ 3

8π

(

arccosh(3) + 2arccosh

(

3

2

))

h(GN) ≈ 0.4402 . . .

From a direct computation using (ii) of Theorem 3 we can easily show that for sufficiently

large N and
∏

p|N

(

1 + 1
p

)

sufficiently large that

h(ΓN\H) ≤ C(N) · 0.4402 = A

where C(N) is as in (11) in the proof of (ii) of Theorem 3 in Section 4. This proves
Corollary 2.
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