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Abstract

We present a description, including a characterization, of the complete cd-index
of dihedral intervals. Furthermore, we describe a method to compute the complete
cd-index of intervals in universal Coxeter groups. To obtain such descriptions,
we consider Bruhat intervals for which Björner and Wachs’s CL-labeling can be
extended to paths of different lengths in the Bruhat graph. While such an extension
cannot be defined for all Bruhat intervals, it can be in dihedral and universal Coxeter
systems.

1 Introduction

Let (W,S) be a Coxeter system, and u, v ∈ W with u ≤ v in Bruhat order. The Bruhat
interval [u, v] has been shown to be lexicographically shellable. This was proved by Björner
and Wachs [3] and Dyer [11], in which the authors construct a CL-labeling and EL-
labeling, respectively. Dyer’s labeling can be given to u-v paths of any length in the
Bruhat graph B(u, v) of [u, v]. However Björner and Wachs’s labeling can only be used,
in general, for the maximal-length paths. Nevertheless there are examples of Bruhat
intervals in which both labeling procedures can be used for all u-v paths. We call such
intervals BW-labelable; for example, intervals in dihedral and universal Coxeter systems
are BW-labelable. We show that both labelings (when defined) have the same descent-
set distribution. Thus one can compute the complete cd-index of Billera and Brenti [1]
for such intervals utilizing the BW-labeling. The computation of the complete cd-index
for intervals in universal Coxeter groups cannot be carried out in an easy way (if at all)
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utilizing reflection orders, as these orders are not easy to generate for infinite groups.
Thus the BW-labeling is a tool that allows said computation for universal (and dihedral)
Coxeter groups.

The paper is organized as follows. The basic definitions are given in Section 1.1. In
Section 3 we provide a better description of the descent set distribution of u-v paths in
B(u, v) when [u, v] is a dihedral interval, i.e., an interval that is isomorphic to an interval
in a dihedral group. This description is given in terms of the complete cd-index, and
it is easily derived by using the BW-labeling discussed in Section 2. Furthermore, we
show that the dihedral intervals are the only ones with complete cd-index containing only
terms that are powers of c. In Section 3.4 we show that among the u-v paths of B(u, v),
the lexicographically-first ones are rising. This extends somewhat a result of Dyer [11,
Proposition (4.3)].

1.1 Basic definitions

A Coxeter system is a pair (W,S) where W is a group with presentation 〈S : (sisj)
mi,j =

(sjsi)
mj,i = e〉, where mi,j ∈ Z>0 ∪{∞} satisfies mi,i = 1 and if i 6= j, mi,j = mj,i > 2

(possibly∞). We callW a Coxeter group and writeW = 〈S | (sisj)
mi,j = e〉 instead of 〈S :

(sisj)
mi,j = (sjsi)

mj,i = e〉. An element w ofW is of the form s1s2 · · · sk, where each si ∈ S.
The length `(w) of w is the minimal such k, and in this case we say that the expression
s1s2 · · · sk is a reduced expression for w. As is customary we use s1s2 · · · ŝi · · · sk to denote
the expression s1 · · · si−1si+1 · · · sk, i.e., s1s2 · · · sk with si omitted. Two examples will
be used constantly: the symmetric group An generated by the n adjacent transpositions
si = (i i+ 1), for 1 ≤ i ≤ n, and the dihedral group I2(m) = 〈a, b : a2 = b2 = (ab)m = e〉
of order 2m.

The set S is called the set of simple reflections and T = T (W,S)
def
= {wsw−1 | w ∈

W, s ∈ S} is called the set of reflections of (W,S). The Bruhat graph is the directed
graph with vertex set W and edge set E(W,S), where (u, v) ∈ E(W,S) if and only if
there exists t ∈ T so that ut = v and `(v) > `(u). We write B(u, v) to denote the Bruhat
graph corresponding the to interval [u, v]. Moreover, we write Bk(u, v) to denote the set
of u-v paths in the Bruhat graph of length k (here the length is given by the number of
edges between u and v). We remark that maximal chains in [u, v] can be thought of as
(undirected) maximal-length paths in B(u, v).

We say that x ≤ y in Bruhat order if there is a directed x-y path in the Bruhat graph.
Furthermore, we say that y covers x, denoted by xl y, if x ≤ y and `(y) = `(x) + 1. The
interval [x, y] has very well known properties; for instance, it is an Eulerian and Cohen-
Macaulay poset. More specifically, it is the face poset of a regular cell decomposition of
a sphere (see [3], [11]).

For w ∈ W , we define the negative set of w, denoted by N(w), to be the set of
reflections that shorten the length of w, i.e., N(w) = {t ∈ T | `(wt) < `(w)}. It is well
known (see [11]) that if s1s2 · · · sk is a reduced expression for w then N(w) = {t1, . . . , tk},
where ti = sk · · · sk−i+2sk−i+1sk−i+2 · · · sk for i = 1, . . . , k.

A reflection subgroup W ′ of W is any subgroup generated by a subset of T . Reflection
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subgroups W ′ are Coxeter groups with simple reflection S ′ = {t ∈ T : N(t) ∩W ′ = {t}},
i.e., (W ′, S ′) is a Coxeter system (see [8]). A reflection subgroup is said to be dihedral if
|S ′| = 2.

Let (W ′, {t1, t2}) be a Coxeter system with W ′ being a dihedral reflection subgroup
of W . Dyer [11] showed the existence of linear orders <T on T satisfying either t1 <T

t1t2t1 <T t1t2t1t2t1 <T · · · <T t2t1t2t1t2 <T t2t1t2 <T t2 or t2 <T t2t2t2 <T t2t1t2t1t2 <T

· · · <T t1t2t1t2t1 <T t1t2t1 <T t1. These linear orders are called reflection orders. Given a
reflection order <T , an initial section AT of <T is a subset of T with r <T t for all r ∈ AT

and t ∈ T \ AT . Unless otherwise stated, <T will denote a generic reflection order.
Consider a reduced expression w = s1s2 · · · sk−1sk for w ∈ W . Then we say that

the total order sk <w sksk−1sk <w . . . <w sksk−1 · · · s2s1s2 · · · sk−1sk is induced by the
reduced expression s1 · · · sk of w. Dyer [11, Lemma (2.11)] showed that if W is finite,
then all reflection orders on T are induced by a choice of reduced expression for wW

0 ,
the maximal-length word in W . In fact, any finite initial section of a reflection order is
induced by a reduced expression for some w ∈ W .

For a path ∆ ∈ Bk(u, v) denoted by the labels (given by reflections) of its edges

(t1, t2, . . . , tk) and reflection order <T , the descent set of ∆ is defined by D(∆)
def
= {i ∈

[k − 1] | ti+1 <T ti}. We say that ∆ is rising if D(∆) = ∅, and falling if D(∆) =
[k − 1]. Dyer showed that the reflection order is an EL-labeling for [u, v], that is, every
edge is labeled so that every subinterval of [u, v] has a unique chain that is rising and
lexicographically-first. The existence of this EL-labeling has been used to prove algebraic
and topological properties of [u, v] (see [11] for details).

We recall that a composition of a positive integer n into t parts is a finite sequence of
positive integers α = (α1, α2, . . . , αt) such that

∑t
i=1 αi = n. We write α |= n to mean that

α is a composition of n. Given two compositions α = (α1, . . . , αr) and β = (β1, . . . , βs) of
n, we say that α refines β if and only if there exist 1 ≤ i1 < i2 < · · · < is−1 < r such that∑ik

j=ik−1+1 αj = βk for k = 1, . . . , s. Here we define i0 = 0 and is = r. If α refines β, we
write α � β.

For ∆ ∈ Bk(u, v), we define the descent composition of ∆ to be the composition
(α1, · · · , αt) |= k such that {α1, α1 + α2, . . . , α1 + α2 + · · · + αt−1} = D(∆). We denote
the descent composition of ∆ by D(∆). For u, v ∈ W and α |= k, let

cα(u, v) = |{∆ ∈ Bk(u, v) | α � D(∆)}|.

Notice that D(∆) = ∅ is equivalent to D(∆) having exactly one part.
We remark, in passing, that the numbers cα(u, v) can be used to compute the Kazhdan-

Lusztig polynomial of [u, v]. Details can be found in [2].
The number of paths in Bk(u, v) that are rising is counted by ck(u, v). In fact the

ck(x, y) can be used to obtain all cα(u, v), where [x, y] ⊂ [u, v], due to the convolution-like
formula

cα(u, v) =
∑

u≤x1≤···xn−1≤v

cα1(u, x1)cα2(x1, x2) · · · cαn(xn−1, v), (1.1)

where α = (α1, . . . , αn) (see [2, Proposition 5.54]). It is shown in [6] that cα(u, v) does
not depend on the choice of reflection order.
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2 Descent-set distribution of the BW-labeling and

the reflection order

We write ∆ ∈ B(u, v) to indicate that ∆ is a u-v path in the Bruhat graph of [u, v]. As
a convention, ∆ can be written in two ways:
(i) (a0 = u < a1 < · · · < ak = v), with ai ∈ W , when we want to refer to the vertices of
∆. If ∆ is a maximal-length u-v path, then we write (u = a0 l a1 l · · · l ark([u,v]) = v)
to emphasize that the edges of ∆ represent cover relations. In particular, an edge in
B(u, v) can be thought of as a path of length one, and so the edge between w and w1

with `(w) < `(w1) is denoted by (w < w1).
(ii) (t1, . . . , tk), with ti ∈ T and ai−1ti = ai, i = 1, . . . , k, when we wish to refer to the
edges that ∆ traverses.

2.1 Björner and Wachs’s CL-labeling

For this subsection, we set n = rk([u, v]).
Björner and Wachs [3] defined a chain labeling on the edges of Bn(u, v). The existence

of such a labeling depends on the following well-known property of Coxeter groups.

Theorem 2.1 (Strong Exchange Condition, [12], Theorem 5.8). Let s1s2 · · · sr (si ∈ S)
be an expression for w, not necessarily reduced. Suppose a reflection t ∈ T satisfies
`(wt) < `(w). Then there is an index i for which wt = s1 · · · ŝi · · · sr (omitting si).
Furthermore, if the expression for w is reduced, then i is unique.

Notice that once a reduced expression for v has been chosen, say v = s1s2 · · · sr, one
can obtain a reduced expression for any word in a maximal-length path ∆ ∈ B(u, v) (cor-
responding to a maximal chain in [u, v]) by simply removing generators from s1s2 · · · sr.
Thus one can label each edge of ∆ with the index of the generator removed. This pro-
duces a CL-labeling for the maximal-length paths of B(u, v). The technical definition of
CL-labelings is presented in [3]. Roughly speaking, this is a labeling on chains of [u, v]
so that every sub-interval of [u, v] has a unique rising chain that is lexicographically-first.
Each edge receives a labeling that depends on the maximal-length u-v path in which it
belongs, and not on the edge itself. Björner and Wachs [3] studied this CL-labeling and
applied it to derive properties of Bruhat intervals.

We now describe Björner and Wachs’s CL-labeling. Let ∆ = (x0 = ulx1 l · · ·lxn =
v) be a maximal-length path of B(u, v) and s1s2 · · · sk be a reduced expression for v.
Theorem 2.1 guarantees the existence of a reduced expression for xn−1 of the form
s1 · · · ŝjn · · · sk, where jn is unique. Given this reduced expression for xn−1, the same theo-
rem yields the existence of an index jn−1 so that the removal of sjn−1 from s1 · · · ŝjn · · · sk is
a reduced expression for xn−2. Proceeding in this manner, there is a unique index ji ∈ [k]
so that removing sji

from the reduced expression for xi yields a reduced expression for
xi−1. Björner and Wachs’s labeling associates ∆ with (λ1(∆), λ2(∆), . . . , λn(∆)), where
λi(∆) = ji.
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Figure 1: Björner and Wachs’s labeling for maximal-length paths of B(e, aba). Notice
that the edge (e < a) has two possible labels depending on which “a” is removed first
from aba.

To illustrate Björner and Wachs’s CL-labeling, consider Figure 1. Notice that the
labeling of the edge (el a) is either 1 or 3, depending on the index of the “a” that is first
removed. In general, if (u = x0 l x1 l · · · l xn = v) ∈ Bn(u, v) is of maximal length,
then the label of ∆1 = (u = x0 l x1 l · · ·l xj) is uniquely determined once the label of
∆2 = (xj l xj+1 l · · · l xn = v) has been chosen. In this situation we say that ∆1 is a
rooted path; and more precisely, that ∆1 is rooted at ∆2.

In general, one cannot use Björner and Wachs’s procedure to label paths Γ = (x0 =
u < x1 < · · · < xk = v) ∈ Bk(u, v) if k 6= n. Indeed, by removing generators from a
reduced expression for v one could obtain a non-reduced expression for some xi, and hence
the index in Theorem 2.1 need not be unique. For example, consider the the non-reduced
expression s1s2s1s2s3s2s3s2 for s2s1s2s3 in A3. If one removes the first or fourth generator
one obtains non-reduced expressions for s2s1s3.

Nevertheless, there are cases where the Björner and Wachs’s labeling procedure can
be used to label all the edges of paths in B(u, v). Some of these cases are discussed in
the following subsection.

2.2 BW-labelable Bruhat intervals

We recall that the generators of a Coxeter system (W,S) are subject to two types of
relations, (cf. Section 3.3, [2]):
(i) nil relations, which are of the form s2 = e for all s ∈ S, and
(ii) braid relations, which are of the form sisjsisj · · ·︸ ︷︷ ︸

mi,j

= sjsisjsi · · ·︸ ︷︷ ︸
mi,j

for all si, sj ∈ S, i 6= j.

Definition 2.2. We say that an expression s1s2 · · · sk for w ∈ W is nil-reduced if si 6= si+1

for 1 ≤ i < k.

Let s1s2 · · · sn be a nil-reduced expression for v. Given A = {i1, . . . , ij} we denote
the expression s1 · · · ŝi1 · · · ŝij · · · sn by s[n]\A. For any path ∆ = (x0 = u < x1 <
· · · < xk = v) ∈ Bk(u, v), the Strong Exchange Condition gives the existence of sets
Ak(∆), Ak−1(∆), . . . , A0(∆) ⊂ [n] that are constructed recursively: Ak(∆) = ∅ and for
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0 ≤ i < k, b ∈ [n] is an element of Ai(∆) if and only if there exists an expression for xi of
the form s[n]\(

S
j>i{aj}∪{b}), where aj ∈ Aj(∆). Each Ai(∆), 0 ≤ i ≤ k, is called a removal

set of ∆. We remark that since the Björner and Wachs’s procedure labels the edges from
top to bottom, it is natural for our construction to start with Ak and end with A0.

Definition 2.3. We say that [u, v] is BW-labelable if |Ai(∆)| = 1 for all k and ∆ ∈
Bk(u, v), 1 ≤ i < k. The BW-label of ∆ is (λ1(∆), . . . , λk(∆)), where {λi(∆)} = Ai(∆).
If every finite interval of a Coxeter group W is BW-labelable, then we say that W is
BW-labelable. In other words, [u, v] is BW-labelable if for all ∆ ∈ B(u, v), the removal
sets of ∆ are singletons.

As an example, Figure 2 depicts the BW-labeling of [e, aba], where the interval is
the full dihedral group of order 6 with generators a, b. Furthermore, Figure 3 shows the
labels (4, 3, 2, 1) and (1, 3) that correspond to the paths (e l a l ba l aba l baba) and
(e < b < baba), respectively, where the intervals are in the dihedral group of order 8 with
generators a, b.

Let u ≤ x ≤ y ≤ v be elements of W , with [u, v] being BW-labelable, and consider a
path ∆ = (x0 = x < x1 < · · · < xk = y < · · · < xk+m = v) ∈ Bk+m(x, v). By the same
reason as for maximal-length paths, the BW-label of ∆1 = (x0 = x < x1 < · · · < xk =
y) ∈ Bk(x, y) depends on the BW-label of ∆2 = (xk = y < · · · < xk+m = v) ∈ Bm(y, v).
In this situation, we say that ∆1 is rooted at ∆2, or that ∆1’s root is ∆2. Furthermore,
once a reduced expression for v has been fixed, the expressions for all the xi, 0 ≤ i < k+m
are completely determined as well. In this case, we say that the expressions obtained for
the xi are given by following ∆.

Remark 2.4. (i) Notice that the BW-label corresponding to paths ∆ ∈ Brk([u,v])(u, v) is
exactly the label assigned to ∆ in Björner and Wachs’s CL-labeling. In other words, the
BW-label can always be given to u-v paths of length rk([u, v]).

(ii) Let u1, v1 ∈ W1 and u2, v2 ∈ W2, where W1,W2 are Coxeter groups. Suppose that
[u1, v1] and [u2, v2] are BW-labelable, then [u1, v1] × [u2, v2] is a BW-labelable interval
in W1 ×W2. Indeed, the removal set of any path in B((u1, u2), (v1, v2)) is of the form
C ×D, where C is a removal set of a path in B(u1, v1) and D is a removal set of a path
in B(u2, v2).

Not all Bruhat intervals are BW-labelable, as can be seen in the example below.

Example 2.5. Consider the reduced expression v = s1s2s1s4s2s3s2s4s3s2 ∈ 〈s1, . . . , s4 :
s2

i = (s1s2)
3 = (s2s3)

3 = (s1s3)
2 = (sjs4)

∞ = e, i ∈ [4], j ∈ [3]〉. Now consider ∆ =
(u < s2s1s2s3 < s2s1s3s2s4s3s2 < v) ∈ B3(u, v), where u = s2s1s3. Then A3(∆) = ∅,
A2(∆) = {4} (which corresponds the expression s1s2s1s2s3s2s4s3s2), A1(∆) = {8} (which
corresponds to the expression s1s2s1s2s3s2s3s2) and A0(∆) = {1, 5, 9} (which corresponds
to the expressions s2s1s2s3s2s3s2 = s1s2s1s3s2s3s2 = s1s2s1s2s3 = u).

Thus [u, v] is not BW-labelable. However, the groups of interest here, namely dihedral
and universal Coxeter groups, are BW-labelable. We utilize this fact in Section 3.
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Figure 2: [e, aba] is BW-labelable. The path (e < aba) has label λ1((e < aba)) = 2.

We now present examples of BW-labelable intervals and groups.

Example 2.6. (a) If B(u, v) has paths of exactly two different lengths then [u, v] is
BW-labelable. Indeed, the maximal-length u-v paths can be labeled with Björner and
Wachs’s CL-labeling. Moreover, if ∆ ∈ Brk([u,v])−2(u, v), then any expression for the
vertices of ∆ obtained by following ∆ is either reduced or of the form xs1s2s1y with
`(xs1ŝ2s1y) = `(xy) = `(xs1s2s1y)−3. Thus the edge (xy < xs1s2s1y) has a unique label.

(b) Similarly, it can be argued that intervals [u, v] of rank up to 5 are BW-labelable,
since paths of length one correspond to the reflection u−1v and thus there is a unique
label assigned to it (see the edge (e < aba) in Figure 2).

Example 2.7. Let I2(∞) denotes the infinite dihedral group (which is the affine Weyl

group Ã1). Let [u, v] be an interval in I2(∞) and s1 · · · sn be a reduced expression for v.
Since any nil-reduced expression for xi in ∆ = (x0 = u < x1 < · · · < xk = v) ∈ Bk(u, v)
obtained by removing generators of a reduced expression for v is reduced, [u, v] is BW-
labelable. Indeed, the Strong Exchange Condition guarantees that |Ai(∆)| = 1. So I2(∞),
and thus I2(n) for all n ∈ Z>0, is BW-labelable..

Example 2.8. One says that (W,S) is universal if the only relation satisfied by S are
the nil-relations. Let [u, v] be an interval in a universal Coxeter system and s1 · · · sn be a
reduced expression for v. Similar to the dihedral group case, any nil-reduced expression
for an element in [u, v] obtained by removing generators from s1 · · · sn is reduced, and
so W is BW-labelable. This fact will allow us to compute the cd-index, as described in
Section 3.

Definition 2.9. Let [u, v] be a BW-labelable interval of a Coxeter system (W,S), u ≤
x ≤ y ≤ v be elements of W , Γ1 = (x0 = u < x1 < · · · < xm = x) ∈ B(u, x),∆ = (xm =
x < xm+1 < · · · < xk = y) ∈ B(x, y), and Γ = (xk = y < · · · < xn = v) ∈ B(y, v). Notice
that Γ is a root of ∆.

(i) We denote the concatenation (x0 = u < · · · < xm = x < · · · < xk = y < · · · <
xn = v) of Γ1,∆ and Γ by Γ1∆Γ.

(ii) We define the BW-descent set of ∆ with respect to Γ, Γ1 as

DBW
Γ1,Γ(∆)

def
= {i ∈ {m+ 1, . . . , k − 1} | λi+1(Γ1∆Γ) < λi(Γ1∆Γ)}.
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Notice that the label given to ∆ only depends on the choice of root Γ. So we drop Γ1

from the notation and write simply DBW
Γ (∆).

(iii) We denote the BW-descent composition corresponding to DBW
Γ (∆) by DBW

Γ (∆).
(iv) We say that ∆ ∈ B(x, y) is BW-rising with respect to Γ if DBW

Γ (∆) = ∅. When Γ
is clear by the context, we simply write BW-rising.

(v) Define cBW
α,Γ (x, y)

def
= |{∆ ∈ Bk(x, y) | α � DBW

Γ (∆)}|, where α |= k.
If y = v, then Γ is the path with no edges. In this case, we ignore the reference to Γ

in the notation and write DBW (∆), DBW (∆) and cBW
α (x, y), respectively.

We now prove that cBW
k,Γ (x, y) = ck(x, y), for any k ∈ Z>0, x, y and Γ ∈ B(y, v) with

u ≤ x ≤ y ≤ v. This is the first step towards proving that cBW
α,Γ (u, y) = cα(u, y).

Lemma 2.10. Let [u, v] be a BW-labelable interval with u ≤ x ≤ y ≤ v. Then for k > 0,
cBW
k,Γ (x, y) = ck(x, y), regardless of the choice of Γ ∈ B(y, v).

Proof. Let s1s2 · · · sn be the expression for y given by following Γ. First let us assume
that s1s2 · · · sn is reduced and let C = (x0 = x < x1 < · · · < xk = y) be BW-rising. By
the Strong Exchange Condition we have that x = s1 · · · ŝi1 · · · ŝik · · · sn. Since C is BW-
rising, the BW-label associated to C is (i1, i2, . . . , ik) independently of the choice of Γ. Let
tj = sn · · · sj+1sjsj+1 · · · sn. Then N(y) = {t1, . . . , tn}, and so tn <T tn−1 <T · · · <T t1 is
the initial section for some reflection order <T , by [11, Lemma (2.11), Proposition (2.13)
and Remark 2.4(i)]. Since y = xtik · · · ti1 , the label of C with under <T is (tik , . . . , ti1),
and so C is rising under <T . It is easy to see that this construction is reversible, thus we
have established a bijection between BW-rising paths and rising paths in the reflection
order.

Now supposed that the expression s1s2 · · · sn for y is not reduced, and let red(y) be
a reduced expression for y. Any BW-rising path in B(x, red(y)), regardless of the choice
of root, is obtained by removing generators of red(y) from right to left, and since [u, v]
is BW-labelable, there is a corresponding path in B(x, y) whose BW-label is obtained by
removing generators of the expression s1s2 · · · sn from right to left, and vice versa. Hence
the number of BW-rising paths in B(x, s1s2 · · · sn) (the labels are given by rooting these
paths at Γ) and B(x, red(y)) (the labels are given by rooting at a maximal-length path
of B(y, v)) is the same. Furthermore, by the argument made in the previous paragraph,
the number of BW-rising paths in [x, y] is the same as the number of rising paths in the
reflection order.

Theorem 2.11. Let [u, v] be a BW-labelable interval with u ≤ x ≤ y ≤ v, and let
α = (α1, α2 . . . , αm) |= k and Γ ∈ B(y, v). Then cBW

α,Γ (x, y) = cα(x, y).

Proof. We proceed by induction on m. If m = 1, the statement follows from Lemma 2.10.
If m > 1, let α̂ = (α1, α2, . . . , αm−1). Then,
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cBW
α,Γ (x, y) =

∑
x≤z≤y

∑
∆∈Bαm (z,y)

DBW
Γ (∆)=∅

cBW
∆Γ,bα(x, z)

=
∑

x≤z≤y

∑
∆∈Bαm (z,y)

DBW
Γ (∆)=∅

cbα(x, z)

=
∑

x≤z≤y

cbα(x, z)
∑

∆∈Bαm (z,y)

DBW
Γ (∆)=∅

1

=
∑

x≤z≤y

cbα(x, z)cBW
αm,Γ(z, y)

=
∑

x≤z≤y

cbα(x, z)cαm(z, y)

= cα(x, y).

The second equality follows by induction and the last one from Lemma 2.10 and
(1.1).

In particular, if [u, v] is BW-labelable then cBW
α (u, v) = cα(u, v). Thus the BW-

labeling and the reflection order yield the same descent-set distribution on the set of
paths in B(u, v).

Example 2.12. Consider the interval [e, s2s1s3s2s1] in A3 (corresponding to [1234, 4312]
in one-line notation for permutations). In particular the ten elements of B3(e, s2s1s3s2s1).
Using either the BW-labeling or the reflection order, the descent sets for these ten elements
are: ∅ (two of them), {1} (three of them), {2} (three of them), and {1, 2} (two of them).

3 Complete cd-index

3.1 Complete cd-index of Bruhat intervals

Billera and Brenti [1] provided a way to encode the descents sets of paths in B(u, v) with
a non-homogeneous polynomial on the non-commutative variables c and d. The encoding
is done as follows: For a path ∆ = (t1, t2, . . . , tk) ∈ Bk(u, v), let w(∆) = x1x2 · · ·xk−1,
where xi = a if ti <T ti+1, and xi = b, otherwise. In other words, set xi to a if i 6∈ D(∆)

and to b if i ∈ D(∆). Billera and Brenti also showed that Ψ̃u,v(a,b)
def
=

∑
∆∈B(u,v)w(∆)

becomes a polynomial in the variables c and d, where c = a + b and d = ab + ba. This
polynomial is called the complete cd-index of [u, v], and it is denoted by ψ̃u,v(c,d). Notice
that the complete cd-index of [u, v] is an encoding of the distribution of the descent sets
of each path ∆ in the Bruhat graph of [u, v], and thus seems to depend on <T . However,
it can be shown that this is not the case. For details on the complete cd-index, see [1].
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The degree of a term in ψ̃u,v(c,d) is given by noticing that deg(c) = 1 and deg(d) = 2.
For instance, deg(d2c) = 5.

For example, consider A2, the symmetric group on 3 elements with generators s1 =
(1 2) and s2 = (2 3). Then t1 = s1 <T t2 = s1s2s1 <T t3 = s2 is a reflection order.
The paths of length 3 are: (t1, t2, t3), (t1, t3, t1), (t3, t1, t3), and (t3, t2, t1), that encode to
a2 + ab + ba + b2 = c2. There is one path of length 1, namely t2, which encodes simply
to 1. So ψ̃u,v(c,d) = c2 + 1.

We remark that [9, Proposition (3.3)] shows that if Bk(u, v) 6= ∅ and k 6= rk([u, v]) then

Bk+2(u, v) 6= ∅. As a consequence, if ψ̃u,v(c,d) has terms of degree k − 1 (corresponding
to paths of length k), then it also has terms of degree k + 1 (corresponding to paths of
length k + 2).

There are some specializations of the complete cd-index that count paths in B(u, v).
For instance, we have the lemma below.

Lemma 3.1. Let [u, v] be a Bruhat interval. Then,

(i) ψ̃u,v(2, 2) = |{∆ : ∆ ∈ B(u, v)}|, the number of paths of B(u, v), and

(ii) ψ̃u,v(1, 0) = |{∆ ∈ B(u, v) : D(∆) = ∅}|, the number of rising (or falling) paths of
B(u, v).

Proof. (i) To each path ∆ ∈ B(u, v) there is a corresponding w(∆) as defined at the

beginning of this section. Hence, the number of ab-monomials, Ψ̃u,v(1, 1), equals the

number of paths in B(u, v). Since Ψ̃u,v(1, 1) = ψ̃u,v(2, 2), we obtain the desired result.

(ii) By definition, Ψ̃u,v(1, 0) gives the number of rising paths of B(u, v) and Ψ̃u,v(0, 1)

gives the number of falling paths. Notice that Ψ̃u,v(0, 1) = Ψ̃u,v(1, 0) = ψ̃u,v(1, 0), and the
result follows.

By [1, Theorem 2.2 and Corollary 2.3], it follows that ψ̃u,v(c,d) can be computed from
the numbers cα(u, v). Thus in view of Theorem 2.11, if [u, v] is BW-labelable we can

compute ψ̃u,v(c,d) using the identity cBW
α (u, v) = cα(u, v). In the next two subsections,

we use the BW-label to compute ψ̃u,v(c,d) for dihedral intervals and intervals in universal
Coxeter groups.

3.2 Dihedral intervals

Let u, v ∈ I2(m) with u ≤ v, then the isomorphism type of B(u, v) is well known. For
example, Figure 3 depicts I2(4).

Dyer [9] observed that if W1 and W2 are dihedral reflection subgroups and W1 ∩
W2 contains a dihedral reflection subgroup W3, then 〈W1,W2〉 is a dihedral reflection
subgroup. This observation will be used in the proof of Lemma 3.2.

We say that a Bruhat interval [u, v] is dihedral if it is isomorphic to an interval in
a dihedral reflection subgroup. In this section, we compute the complete cd-index of
dihedral intervals. The computation is simplified if the BW-labeling is utilized, and so we
take this approach. It turns out that it is enough to consider the case where [u, v] ∈ I2(m)
for some m. We make this explicit in the following lemma.
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Lemma 3.2. Let [u, v] be a dihedral interval of (W,S), where the edges of B(u, v) have

been labeled by reflections. Then ψ̃u,v(c,d) = ψ̃w,z(c,d), where [w, z] ⊂ I2(m) for some
m.

Proof. Let [u, v] be a dihedral interval in B(W ) and let t1, t2, . . . , tm be all the reflections
that correspond to the labels of the edges of B(u, v). Let w1, w2, w

′
1, w

′
2 ∈ [u, v] with

u l w1, u l w2, w1, w2 l w′
1, and w1, w2 l w′

2. Suppose that the labels of B(u,w′
1) and

B(u,w′
2) are t1, t2, t3, t4 and t1, t2, t5, t6, respectively (see figure below). From Dyer [9,

Lemma (3.1)], we have that W1
def
= 〈t1, t2, t3, t4〉 and W2

def
= 〈t1, t2, t5, t6〉 are dihedral

reflection subgroups of (W,S). Moreover, since 〈t1, t2〉 ⊂ W1∩W2, then 〈t1, t2, . . . , t6〉 is a
dihedral reflection subgroup of (W,S). Proceeding in a similar manner, we conclude that

W ′ def
= 〈t1, t2, . . . , tm〉 is a dihedral reflection subgroup of (W,S).

w′
2 w′

1

w2

t5

77oooooooooooooo

t6

OO

w1

t1||
||

||
||

t4

ggOOOOOOOOOOOOOO
t3

OO

u
t2

aaBBBBBBBB

By [9, Theorem (1.4)(ii)] and [10, Proposition 1.4(3)], there exists a label-preserving
isomorphism (the labels are given by reflections) between BW (W ′) and BW (W ′u), where
BW (A) denotes the induced subgraph of B(W ) with vertex set A ⊂ W . Notice that
B(u, v) is an induced subgraph of BW (W ′u). Furthermore, BW (W ′) = B(W ′) by [9,
Theorem (1.4)(i)] and B(W ′) ∼= B(I2(m)) as directed graphs, for some m ∈ Z>0 ∪{∞}.
Now the result follows by observing that B(W ′) and B(I2(m)) have the same descent-set
distribution in any reflection order.

The previous result gives that ψ̃u,v(c,d) = ψ̃w,z(c,d) and rk([w, z]) = rk([u, v]), where
[w, z] ⊂ I2(m) for some m. On the other hand, since [w, z] is BW-labelable, Theorem 2.11

gives that we can compute ψ̃w,z(c,d) utilizing the BW-labeling. As it turns out, using
the BW-labeling facilitates the computation.

We now describe the complete cd-index for dihedral intervals in terms of the q-
Fibonacci polynomial of degree n, where Fn(q) is defined by F1(q) = 1, F2(q) = q,
and Fn(q) = qFn−1(q) + Fn−2(q) for n > 2.

Proposition 3.3. If [u, v] is a dihedral interval of rank n, then ψ̃u,v(c,d) = Fn(c).

Proof. Lemma 3.2 gives that it is enough to consider the case [u, v] ∈ I2(m) for some m.
Moreover, we can assume that paths in [u, v] are labeled with the BW-labeling.

We proceed by induction on n
def
= rk([u, v]). If n = 1 or n = 2, it is easy to verify that

the result holds.
Let v1, v2 be the two elements of rank n − 1 in [u, v]. Notice that one of these, say

v1, is obtained from the chosen reduced expression of v by removing the last generator.
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Figure 3: B(u, v) with u = e, v = baba = abab with u, v ∈ I2(4).

Thus for any path ∆ = (u < · · · < v1 < v) ∈ Bk(u, v), we have that λk−1(∆) <

λk(∆). Hence the contribution of the u-v paths through v1 is aψ̃u,v1(c,d). Similarly, v2

is obtained from v by removing the first generator of the reduced expression chosen for
v. In this case the contribution of all paths Γ = (u < · · · < v2 < v) is bψ̃u,v2(c,d),
for λk(Γ) < λk−1(Γ). Therefore, the contribution of all u-v passing through v1 or v2 is

aψ̃u,v1(c,d) + bψ̃u,v2(c,d) = aFn−1(c) + bFn−1(c) = cFn−1(c).
We are left with computing the contribution of paths that do not go through the

vertices of rank n− 1. Notice that an expression for each of the vertices in these paths is
obtained from the reduced expression of v by removing generators other than the first or
last one. Thus the descent-set distribution of the paths in B(u, v) that do not go through
v1 or v2 is the same as that of an interval of the form [u, x] with rk([u, x]) = n−2. Hence,

the contribution of these paths is ψ̃u,x(c,d) = Fn−2(c), and the result follows.

Proposition 3.3 shows that the coefficients of ψ̃u,v(c,d), when [u, v] is dihedral, are
both non-negative and combinatorially invariant, i.e., only depend on the isomorphism
type of [u, v]. Non-negativity and combinatorial invariance are conjectured for ψ̃u,v(c,d)
in general (cf. [1, Conjecture 6.1 and Remark 4.13]). An enumerative consequence follows
immediately by from Lemma 3.1 and setting c = 1 in Fn(c).

Corollary 3.4. If [u, v] is a dihedral interval of rank n, then the number of u-v rising
(or falling) paths in B(u, v) is the n-th Fibonacci number.

The following theorem yields that dihedral intervals are the only ones that do not
contain a d in their complete cd-index.

Theorem 3.5. Let [u, v] be a Bruhat interval. Then ψ̃u,v(c,d) = ψ̃u,v(c, 0) if and only if
[u, v] is a dihedral interval.

Proof. The theorem is vacuously true if the rank of [u, v] is 1, so we can assume that

rk[u, v] > 1. If [u, v] is dihedral, Proposition 3.3 gives that ψ̃u,v(c,d) = Frk([u,v])(c) =

ψ̃u,v(c, 0).
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Suppose that [u, v] is not dihedral. We show by contradiction that among the highest-

degree terms of ψ̃u,v(c,d) there must be a term containing a d. Let pk(u, v) be the number

of paths of length k from u to v, and define n
def
= rk([u, v]) − 1. Since [u, v] is Eulerian,

any element w ∈ [u, v) has at least two covers, and so there are at least two elements in
each rank, except for the top and bottom elements. Moreover, since [u, v] is not dihedral
there are at least three elements of rank 1, and so pn+1(u, v) ≥ 3 · 2n−1. Nevertheless, [1,
Proposition 5.3] states that

pn+1(u, v) =
∑

w:deg(w)=n

2n−|w|d [w]u,v ,

where |w|d is the number of d’s in a cd-word w and [w]u,v is the coefficient of w in

ψ̃u,v(c,d). Furthermore, if there are no cd-terms containing a d then there is a unique
cd-word of degree n which corresponds to the unique rising maximal-length path of length
n+1. Hence pn+1(u, v) = 2n. This contradicts pn+1(u, v) > 2n, and the result follows.

3.3 Universal Coxeter groups

Reflection orders are easy to understand for any finite Coxeter group W . Indeed, they are
all induced by a choice of reduced expression for wW

0 , the longest element of W (see [11]).
Furthermore, there are combinatorial descriptions of reflection orders for types A and
B. For instance, for type A, a reflection order is given by ordering the transpositions in
lexicographic order (see [2]). A description for groups of type B in terms of signed per-
mutations can be found in [5]. Thus the complete cd-index for intervals in finite Coxeter
groups can be easily computed. On the other hand, there is no known method to generate
reflection orders for infinite Coxeter groups, not even in the “simple” case of universal
Coxeter groups where there are no braid relations. The lack of such a method makes the
computation of the complete cd-index extremely difficult (if not impossible). Fortunately,

the BW-labeling allows us to compute ψ̃u,v(c,d) for intervals [u, v] in universal Coxeter
groups.

In general, the number reflections used to label paths in B(u, v) is not given by the
length of v. As an example, consider the interval [e, s1s2s1s3s2] of A3, where s1s2s1s3s2

is a reduced expression for the permutation 4312. There are five reflections induced
by s1s2s1s3s2, but the reflection order utilizes six reflections when labeling the edges of
B(e, s1s2s1s3s2). Hence, knowing a reduced expression for w ∈ W does not determine
the number of reflections used to label the edges of paths in B(e, s1s2s1s3s2). This is not
the case for the BW-labeling. Indeed, if [u, v] is BW-labelable, all one needs to compute
D(∆) for ∆ ∈ B(u, v) is a reduced expression for v. In particular, even if |T (W,S)| is
infinite (as is the case for universal Coxeter groups), the labels needed to compute the
descent sets of paths in B(u, v) are contained in the set {1, 2, . . . , `(v)}.

Let us illustrate a computation of the complete cd-index for an interval in a universal
Coxeter group.

the electronic journal of combinatorics 18 (2011), #P174 13



Example 3.6. Consider the universal Coxeter group W = 〈s1, s2, s3 : s2
1 = s2

2 = s2
3 = e〉

and let v = s2s1s2s3s1. Using the BW-labeling we obtain that the degree-two part of
ψ̃e,v(c,d) are 2c2 + d. Notice that v induces a reflection order <T with initial section

s1 <T s1s3s1 <T s1s3s2s3s2 <T s1s3s2s1s2s3s1 <T s1s3s2s1s2s1s2s3s1.

However, this initial section does not suffice to compute ψ̃e,v(c,d) using the reflection
order, as some of the edges of paths in B3(e, v) are labeled with reflections that do not
appear in that initial section. For example, the edge (e < s2) is labeled with s2 and the

edge (s1s3 < s1s2s3) is labeled with s3s2s3. Thus one cannot compute ψ̃e,v(c,d) with a
reflection order using information contained in [u, v] (at least using reduced expressions
of elements in [u, v]).

3.4 Existence of rising paths

Let [u, v] have rank n, then it follows from [9, Proposition (3.3)] that if m < n and
Bm(u, v) 6= ∅, then Bm+2(u, v) 6= ∅. So the lengths of paths in B(u, v) increase by two
and include all numbers congruent to n modulo 2 between the smallest number m such
that Bm(u, v) 6= ∅ and n.

As we pointed out, it is shown in [11] that there is a unique rising path in Brk([u,v])(u, v)
that is lexicographically-first in the reflection order. In this subsection we show that the
lexicographically-first path in Bk(u, v) 6= ∅, where k ≡ rk([u, v]) (mod 2), is rising. In
general, there might be more than one rising path.

The following theorem will be utilized in our proof of Proposition 3.8.

Theorem 3.7 ([7], Theorem 1). Let (W,S) be a finite or affine Coxeter group and let <T

be a reflection order for W . If {t1, t2, . . . , tk} ⊂ T (W,S) and t1 <T t2 <T · · · <T tk then
t1t2 · · · tk 6= e.

We now follow [1] and define the flip of Γ ∈ B2(u, v). Let (t1, t2), (r1, r2) be two distinct
elements of B2(u, v), then we say that (t1, t2) ≤lex (r1, r2) if t1 <T r1 or if t1 = r1 and
t2 <T r2. The existence of the complete cd-index implies that there are as many paths
with empty descent set in B2(u, v) as those with descent set {1}. Order all the paths in
B2(u, v) using ≤lex and let

r(Γ) = |{∆ ∈ B2(u, v) | D(∆) = D(Γ),∆ ≤lex Γ}|.

The flip of Γ is the r(Γ)-th Bruhat path in {∆ ∈ B2(u, v) | D(∆) 6= D(Γ)} ordered by
≤lex. We denote this path by flip(Γ).

The following was proved in the case of finite Coxeter and affine Weyl groups [1,
Proposition 6.2]. We prove that the results holds for an arbitrary Coxeter group.

Proposition 3.8. Let W be a Coxeter group, and let u, v ∈ W , u < v, (u < y < v) ∈
B2(u, v) be such that D((u < y < v)) = ∅ and (u < x < v)

def
= flip((u < y < v)). Then

u−1y <T u
−1x and x−1v <T y

−1v for any reflection order <T .
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Proof. Let t1 = u−1y, t2 = y−1v, t3 = u−1x, and t4 = x−1v. Notice that the reflection
subgroup W ′ = 〈t1, t2, t3, t4〉 is dihedral, by [9, Lemma (3.1)]. Thus {t1, t2, t3, t4} ⊂
T (W ′, {a, b}), where 〈a, b〉 = 〈t1, t2, t3, t4〉 and (W ′, {a, b}) is a Coxeter system.

Suppose for the sake of contradiction that t3 <T t1, then t4 <T t3 <T t1 <T t2, since
D((u < y < v)) = ∅ and D((u < x < v)) = {1}. Moreover since t1t2 = t3t4 one has that
t4t3t1t2 = e. On the other hand (W ′, {a, b}) is either a finite or affine Coxeter system,
and thus t4t3t1t2 6= e by Theorem 3.7. We have obtained our desired contradiction. The
statement t4 <T t2 is proved in a similar manner.

We can now prove the following proposition.

Proposition 3.9. Let ∆ be the lexicographically-first path in Bk(u, v). Then D(∆) = ∅,
i.e, ∆ is rising.

Proof. Let <T be a reflection order and let C = (x0 = u < x1 < · · · < xk = v) be the
lexicographically-first path in Bk(u, v). Let us suppose that D(C) 6= ∅, and consider the

smallest i such that x−1
i xi+1 <T x

−1
i−1xi. Let (xi−1 < x′i < xi+1)

def
= flip((xi−1 < xi < xi+1)),

and define C ′ = (x0 < · · · < xi−1 < x′i < xi+1 < · · · < xk). Proposition 3.8 yields that
x−1

i−1x
′
i <T x−1

i−1xi, and so C ′ occurs earlier in the lexicographic order, contradicting the
choice of C.

Dyer [11, Proposition (4.3)] showed that the lexicographically-first path is the unique
rising path in Brk([u,v])(u, v). On the other hand, the above proposition shows that the
lexicographically-first path in non-empty sets Bk(u, v) with k ≡ rk([u, v]) (mod 2) is
rising. We remark that this is the best that can be done to extend Dyer’s result for
k 6= rk([u, v]), since there can be more than one rising path in Bk(u, v); for instance,
consider I2(m) with m > 3.

As an immediate consequence of Proposition 3.9, we have

Corollary 3.10. If ψ̃u,v(c,d) has a term of degree k, then [ck]u,v > 0.

In [4], we study the coefficients of degree k, where k is the minimum integer with
[ck]e,w0 > 0 and w0 is the longest element of a finite Coxeter group. Further properties of

the lowest-degree coefficients of ψ̃u,v(c,d) for some Bruhat intervals are discussed in [5].
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