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Abstract

An automorphism group G of a 1-factorization of the complete multipartite
graph Km×n consists of permutations of the vertices of the graph mapping factors
to factors. In this paper, we give a complete answer to the existence problem
of a 1-factorization of Km×n admitting a cyclic or dihedral group acting sharply
transitively on the vertices of the graph.

1 Introduction

In this paper, we consider 1-factorizations of complete multipartite graphs Km×n (i.e.
with m parts consisting of n vertices). In order to avoid confusion with the complete
graph Km = Km×1, it is from now assumed that each part of Km×n has at least two
vertices (i.e. n ≥ 2). An r-factor of a graph Γ is a spanning subgraph with all vertices
of degree r. For r = 1, the concept of 1-factor coincide with the definition of a perfect
matching. An r-factorization of a graph Γ is a partition of E(Γ) into disjoint r-factors.

A group of permutations of the vertices of Γ mapping factors to factors is called an
automorphism group of the r-factorization. If the action of an automorphism group
is sharply transitive on the vertices, the factorization is said to be sharply transitive.

In [7], G. Rinaldi and the second author consider the following problem:

Problem 1. Given a finite group G of even order, which graphs Γ have a 1-factorization
admitting G as an automorphism group with a sharply transitive action on the vertex set?

The problem above is the natural generalization of the largely studied case in which
we set Γ to be the complete graph. The benchmark on this topic is the following theorem
of Hartman and Rosa [4] from 1985:
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Theorem 1. A complete graph Kn admits a 1-factorization with a cyclic automorphism
group acting sharply transitively on the vertices if and only if n is even and n 6= 2t, t ≥ 3.

Later on, other specified classes of groups have been considered by various authors;
among others we would like to recall the generalizations of Theorem 1 to the entire classes
of finite abelian groups (Buratti, [3]) and finitely generated abelian groups (Bonvicini and
Mazzuoccolo, [2]). Even if Problem 1 remains still open if Γ is the complete graph, it
is interesting to consider other possible choices for the graph Γ: for instance, the main
result of [7] states the existence and non-existence of a 1-factorization of the complete
multipartite graph admitting a cyclic automorphism group acting sharply transitively on
the vertex-set (a cyclic 1-factorization from now on).

Theorem 2. [7] A cyclic 1-factorization of Km×n:

• does not exist if m ≡ 3 mod 4, n = 2d where d is odd

• does not exist if m = 2vd, n = 2d′ where d and d′ are odd and v ≥ 2

• exists if m = 2d, n = 2d′ where d and d′ are odd.

• exists if m = 2vd, n = 2ud′ where d and d′ are odd and u > 1.

• exists if m = 2vd, n = d′ where d and d′ are odd and v ≥ 1.

The following theorem is the first main result of this paper and completes all the open
cases of Theorem 2 (i.e. m ≡ 1 mod 4, n = 2d with d odd). It is obtained by combining
Theorem 8 and Theorem 9.

Theorem 3. A cyclic 1-factorization of Km×n:

• does not exist if m = pv, n = 2, where p is prime such that p ≡ 1 mod 4 and v ≥ 1,

• exists if n = 2, m ≡ 1 mod 4 and m is not a prime power,

• exists if m ≡ 1 mod 4 and n = 2d where d > 1 is odd.

The material involved in the constructions is presented in section 2. Section 3.1 states
the existence and non-existence result for n = 2, while the construction for n = 2d (d > 1
odd) is presented in section 3.2.

In [1], the case of 1-factorizations of the complete graph admitting a dihedral group
acting sharply transitively on the vertices (dihedral 1-factorizations in what follows) is
settled; in section 4, two “doubling” constructions and three appropriate constructions are
described in order to prove an equivalent result for complete multipartite graphs. Namely,
we prove that a dihedral 1-factorization of Km×n exists for all m, n with mn even (see
Theorem 13).
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2 Preliminaries

It is proved in [7] that the existence of a 1-factorization of Km×n having an automorphism
group G acting sharply transitively on the vertices is equivalent to the existence of a
particular starter, a very slight generalization of the concept of a starter introduced by
Buratti in [3] for the complete graph. First, the graph Γ = Km×n has to be considered as
the Cayley graph Cay(G, Ω) with Ω = G − H where G is a group of order mn and H is
a subgroup of order n of G. The vertices of Km×n are identified with elements of G, and
edges are (unordered) pairs of elements [g1, g2], gi ∈ G such that the “difference” g1g

−1
2

belongs to Ω.
Edges in Γ don’t necessarily have the same kind of orbits under the action of G. The

set Ω can be partitioned as Ω1 ∪ Ω2 ∪ Ω−1
2 where Ω1 contains all involutions of Ω, and

for any g ∈ Ω2, g−1 ∈ Ω−1
2 . The edge set of Γ can be described as (∪g∈Ω1

OrbG([1G, g])) ∪
(∪h∈Ω2

OrbG([1G, h])), where 1G denotes the identity element of G. For any g ∈ Ω1,
OrbG([1G, g]) has mn

2
elements and forms a 1-factor of Γ. Because there are only mn

2

elements in each orbit, edges of this kind are called short edges.
On the other hand, for g ∈ Ω2, OrbG([1G, g]) has mn elements and is a union of cycles

of Γ. These cycles can be described as (x, gx, g2x, . . . , gk−1x) where k is the order of g

and x is a representative of one right coset of < g > in G. The edges in these orbits are
called long edges.

Now we define two mappings ∂, φ. The first one maps an edge to the differences of its
vertices, and the second one maps an edge to its vertices. Both give one element if the
edge is short, and 2 if the edge is long.

∂([x, y]) =

{

{xy−1, yx−1} if [x, y] is long
{xy−1} if [x, y] is short

φ([x, y]) =

{

{x, y} if [x, y] is long
{x} if [x, y] is short

Then for a set S, we define ∂(S) = ∪e∈S∂(e) and φ(S) = ∪e∈Sφ(e).
Now we give the definition of a starter for the pair (G, Ω): it is a set Σ = {S1, . . . , Sk}

of subsets of the edges E(Γ), with k subgroups H1, . . . , Hk of G such that:

• the union of the differences ∂S1 ∪ · · · ∪ ∂Sk is Ω, but without repetition (every
element appears exactly once).

• for each Si, φ(Si) contains exactly one representative of each right coset of Hi in G.

• for any Hi and any short edge [x, y] ∈ Si, Hi contains the involution x−1y = y−1x.

Theorem 4. [7] There exists a starter for (G, Ω) if and only if there exists a 1-factori-
zation of Γ = Cay(G, Ω) admitting G as automorphism group with a sharply transitive
action on the vertices.
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Each Hi-orbit of a set Si ∈ Σ is a 1-factor of Γ and the action of G on the 1-factors
covers all edges of Γ exactly once. By construction, the factorization is preserved under
the action of G.

In the next sections we will largely make use of the fact that the construction of a
starter can be simplified by the existence of a subgroup A of G of index 2, as mentioned
in [7]:

Proposition 5. [7] Let G be a finite group possessing a subgroup A of index 2 and let Σ′ =
{S1, . . . , St} be a set of subsets of E(Γ) together with subgroups H1, . . . , Ht which satisfy
the second and third conditions of the definition of a starter. If A∩Ω ⊂ ∂S1∪· · ·∪∂St ⊂ Ω
and it does not contain repeated elements, then Σ′ can be completed to a starter for the
pair (G, Ω).

3 Cyclic 1-factorization of Km×2d, m ≡ 1 mod 4

In all this section, the group G acting on the vertices of the graph is cyclic and is supposed
to be written additively.

3.1 The case d = 1

The graph Km×2 can be obtained by deletion of a 1-factor F of the complete graph
K2m, hence the existence of a cyclic 1-factorization of Km×2 is exactly equivalent to the
existence of a cyclic 1-factorization of K2m with an invariant 1-factor F . Korchmáros, in
[6], conjectured that no sharply-transitive 1-factorization with an invariant 1-factor exists
if m ≡ 1 mod 4, but Rinaldi in [8] provided an example of a cyclic 1-factorization of
K21×2.

A relevant progress on this problem is obtained by the main result of [5]: Theorem
1.1 of [5] states the existence of a 2-factorization of K2m − F , the complete graph minus
a 1-factor F , preserved by a cyclic group of order 2m acting sharply transitively on the
vertices for all m ≡ 1 mod 4 and m 6= pv with p prime. In this construction, each 2-factor
of Km×2 is an hamiltonian cycle on an even number of vertices, then it can be decomposed
in two disjoint 1-factors. It is an easy check that the cyclic group of order 2m preserving
the 2-factorization is also an automorphism group of the obtained 1-factorization, and so
the following proposition holds.

Proposition 6. A cyclic 1-factorization of Km×2 exists for each m ≡ 1 mod 4 and
m 6= pv with p prime.

The non-existence of a cyclic 1-factorization of Km×2 with m ≡ 3 mod 4 is contained
in Theorem 2, whereas Rinaldi in [8] proves the non-existence of a cyclic 1-factorization
of Km×2, for m ≡ 1 mod 4 and m prime. In the following proposition we generalize that
result:

Proposition 7. A 1-factorization of Km×2 with m = pv with p prime, v ≥ 1 cannot
admit a cyclic automorphism group acting sharply transitively on the vertex-set.
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Proof. Suppose the existence of a starter Σ = {S1, . . . , Sk} with subgroups H1, . . . ,

Hk, respectively.
Note that if G is the cyclic group of order 2m = 2pv where p is an odd prime and

v ≥ 1, then the only subset Ω that permits the construction of Km×2 is G\ < pv >.In this
case, since the unique involution of G does not belong to Ω, all edges are long, and for all
i, φ(Si) has an even number of elements.

By definition, in order to form a transversal for Hi, the subset φ(Si) must contain
|G|
|Hi|

elements, and since this number is even, all Hi involved in the construction of the

starter must have odd order. The possible orders for Hi are p, p2 . . . pv and so each Hi

must be generated by one of the elements 2pv−1, . . . , 2p2, 2p, 2, respectively. In each case,
the element 2pv−1 belongs to Hi, and cannot be covered in ∂(Si). This proves that such
a starter Σ cannot exist and therefore, the non-existence of the 1-factorization. �

Proposition 6, together with Proposition 7, gives a complete description of the ex-
istence spectrum for a cyclic 1-factorization of Km×2. We briefly summarize it in the
following theorem:

Theorem 8. A cyclic 1-factorization of Km×2, with m > 1 odd, exists if and only if
m ≡ 1 mod 4 and m 6= pv with p prime.

3.2 The case d > 1

Differently from what happens in the case d = 1, where both existence and non-existence
results have appeared, we are able to furnish a cyclic 1-factorization for each odd value
of d > 1 and for each m ≡ 1 mod 4.

Theorem 9. For all m ≡ 1 mod 4, d 6= 1 odd, there is a 1-factorization of Km×2d

admitting the cyclic group Z2dm as automorphism group acting sharply transitively on the
vertices .

Proof. Let define the d+1
2

sets Sk with corresponding subgroup Hk =< 2m > of order
d. For 1 ≤ k ≤ d−1

2
,

Sk = {[2t, 2km − 2 − 2t], [3 + 2t, 2km − 1 − 2t] : t = 0, . . . , m−3
2

} ∪ {[1, 2km − m − 1]}

The set S d+1

2

is defined as:

S d+1

2

= S1
d+1

2

∪ S2
d+1

2

∪ {[m − 1 − m−3
2

, m − 1]}

where S1
d+1

2

and S2
d+1

2

are:

S1
d+1

2

= {[m − 2t, dm + 2 + 2t], [m − 3 − 2t, dm + 1 + 2t] : t = 0, . . . , m−5
4

}

S2
d+1

2

= {[t, (d + 1)m − 1 − t] : t = 0, . . . , m−3
2

} .
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Note that all even integers of the form {±((d−1)m+2),±((d−1)m+4), . . . ,±(md−1)}

are not covered by
⋃

d−1

2

k=1 ∂(Sk) but are covered in ∂(S1
d+1

2

).

It can be directly checked that the set Σ′ = {S1, . . . , S d+1

2

} together with subgroups

H1, . . . , H d+1

2

satisfy the second and third conditions of the definition of a starter. The

union ∂S1 ∪ · · · ∪ ∂S d+1

2

is contained in Ω and contains all elements of A ∩ Ω without

repetition, where A =< 2 > is the subgroup of index 2 of Z2dm. Proposition 5 can be
applied, and Σ′ can be completed to a starter for (G, Ω). �

4 Dihedral factorization of Km×n

In all this section, the dihedral group G = Dk is considered as generated by an element a

of order k and an involution b such that ba = a−1b.
For all n, a 1-factorization of K2×n having G = Dn (of order 2n) as sharply transitive

automorphism group exists. It is an immediate consequence of the result of Mazzuoc-
colo and Rinaldi [7], since they proved that if G has a subgroup of index 2, then such
factorization exists.

Recall that the graph Km×2 can be seen as the complete graph K2m minus a 1-factor.
For each value of m, the constructions in [1] give a 1-factorization of K2m preserved by
a dihedral group acting sharply transitively on the vertex-set and fixing at least one 1-
factor. Removing this factor of the factorization of K2m provides a 1-factorization of
Km×2, preserved by the same dihedral group, acting sharply transitively on the vertices.

Proposition 10 (First doubling construction). If there exists a cyclic 1-factorization of
Km×n then there exists a dihedral factorization of Km×2n.

Proof. Let suppose that the cyclic 1-factorization of Km×n is constructed with H ′ =<

am >. The vertices of Km×n are identified with the powers of a in Km×2n. For each
ordered pair (S ′

i, H
′
i) of the starter in Km×n, we construct the set Si = S ′

i (as subset of
G = Dmn =< a, b >) with group Hi =< H ′

i, b > (as a subgroup of G).
The edges not covered are all short edges of Km×n with difference ajb for any j not

divisible by m. A starter of (G, Ω) is obtained with Proposition 5, adding sets {[1G, ajb]}
with group Dmn to the others sets Si’s. �

Proposition 11 (Second doubling construction). If there exists a cyclic 1-factorization
of Km×n then there exists a dihedral factorization of K2m×n.

Proof. The subgroup H ′ used to construct the cyclic factorization of Km×n is iden-
tified with the subgroup H (generated by some power of a) of G = Dmn. Taking Ω as
Dmn − H , the Cayley graph Cay(G, Ω) is K2m×n.

We construct a dihedral factorization of K2m×n with the first Si’s as in the factorization
of Km×n and the first new Hi’s as: Hi =< H ′

i, b >. Cosets of Hi in G are identified with
the cosets of H ′

i in Zmn, and the differences sets ∂(Si) cover all powers of a in Ω = G−H .
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The starter is obtained by application of Proposition 5: the new Si’s are chosen as
Si = {[1G, baj ]} (one short edge), j = 0, . . . , mn − 1, together with group Hi = G.
Differences cover all elements written as ajb in Ω, including b. �

Proposition 12. There exists a 1-factorization of Km×n admitting a dihedral automor-
phism group acting sharply transitively on the vertices for:

A. m = d, n = 4d′, d and d′ both odd.

B. m = d, n = 2d′, d and d′ both odd.

C. m = 2d, n = d′, d and d′ both odd.

Proof.

Construction for case A: The automorphism group considered is G = D2dd′ (d and
d′ odd) generated by a and b with a2dd′ = b2 = 1G and a−1 = bab. The graph Kd×4d′ is
obtained as Cay(G, Ω) with Ω = G − H and H =< ad, b >. As required, the subgroup
H has order 4d′. The set Ω is decomposed as Ω1 ∪ Ω2 ∪ Ω−1

2 . The elements of Ω1 can be
written as akb with k 6≡ 0 mod d. The set Ω2 ∪Ω−1

2 consists only of 2(d− 1)d′ powers of
a of the form ak with k 6≡ 0 mod d.

The starter is composed of the sets Si, constructed as follow. The d′ first Si are all of
the form:

Si = (∪j{[a
j , a−j]}) ∪ {[1G, aid+1b]}

More precisely, the sets Si, i = 0, . . . , d′ − 1, are defined as:

Si =



























(

d−1

2
⋃

k=1

{[aid+k, a−id−k]}) ∪ {[1G, aid+1b]} if i is even

(
d−1
⋃

k= d+1

2

{[aid+k, a−id−k]}) ∪ {[1G, aid+1b]} if i is odd

For each of these Si, the corresponding Hi is < ad, ab >. Each coset of Hi is represented
in φ(Si) by a power of a or the identity. The edges [1G, aid+1b] are short (for all k, akb is
an involution), and the involution associated to this edge is in Hi.

The union ∂(S0) ∪ . . . ∂(Sd′−1) covers all (d − 1)d′ even powers of a that belong to

Ω2 ∪ Ω−1
2 and the d′ involutions aid+1b (i = 0 . . . d′ − 1). The next (d−1)d′

2
sets Si’s will

cover the odd powers of a in Ω2:

Si = {[1G, a2k−1]} with 2k − 1 6≡ 0 mod d, 2k − 1 ≤ dd′ − 2 and Hi =< a2, b >

Each Hi is a subgroup of index 2 of G, the elements 1G and a2k−1 are representatives
of the two cosets of Hi. The differences ∂(Si) cover the odd powers of a that appear in
Ω−1

2 . For now, the uncovered edges are all involutions. For each involution we form a set
Si = {[1G, akb]} and take the corresponding Hi to be G itself. There are 2dd′ − d′ such
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involutions in Ω2. Note that d′ of them (of form aid+1b) are already covered by the first
Si’s. Now, all elements in Ω are covered exactly once by

⋃

∂(Si). The short edges that
appears in the Si always have an associated involution contained in Hi.

Construction for case B: The group G is Ddd′ (d and d′ odd), generated by a

and b, with add′ = b2 = 1G and a−1 = bab. The subgroup H is < ad, b >, of order
2d′. The set Ω = G − H is partitioned as Ω = Ω1 ∪ Ω2 ∪ Ω−1

2 . The elements in Ω1 are
(d − 1)d′ involutions that can be written as akb,k 6≡ 0 mod d. One way to define Ω2 is
the following: Ω2 = {a2j : j = 1, . . . , dd′−1

2
, j 6≡ 0 mod d}. With this definition, Ω−1

2 is
composed of the odd powers of a. The d′ first Si’s (i = 0, . . . d′ − 1) are formally defined
as in the construction for case A (but a and b now belong to Ddd′) and the corresponding
Hi’s are equal to < ad, ab > as in case A.

All elements of Ω − Ω1 are covered by the union of the difference sets ∂(S0) ∪ · · · ∪
∂(Sd′−1). Some involutions are also covered, and the rest of Ω1 will be covered by the
differences sets of the remaining Si’s, defined as: Si = {[1G, akb]} with k 6≡ 0 mod d, if
akb does not appear in the previous Si’s. The corresponding Hi’s are all equal to G.

Construction for case C: As in case B, we take G = Ddd′ , but H is now equal to
< ad > (of order d′). Elements of Ω2 ∪Ω−1

2 are exactly the same as in case B. The first d′

sets can be constructed as in case B, but it is also possible to define it in an easier way:

Si =



























(

d−1

2
⋃

k=1

{[aid+k, a−id−k]}) ∪ {[1G, aidb]} if i is even

(

d−1
⋃

k= d+1

2

{[aid+k, a−id−k]}) ∪ {[1G, aidb]} if i is odd

With this definition, we take Hi =< ad, b > for all these sets. As in case B, all elements
of Ω2 ∪ Ω−1

2 are covered by the union of differences sets ∂(S0) ∪ · · · ∪ ∂(Sd′−1). The
involutions not covered by these differences are now chosen to construct the other Si’s as
Si = {[1G, akb]} with k 6≡ 0 mod d, with group Hi = G. �

Propositions 10 and 11, together with the three constructions of Proposition 12, give
the following result:

Theorem 13. A dihedral 1-factorization of Km×n exists for all m, n with mn even.

Proof. Suppose m = 2ud and n = 2vd′ with d and d′ both odd. The cases (u, v) =
(0, 1), (0, 2) or (1, 0) are all covered by Proposition 12. For u = 0 and v ≥ 3, u = 1
and v ≥ 1, or u ≥ 2 and v = 1, Theorem 2 proves the existence of a 1-factorization of
K2ud×2v−1d′ with a cyclic group, and Proposition 10 can be applied to obtain the dihedral
factorization of K2ud×2vd′ .

For u ≥ 2, v = 0 or v ≥ 2, a 1-factorization of K2u−1d×2vd′ with a cyclic sharply
transitive automorphism group is given by Theorem 2. Applying Proposition 11, we
obtain the required dihedral 1-factorization of K2ud×2vd′ . �
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