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Abstract

In this paper we study various extremal problems related to some combinatorially
defined graph polynomials such as matching polynomial, chromatic polynomial,
Laplacian polynomial. It will turn out that many problems attain its extremal
value in the class of threshold graphs. To attack these kinds of problems we survey
several applications of the so-called Kelmans transformation.

1 Introduction

Let N(x) denote the set of neighbors of the vertex x. Then the threshold graphs are most
easily defined as those graphs for which every vertices u and v, the sets N(u)\{v} and
N(v)\{u} are comparable respected to set-inclusion.

In this paper we show that various extremal problems on combinatorially defined
polynomials of graphs have its maximum or minimum attained at a threshold graph. Our
results will have the following shape: let PG(x) = xn + an−1x

n−1 + · · · + a0 be some
polynomial of the graph G (for example matching polynomial, chromatic polynomial)
then there exist a degree-maximal graph G∗ with the same number of edges such that for
the polynomial PG∗(x) = xn + bn−1x

n−1 + · · ·+ b0 we have |ak| ≤ |bk| (or |ak| ≥ |bk|) for all
0 ≤ k ≤ n− 1 or the largest (smallest) real root of the polynomial PG is greater (smaller)
than that of PG∗ ; the exact relation depends on the type of polynomial (e. g., for the
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matching polynomial we show that |bk| ≤ |ak| while for the independence polynomial we
will show that |bk| ≥ |ak| for all 0 ≤ k ≤ n − 1). We will distinguish this two type of
results as coefficient majorization result and root majorization result.

Our main tool will be the so-called Kelmans-transformation. This transformation
controls efficiently many graph parameters and the threshold graphs of this transformation
are exactly the graphs known as threshold graphs.

The rest of the paper is organized as follows. In Section 2 we introduce the concept
of the Kelmans transformation. In Section 3 we give a coefficient majorization result
for the matching polynomial as a warm-up. In Section 4 we prove a root majorization
result for the matching polynomial. In Section 5 we present a coefficient majorization
and a root majorization result for the independence polynomial, while in Section 6 we
give a coefficient majorization result for the chromatic polynomial. In Section 7 we prove
a lemma on the effect of the Kelmans transformation on the so-called exponential-type
graph polynomials. Using this lemma we prove a coefficient majorization result for the
Laplacian polynomial in Section 8. In Section 9 we give an application of the so-called
NA-Kelmans transformation on the number of closed walks. In Section 10 we give the
studied graph polynomials of the threshold graphs. We end the paper with some remarks
on the use of the Kelmans transformation.

We note that some of the above mentioned results are very easy, but others requires te-
dious preparations. In fact, the root majorization results and the coefficient majorization
result of the Laplacian polynomial can be considered as the main results of this paper.

Notation: Throughout the paper we will consider only simple graphs. We will follow
the usual notation: G is a graph, V (G) is the set of its vertices, E(G) is the set of
its edges, e(G) denotes the number of edges, N(x) is the set of the neighbors of x,
|N(vi)| = deg(vi) = di denote the degree of the vertex vi. We will also use the notation
N [v] for the closed neighbor N(v) ∪ {v}.

For S ⊂ V (G) the graph G − S denotes the subgraph of G induced by the vertices
V (G)\S while G|S denotes the subgraph of G induced by the vertex set S. If e ∈ E(G)
then G − e denotes the graph with vertex set V (G) and edge set E(G)\{e}. We also use
the notation G/e for the graph obtained from G by contracting the edge e; clearly the
resulting graph is multigraph.

For polynomials P1 and P2 we will write P1(x) ≫ P2(x) if they have the same degree
and the absolute value of the coefficient of xk in P1(x) is at least as large as the absolute
value of the coefficient of xk in P2(x) for all 0 ≤ k ≤ n.

Additional definitions and notation will be given in the sections.

2 Kelmans transformation

In [13] Kelmans studied the following problem. Let Rk
q (G) be the probability that if we

remove the edges of the graph G with probability q, independently of each other, then the
obtained random graph has at most k components. He obtained many results on extremal
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values of the parameter Rk
q (.) and on comparing graphs according to this parameter. One

of his results was that a certain transformation increases this probability for every q. The
study of this transformation (or more precisely its inverse), which we will call Kelmans
transformation, will be the main tool in this paper.

Definition 2.1. Let u, v be two vertices of the graph G, we obtain the Kelmans trans-
formation of G as follows: we erase all edges between v and N(v)\(N(u) ∪ {u}) and add
all edges between u and N(v)\(N(u) ∪ {u}). Let us call u and v the beneficiary and
the co-beneficiary of the transformation, respectively. The obtained graph has the same
number of edges as G; in general we will denote it by G′ without referring to the vertices
u and v.

u v u v

G G’

Figure 1: The Kelmans transformation.

The original application of the Kelmans transformation was the following (see Theorem
3.2 of [13]). We note that we use our notation.

Theorem 2.2. [13] Let G be a graph and G′ be a graph obtained from G by a Kelmans
transformation. Then Rk

q (G) ≥ Rk
q (G

′) for every q ∈ (0, 1).

Satyanarayana, Schoppmann and Suffel [19] rediscovered Theorem 2.2, they called the
inverse of the Kelmans transformation “swing surgery”. They also proved the following
theorem which we will also use and prove.

Theorem 8.5. [19] Let G be a graph and G′ be a graph obtained from G by a Kelmans
transformation. Let τ(G) and τ(G′) be the number of spanning trees of the graph G and
G′, respectively. Then τ(G′) ≤ τ(G).

Brown, Colbourn and Devitt [3] studied the Kelmans transformation further in the
context of network reliability. They also extended it to multigraphs. We will primarily
concern with simple graphs, but we show that the Kelmans transformation can be applied
efficiently in a much wider range of problems. In [5] the author proved the following result
concerning the spectral radius of the adjacency matrix.

Theorem 2.3. [5] Let µ(H) denote the largest eigenvalue of the adjacency matrix of the
graph H. Let G be a graph and let G′ be a graph obtained from G by some Kelmans
transformation. Then

µ(G′) ≥ µ(G).

the electronic journal of combinatorics 18 (2011), #P182 3



Remark 2.4. The {u, v}-independence and the Nordhaus-Gaddum property of the Kel-
mans transformation. The key observation is that up to isomorphism G′ is independent
of u or v being the beneficiary or the co-beneficiary if we apply the transformation to
u and v. Indeed, in G′ one of u or v will be adjacent to NG(u) ∪ NG(v), the other will
be adjacent to NG(u) ∩ NG(v) (and if the two vertices are adjacent in G then they will
remain adjacent, too). This observation also implies that the Kelmans transformation is
also a Kelmans transformation to the complement of the graph G with the change of the
role of u and v.

This means that whenever we prove that the Kelmans transformation increases some
parameter p(G), i.e., p(G′) ≥ p(G) then we immediately obtain that p(G′) ≥ p(G) as well.
This observation is particularly fruitful in those problems where one considers a graph
and its complement together like in Nosal’s problem of bounding the sum of the spectral
radii of the graph G and its complement. The following result of this type was obtained
in [5].

Theorem 2.5. [5]

µ(G) + µ(G) ≤ 1 +
√

3

2
n.

⋆ ⋆ ⋆

We end this section by some remarks on the threshold graphs of this transformation.
We show that the threshold graphs of the Kelmans transformation are exactly the graphs
known as threshold graphs.

Let us say that u dominates v if N(v)\{u} ⊆ N(u)\{v}. Clearly, if we apply the
Kelmans transformation to a graph G and u and v such that u is the beneficiary then u
will dominate v in G′. If neither u dominates v, nor v dominates u we say that u and v are
incomparable; in this case we call the Kelmans transformation applied to u and v proper.
One can prove the following simple statement. (The proof of part (a) of this theorem can
be found in [5].)

Theorem 2.6. (a) By the application of a sequence of Kelmans transformation one can
always transform an arbitrary graph G to a graph Gtr in which the vertices can be ordered
so that whenever i < j then vi dominates vj.

(b) Furthermore, one can assume that Gtr has exactly the same number of components
as G. (Note that all but one component of a threshold graph Gtr are isolated vertices.)

We also mention the following very simple statement.

Theorem 2.7. [15] A graph G is the threshold graph of the Kelmans transformation if
and only if it can be obtained from the empty graph by the following steps: adding some
isolated vertices to the graph or complementing the graph.

Remark 2.8. Note that the graphs described in the previous theorem are called “thresh-
old graphs” in the literature. Hence the threshold graphs of the Kelmans transformation
are exactly the threshold graphs. (It seems to me that this statement is nontrivial in the
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Figure 2: A threshold graph of the Kelmans transformation.

sense that the threshold graphs are called threshold graphs not because of the Kelmans
transformation.) From now on we simply refer to these graphs as threshold graphs.

Remark 2.9. These graphs, or more precisely their adjacency matrices also appear in
the article of Brualdi and Hoffman [4]. Rowlinson called these matrices stepwise matrices
[18].

3 The number of matchings

In this section we study the matching polynomials of graphs. For fundamental results on
matching polynomials see [9, 11, 12].

Definition 3.1. Let mr(G) denote the number of r independent edges (,i.e., the r-
matchings) in the graph G. Define the matching polynomial of G as

µ(G, x) =
∑

r=0

(−1)rmr(G)xn−2r.

Theorem 3.2. Assume that G′ is a graph obtained from G by some Kelmans transfor-
mation, then

µ(G, x) ≫ µ(G′, x).

In other words, mr(G) ≥ mr(G
′) for 1 ≤ r ≤ n/2. In particular, the Kelmans transfor-

mation decreases the maximum number of independent edges.

Remark 3.3. I invite the Reader to prove this theorem on their own; although I give the
proof of the theorem here, it takes much longer to read it then to prove it on their own.

Proof. We need to prove that for every r the Kelmans transformation decreases the num-
ber of r-matchings. Assume that we applied the Kelmans transformation to G such that
u was the beneficiary and v was the co-beneficiary. Furthermore, let Mr(G) and Mr(G

′)
denote the set of r-matchings in G and G′, respectively. We will give an injective map
from Mr(G

′) to Mr(G).
In those cases where all edges of the r-matching of G′ are also edges in G we simply

take the identical map.
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Next consider those cases where v is not covered by the matching, but for some w ∈
NG(v)\NG(u) we have uw in the r-matching. Map this r-matching to the r-matching
obtained by exchanging uw to vw in the r-matching, but otherwise we do not change the
other edges of the matching. Clearly, the image will be an r-matching of G and since
vw /∈ E(G′) this is not in the image of the previous case.

Finally, consider those cases where both u and v are covered in the r-matching of G′

and the r-matching does not belong to the first case. In this case there exist a w1 ∈
NG(v)\NG(u) and a w2 ∈ NG(v) ∩ NG(u) such that uw1 and vw2 are in the r-matching
of G′. Let the image of this r-matching be defined as follows. We exchange uw1 and vw2

to uw2 and vw1 in G, but otherwise we leave the other r − 2 edges of the r-matching.
Clearly we get an r-matching of G and the image of this r-matching is not in the image
of the previous cases, because both u and v are covered (not as in the second case) and
vw1 ∈ E(G) is in the r-matching (not as in the first case).

Hence we have given an injective map from Mr(G
′) to Mr(G) proving that mr(G

′) ≤
mr(G).

We mentioned that the Kelmans transformation is also Kelmans transformation of the
complement of the graph. As an example one can prove the following (very simple) result
on maximal matchings. We left the details to the Reader.

Corollary 3.4. Let G be a graph on n vertices. Then G or G contains
⌊

n
3

⌋
independent

edges.

Remark 3.5. The statement is best possible as it is shown by the clique of size 2n
3

and
additional n

3
isolated vertices.

Corollary 3.4 is well-known, in fact, it is a motivating result of several colored matching
problem, see e.g. [6].

4 The largest root of the matching polynomial

It is a well-known theorem of Heilmann and Lieb [12] that all the roots of the matching
polynomial are reals; so it is meaningful to speak about its largest root. In this section
we will show that the Kelmans transformation increases the largest root of the matching
polynomial (see Theorem 4.4). To do this we need some preparation.

Definition 4.1. Let t(G) be the largest root of the matching polynomial µ(G, x). Fur-
thermore let G1 ≻ G2 if for all x ≥ t(G1) we have µ(G2, x) ≥ µ(G1, x).

Proposition 4.2. The relation ≻ is transitive and if G1 ≻ G2 then t(G1) ≥ t(G2).

Proof. Let G1 ≻ G2. Since µ(G1, x) has positive leading coefficient and t(G1) is the largest
root we have µ(G1, x) > 0 for x > t(G1). Since µ(G2, x) ≥ µ(G1, x) > 0 on the interval
(t(G1),∞) we have t(G2) ≤ t(G1). If G1 ≻ G2 ≻ G3 then µ(G3, x) ≥ µ(G2, x) ≥ µ(G1, x)
on the interval [max(t(G2), t(G1)),∞) = [t(G1),∞), i.e., G1 ≻ G3.
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We will use the following two facts about the matching polynomial. The first one
is the well-known recursion formula for the matching polynomials. The second fact is a
result of D. Fisher and J. Ryan [8], it was a corollary of their theorem on the dependence
polynomials; in Section 5 we will give an alternative proof of this result, see Corollary 5.7.

Fact 1. [9, 11, 12] Let e = uv ∈ E(G). Then we have the following recursion formula for
matching polynomials

µ(G, x) = µ(G − e, x) − µ(G\{u, v}, x).

Fact 2. [8] If G2 is a subgraph of G1 then t(G1) ≥ t(G2).

Proposition 4.3. If G2 is a spanning subgraph of G1 then G1 ≻ G2.

Proof. By the transitivity of the relation ≻ it is enough to prove the statement when
G2 = G1 − e for some edge e = uv. By Fact 1. we have

µ(G, x) = µ(G − e, x) − µ(G\{u, v}, x).

Since G\{u, v} is a subgraph of G we have t(G\{u, v}) ≤ t(G) by Fact 2. Since the main
coefficient of µ(G\{u, v}) is 1, this implies that for x ≥ t(G) we have µ(G\{u, v}, x) ≥ 0.
By the above identity we get G ≻ G − e.

Theorem 4.4. Assume that G′ is a graph obtained from G by some Kelmans transfor-
mation, then G′ ≻ G, in particular t(G′) ≥ t(G).

Proof. Let u, v be the two vertices of the graph G for which we apply the Kelmans
transformation such that u is the beneficiary. We will prove that G′ ≻ G; according to
Proposition 4.2 this implies that t(G′) ≥ t(G). We will prove this claim by induction on
the number of edges of G.

Let us choose a vertex w different from v such that uw ∈ E(G). If such w does not
exist then G′ is isomorphic to G and the claim is trivial. Thus we can assume that such
a w exists, let h = uw. Now we can write up the identities of Fact 1:

µ(G, x) = µ(G − h, x) − µ(G − {u, w}, x)

and
µ(G′, x) = µ(G′ − h, x) − µ(G′ − {u, w}, x).

Here G′ − h can be obtained from G − h by some Kelmans transformation and these
graphs have less number of edges than G; so by induction we have G′ − h ≻ G − h, i.e.,

µ(G − h, x) ≥ µ(G′ − h, x)
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for all x ≥ t(G′−h). On the other hand G′−{u, w} is a spanning subgraph of G−{u, w},
thus we have G − {u, w} ≻ G′ − {u, w} by Proposition 4.3. In other words,

µ(G′ − {u, w}, x) ≥ µ(G − {u, w}, x)

for all x ≥ t(G − {u, w}). Altogether we get that

µ(G, x) = µ(G − h, x) − µ(G − {u, w}, x) ≥

≥ µ(G′ − h, x) − µ(G′ − {u, w}, x) = µ(G′, x)

for all x ≥ max(t(G′−h), t(G−{u, w})). Note that t(G′) ≥ max(t(G′−e), t(G−{u, w}))
as both graphs are subgraphs of G (so we can use Fact 2); in the latter case we embed
the graph G − {u, w} into G′ such that v goes to u in the embedding. Thus

µ(G, x) ≥ µ(G′, x)

for all x ≥ t(G′).
Hence G′ ≻ G and we have proved the theorem.

5 The independence polynomial

We define the independence polynomial as follows.

Definition 5.1. Let ik(G) denote the number of independent sets of size k. Then we
define the independence polynomial of the graph G as

I(G, x) =

n∑

k=0

(−1)kik(G)xk.

Let β(G) denote the smallest real root of I(G, x); it exists and it is positive by the
alternating sign of the coefficients of the polynomial.

Remark 5.2. Some authors call the polynomial I(G,−x) the independence polynomial;
since the transformation between the two forms is trivial it will not cause any confusion
to work with this definition.

The graph parameter β(G) is examined in various papers. D. Fisher and J. Ryan [8]
proved that the (in)dependence polynomial always has a real root having the smallest
absolute value among the roots. They also proved the following fundamental result on
β(G): if G1 is a subgraph of G2 then β(G1) ≥ β(G2).

In this section we prove that the Kelmans transformation decreases the smallest real
root of the independence polynomial.

We will use the following recursion formulas of the independence polynomials subse-
quently.
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Fact 1. ([14]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − v, x) − xI(G − N [v], x),

where v is an arbitrary vertex of the graph G.

Fact 2. ([14]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − e, x) − x2I(G − N [v] − N [u], x),

where e = (u, v) is an arbitrary edge of the graph G.

We are going to prove our result in an analogous way that we have seen at the matching
polynomials.

Definition 5.3. Let G1 ≻ G2 if I(G2, x) ≥ I(G1, x) on the interval [0, β(G1)].

This definition seems to be unnatural, because of the “reversed” inequality, but one
can prove that if G2 is a subgraph of G1 then G1 ≻ G2 (see Proposition 5.6). Thus
in the light of the following statement this claim implies Fisher and Ryan’s result (see
Remark 5.2).

Proposition 5.4. The relation ≻ is transitive on the set of graphs and if G1 ≻ G2 then
β(G1) ≤ β(G2).

Proof. Let G1 ≻ G2. Since I(G1, 0) = 1 we have I(G1, x) > 0 on the interval [0, β(G1)).
Thus I(G2, x) ≥ I(G1, x) > 0 on the interval [0, β(G1)) giving that β(G2) ≥ β(G1). If
G1 ≻ G2 ≻ G3 then β(G1) ≤ β(G2) ≤ β(G3) and I(G3, x) ≥ I(G2, x) ≥ I(G1, x) on the
interval [0, min(β(G1), β(G2))) = [0, β(G1)) thus G1 ≻ G3.

Proposition 5.5. If G2 is an induced subgraph of G1 then G1 ≻ G2.

Proof. We prove by induction on the number of vertices of G1. For sake of simplicity let
us use the notation G1 = G. By the transitivity of the relation ≻ it is enough to prove
that G ≻ G − v. The statement is true if |V (G)| = 2.

Since G−N [v] is an induced subgraph of G− v, by the induction hypothesis we have

I(G − v, x) ≻ I(G − N [v], x).

This means that
I(G − N [v], x) ≥ I(G − v, x)

on the interval [0, β(G− v)]. Thus I(G−N [v], x) ≥ 0 on the interval [0, β(G− v)]. Hence
by Fact 1 we have I(G, x) ≤ I(G − v, x) on the interval [0, β(G − v)]. This implies that
β(G) ≤ β(G−v); I(G, 0) = 1 and I(G, β(G−v)) ≤ 0 so I(G, x) has a root in the interval
[0, β(G − v)]. Hence I(G, x) ≤ I(G − v, x) on the interval [0, β(G)], i.e., G ≻ G − v.

the electronic journal of combinatorics 18 (2011), #P182 9



Proposition 5.6. If G2 is a subgraph of G1 then G1 ≻ G2.

Proof. Let us apply the notation G1 = G.
Clearly, it is enough to prove that G ≻ G− e where e = (u, v) ∈ E(G). Let us use the

recursion formula of Fact 2 to G:

I(G, x) = I(G − e, x) − x2I(G − N [u] − N [v], x).

By Proposition 5.5 we have G ≻ G − N [u] − N [v] and so

I(G − N [u] − N [v], x) ≥ I(G, x) ≥ 0

on the interval [0, β(G)]. Hence I(G−e, x) ≥ I(G, x) on this interval, i.e. , G ≻ G−e.

Corollary 5.7. If G1 is a subgraph of G2 then t(G1) ≤ t(G2) where t(G1) and t(G2) are
the largest roots of the matching polynomial of G1 and G2, respectively.

Proof. One can transform the matching polynomial into the independence polynomial of
the line graph.

The main result of this section is the following

Theorem 5.8. The Kelmans transformation decreases the smallest root of the indepen-
dence polynomial. More precisely, assume that G′ is a graph obtained from G by some
Kelmans transformation, then G′ ≻ G and so β(G′) ≤ β(G).

Proof. We prove the statement by induction on the number of vertices. The claim is
true for small graphs. Let u be the beneficiary at the Kelmans transformation, v be the
co-beneficiary. We can assume that NG(u)\NG(v) is not empty, otherwise G′ and G are
isomorphic, so let w ∈ NG(u)\NG(v). Now let us use the recursion formula of Fact 1

I(G, x) = I(G − w, x) − xI(G − NG[w], x)

and
I(G′, x) = I(G′ − w, x) − xI(G′ − NG′[w], x).

Observe that G′ − w can be obtained from G − w by some Kelmans transformation and
so by the induction we have

I(G − w, x) ≥ I(G′ − w, x)

on the interval [0, β(G′−w)]. On the other hand, G′−NG′ [w] is a subgraph of G−NG[w],
thus by Proposition 5.6 we have

I(G′ − NG′ [w], x) ≥ I(G − NG[w], x)

on the interval [0, β(G − NG[w])]. Putting together these two inequalities we get that

I(G, x) ≥ I(G′, x)

on the interval [0, min(β(G′ − w), β(G − NG[w])]. Note that G′ − w and G − NG[w] are
both subgraphs of G′; in the latter case v goes to u at the injective homomorphism from
V (G − NG[w]) to V (G′). Thus we have β(G′) ≤ min(β(G′ − w), β(G − NG[w])). This
proves that G′ ≻ G.
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Remark 5.9. Theorem 5.8 does not imply Theorem 4.4 since the Kelmans transformation
on a graph G does not induce a Kelmans transformation on the line graph.

5.1 The number of independent sets

Theorem 5.10. The Kelmans transformation increases the number of independent sets
of size r and the number of cliques of size r, i.e., assume that G′ is a graph obtained from
G by some Kelmans transformation, then ir(G) ≤ ir(G

′) and ir(G) ≤ ir(G′) for all r.

Disclaimer: it is easier to prove this theorem on their own than to read the following
proof.

Proof. Since the Kelmans transformation of the graph G is also a Kelmans transformation
of its complement, it is enough to prove the statement concerning the number of cliques of
size k. Let Clk(G) and Clk(G

′) be the set of cliques of size k in G and G′, respectively. We
will give an injective map ϕ from Clk(G) to Clk(G

′). This way we prove that |Clk(G)| ≤
|Clk(G

′)|.
Let S ∈ Clk(G). If S ∈ Clk(G

′) then we simply define ϕ to be the identity map. If
S /∈ Clk(G

′) then v ∈ V (S) and there exists some w ∈ NG(v)\NG(u) for which w ∈ V (S)
as well. This implies that u /∈ V (S). In this case let ϕ(S) be the clique of G′ induced on
the set (S − v) ∪ {u}. This is indeed a clique of G′ and it cannot be the clique of G so it
is not the image of any other clique of G. Hence ϕ is injective.

6 The chromatic polynomial

In this section we prove a coefficient majorization result for the chromatic polynomial,
see Theorem 6.3 below.

Recall that we define the chromatic polynomial ch(G, λ) of the graph G as follows
[2, 17]: for a positive integer λ the value ch(G, λ) is the number of ways that G can be
well-colored with λ colors. It is indeed a polynomial in λ:

ch(G, λ) =
n∑

k=1

(−1)n−kck(G)λk.

The coefficients of the chromatic polynomial have the following nice interpretation [2].

Theorem 6.1. Let G be a graph on n vertices and edge set E(G) = {e1, e2, . . . , em}. Call
a subset of E(G) a broken cycle if it is obtained from the edge set of a cycle by deleting
the edge of highest index. Then the chromatic polynomial of G is

ch(G, λ) = λn − cn−1λ
n−1 + cn−2λ

n−2 − · · ·+ (−1)n−1c1λ,

where ci is the number of n − i-subsets of E(G) containing no broken cycles.
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Remark 6.2. In fact, we will only need that the coefficients of the chromatic polyno-
mial have alternating sign. This can easily be deduced from the recursion formula of
Proposition 6.4 too.

Theorem 6.3. The Kelmans transformation decreases the coefficients of the chromatic
polynomial in absolute value, i.e., assume that G′ is a graph obtained from G by some
Kelmans transformation, then

ch(G, λ) ≫ ch(G′, λ).

In other words, ck(G) ≥ ck(G
′) for k = 1, . . . , n − 1.

To prove this theorem we need some preparation.

Proposition 6.4. [2, 17] Let e ∈ E(G) then

ch(G, λ) = ch(G − e, λ) − ch(G/e, λ).

Lemma 6.5. If G1 is a spanning subgraph of G then

ch(G, λ) ≫ ch(G1, λ).

Proof. It is enough to prove the claim for G1 = G − e for which the statement is trivial
by Proposition 6.4 and Theorem 6.1.

Now we are ready to prove Theorem 6.3.

Proof. Let us introduce the notation

ĉh(G, λ) = (−1)|V (G)|ch(G,−λ).

Then ĉh(G, λ) =
∑n

k=1 ck(G)λk has only non-negative coefficients. Clearly, one can
rewrite Proposition 6.4 as

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ).

We need to prove that ĉh(G, λ) ≫ ĉh(G′, λ).
We prove this statement by induction on the sum of the number of edges and vertices

of G. Assume that G′ is obtained from G by some Kelmans transformation applied
to the vertices u and v, where u is the beneficiary and v is the co-beneficiary. Let
w ∈ N(v)\N(u), we can assume the existence of such a vertex, otherwise G′ = G. Let us
denote the edge (v, w) ∈ E(G) by e = (v, w) and the edge (u, w) ∈ E(G′) by f = (u, w).
Then we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ)

and
ĉh(G′, λ) = ĉh(G′ − f, λ) + ĉh(G′/f, λ).
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Note that G′ − f can be obtained from G − e by a Kelmans transformation, thus by
induction we have

ĉh(G − e, λ) ≫ ĉh(G′ − f, λ).

Observe that G/e and G′/f are multigraphs, indeed if for some t ∈ NG(v) the vertex
t were adjacent to w than tw became multiple edges in G/e. Now we erase all except one
copy of all multiple edges to make G/e and G′/f simple graphs. (See the remark at the
end of the proof.) Let (G/e)∗ and (G′/f)∗ be the obtained simple graphs. This way we
did not change the chromatic polynomial since the value of ch(., λ) became unchanged for
all positive integers, thus the polynomial itself must be unchanged. Another observation
is that whenever we erased a multiple edge in G/e we erased a multiple edge in G′/f too.
On the other hand, for if some t ∈ NG(u)\NG(v) the vertex t were adjacent to w then it
became a multiple edge in G′/f while it is a simple edge in G/e. Let us erase all edges of
the form {(t, w) | t ∈ NG(u)\NG(w)} from the graph (G/e)∗; let (G/e)∗∗ be the obtained
graph. According to Lemma 6.5 we have

ĉh((G/e)∗, λ) ≫ ĉh((G/e)∗∗, λ).

Now our last observation is that (G′/f)∗ can be obtained from (G/e)∗∗ by some Kelmans
transformation where w is the beneficiary and u is the co-beneficiary (in (G′/f)∗ the
vertex u ∈ V ((G/e)∗∗) became v ∈ V ((G/f)∗)). Hence by the induction hypothesis we
have

ĉh((G/e)∗∗, λ) ≫ ĉh((G′/f)∗, λ).

Altogether we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ) = ĉh(G − e, λ) + ĉh((G/e)∗, λ) ≫

≫ ĉh(G − e, λ) + ĉh((G/e)∗∗, λ) ≫ ĉh(G′ − f, λ) + ĉh((G′/f)∗, λ) =

= ĉh(G′ − f, λ) + ĉh(G′/f, λ) = ĉh(G′, λ).

By comparing the two ends of the chain of inequalities we obtained the desired result.

Remark 6.6. We avoided the use of multigraphs because we have not defined the Kelmans
transformation for multigraphs, although this can be done, see e.g. [3]. In some cases it
would have been more convenient to use multigraphs, but in some other cases it would
have led to more discussion. Since we were primarily interested in simple graphs we chose
the way described in the proof.

7 Exponential-type graph polynomials

We call a graph polynomial f(G, x) exponential-type if it satisfies the following identity:
∑

S1∪S2=V (G),
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y),

where f(S, x) = f(G|S, x).
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Gus Wiseman [20] call these graph polynomials binomial-type.
This is a very special class of graph polynomials, still it has some notable elements:

chromatic polynomial, Laplacian polynomial and the following modified matching poly-
nomial: M(G, x) =

∑n

k=0 mk(G)xn−k.
The main structure result for exponential-type graph polynomials is the following. For

any exponential-type graph polynomial there exists a function b from the isomorphism
classes of graphs to the complex numbers such that if

f(G, x) =
n∑

k=1

ak(G)xk

then
ak(G) =

∑

{S1,S2,...,Sk}∈Pk

b(G|S1)b(G|S2) . . . b(G|Sk
),

where the summation goes over the set Pk of the partitions of the vertex set into exactly
k sets. We denote this connection by f(G, x) = fb(G, x). It is easy to prove this structure
result, but we will not do it. Instead, we use this result as a definition. We can do it since
we will not use the original definition.

We can obtain an easy consequence of this structure theorem.

Lemma 7.1. Assume that b(G) ≥ 0 for all graphs G and

fb(G, x) =
n∑

k=1

ak(G)xk.

Let H1 and H2 be two graphs on the same vertex set V and let u, v ∈ V . Assume that the
following two conditions hold:

• if u, v ∈ S or u, v /∈ S at the same time we have b(H1|S) ≥ b(H2|S),

• (cut condition) for all S for which u, v ∈ S we have

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2).

Then we have ak(H1) ≥ ak(H2) for all 1 ≤ k ≤ n.

Proof. Clearly, the first condition implies that

∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) ≥

∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).
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Similarly, the first and the second condition together imply

∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H1|S1)b(H1|S2) . . . b(H1|Sk
)

=
∑

{S3,...Sk}

b(H1|S3) . . . b(H1|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2)

≥
∑

{S3,...Sk}

b(H2|S3) . . . b(H2|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2)

=
∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).

By adding up the two equations we obtain

ak(H1) =
∑

{S1,S2,...,Sk}∈P

b(H1|S1)b(H1|S2) . . . b(H1|Sk
)

≥
∑

{S1,S2,...,Sk}∈P

b(H2|S1)b(H2|S2) . . . b(H2|Sk
) = ak(H2).

Remark 7.2. Naturally, we will use Lemma 7.1 for a graph G and G′ obtained by Kel-
mans transformation and u, v beneficiary and co-beneficiary vertices. The first condition
is equivalent with the fact that the Kelmans transformation increase (or decrease) the
parameter b(.); indeed, if u, v ∈ S then G′|S can be obtained from G|S by the Kelmans
transformation applied to u and v. If u, v /∈ S then simply G′|S = G|S.

One expects that it is easy (or at least not hard) to check the first condition and
considerably much harder to check the cut condition. Surprisingly, there are some cases
when it is easier to check the cut condition. For instance, let b(G) = τ(G) be the number
of spanning trees. Then

r(G, u, v) =
∑

S1∩S2=∅, S1∪S2=V (G)
u∈S1,v∈S2

b(G|S1)b(G|S2)

can be interpreted as follows. Let us put an edge e between u and v then r(G, u, v) is
exactly the number of spanning trees containing the edge e. But this is τ(G/e). Since
G/e and G′/e are isomorphic multigraphs we have r(G, u, v) = r(G′, u, v).

We also could have proved the corresponding statement for the coefficients of the
(modified) matching polynomial. Since b(G) = 0 there, except for G = K1, K2 we have
b(K1) = b(K2) = 1; thus we have to check the first and second conditions for graphs on
at most 2 and 4(!) vertices, respectively.
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8 Laplacian polynomial of a graph

Recall that the Laplacian matrix L(G) of the graph G is D −A, where D is the diagonal
matrix consisting of the vertex degrees and A is the adjacency matrix. We call the
polynomial L(G, x) = det(xI −L(G)) the Laplacian polynomial of the graph G, i.e., it is
the characteristic polynomial of the Laplacian matrix of G. We will write L(G, x) in the
form

L(G, x) =

n∑

k=1

(−1)n−kak(G)xk,

where ak(G) ≥ 0.
The main result of this section is the following.

Theorem 8.1. The Kelmans transformation decreases the coefficients of the Laplacian
polynomial in absolute value, i.e., assume that G′ is a graph obtained from G by some
Kelmans transformation, then

L(G, x) ≫ L(G′, x).

In other words, ak(G) ≥ ak(G
′) for k = 1, . . . , n − 1.

To prove this theorem we will prove that the Laplacian polynomial is exponential-type.

Theorem 8.2. The Laplacian polynomial L(., x) is exponential-type with

b(G) = (−1)|V (G)|−1τ(G) = (−1)|V (G)|−1|V (G)|τ(G).

We will deduce Theorem 8.2 from the following lemma, which is only a reformulation
of Theorem 8.2, but it has the advantage that it appears in the literature explicitly.

Lemma 8.3. [1] Let Fk(G) denote the set of spanning forests of the graph G which have
exactly k components. For F = T1 ∪ · · · ∪ Tk ∈ Fk let γ(F ) =

∏k

i=1 |Ti|, where Ti’s are
the connected components of the forest F . Then

ak =
∑

F∈Fk

γ(F ).

Proof of Theorem 8.2. We can decompose the sum in Lemma 8.3 such that we consider
those forests of Fk whose components span the sets S1, . . . , Sk. For such a forest γ(F ) =
|S1||S2| . . . |Sk|. The number of such forests is clearly τ(S1)τ(S2) . . . τ(Sk). Altogether we
have

ak =
∑

F∈Fk

γ(F ) =
∑

{S1,S2,...,Sk}

τ(S1)τ(S2) . . . τ (Sk).

Remark 8.4. Hence (−1)nL(G,−x) = fτ (G, x), where τ (G) = |V (G)|τ(G). So we can
use Lemma 7.1 to fτ (G, x). We have to check the two conditions, the first one is the result
of Satyanarayana, Schoppmann and Suffel quoted in the introduction of this chapter.

the electronic journal of combinatorics 18 (2011), #P182 16



Theorem 8.5. [19] The Kelmans transformation decreases the number of spanning trees,
i.e., assume that G′ is a graph obtained from G by some Kelmans transformation, then

τ(G) ≥ τ(G′).

Proof. Let u and v be the beneficiary and the co-beneficiary of the Kelmans transforma-
tion, respectively.

Let R be a subset of the edge set {(u, w) ∈ E(G) | w ∈ NG(u) ∩ NG(v)}. Let

TR(G) = {T | T is a spanning tree, R ⊂ E(T )}.

Let τR(G) = |TR(G)|. We will show that for any R ⊆ {(u, w) ∈ E(G) | w ∈ N(u)∩N(v)},
we have τR(G) ≥ τR(G′). For R = ∅ we immediately obtain the statement of the theorem.

We prove this statement by induction on the lexicographic order of

(e(G), |NG(u) ∩ NG(v)| − |R|).

For the empty graph on n vertices the statement is trivial. Thus we assume that we already
know that the Kelmans transformation decreases τR(G1) if e(G1) < e(G) or e(G1) = e(G),
but |NG(u1) ∩ NG(v1)| − |R1| < |NG(u) ∩ NG(v)| − |R|.

Now assume that |NG(u)∩NG(v)|−|R| = 0, in other words R = {(u, w) ∈ E(G) | w ∈
N(u) ∩N(v)}. Observe that NG′(v) = NG(u) ∩NG(v), but since R ⊂ E(T ′) the vertex v
must be a leaf in T ′ for any spanning tree T ′ ∈ TR(G′).

Now let us consider the following map. Take a spanning tree T ′ which contains the ele-
ments of the set R. Let us erase the edges between u and (NG(v)\NG(u))∩NT ′(u) (maybe
there is no such edge in the tree) and add the edges between v and (NG(v)\NG(u))∩NT ′(u).
The tree, obtained this way, is an element of TR(G). This map is obviously injective; if we
get an image T ∈ TR(G) we simply erase the edges between v and (NG(v)\NG(u))∩NT (v)
and add the edges between u and (NG(v)\NG(u)) ∩ NT (v). Hence τR(G′) ≤ τR(G).

Now assume that |R| < |NG(u)∩NG(v)|. Let h = (u, w) be an edge not in R for which
w ∈ NG(u)∩NG(v). Then we can decompose τR(G) according to h ∈ E(T ) or not. Hence

τR(G) = τR∪{h}(G) + τR(G − h).

Similarly,
τR(G′) = τR∪{h}(G

′) + τR(G′ − h).

Note that G′ − h can be obtained from G − h by a Kelmans transformation applied to
the vertices u and v. Since it has fewer edges than G we have

τR(G − h) ≥ τR(G′ − h).

Similarly, |NG(u)∩NG(v)| − |R∪ {h}| < |NG(u)∩NG(v)| − |R|, so we have by induction
that

τR∪{h}(G) ≥ τR∪{h}(G
′).
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Hence
τR(G) ≥ τR(G′).

In particular,
τ(G) = τ∅(G) ≥ τ∅(G

′) = τ(G′).

Now we prove that the function τ satisfies the second condition of Lemma 7.1. The
proof of it will be very similar to the previous one.

Theorem 8.6. Let τ (G) = |V (G)|τ(G), where τ(G) denotes the number of spanning trees
of the graph G. Let G be a graph and let G′ be the graph obtained from G by a Kelmans
transformation applied to the vertices u and v. Then for all S for which u, v ∈ S we have

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ (G|S1)τ (G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ (G′|S1)τ (G′|S2).

Proof. We can assume that S = V (G). Let R be a subset of the edge set {(u, w) ∈
E(G) | w ∈ N(u) ∩ N(v)}. Let

S(G)R = {(T1, T2) | T1, T2 trees, u ∈ V (T1), v ∈ V (T2),

V (T1) ∩ V (T2) = ∅, V (T1) ∪ V (T2) = V (G), R ⊆ E(T1)}.
Note that

s(G, u, v) :=
∑

S1∩S2=∅,S1∪S2=S

u∈S1,v∈S2

τ (G|S1)τ(G|S2) =
∑

(T1,T2)∈S(G)∅

|V (T1)||V (T2)|.

In general, we introduce the expression

s(G, R, u, v) =
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)|.

We will show that for any R ⊆ {(u, w) ∈ E(G) | w ∈ N(u) ∩ N(v)} we have

s(G, R, u, v) ≥ s(G′, R, u, v).

We prove this statement by induction on the lexicographic order of

(|E(G)|, |N(u) ∩ N(v)| − |R|).

For the empty graph on n vertices the statement is trivial. Thus we assume that we
already know that the Kelmans transformation decreases s(G1, R1, u1, v1) if e(G1) < e(G)
or e(G1) = e(G), but |N(u1) ∩ N(v1)| − |R1| < |N(u) ∩ N(v)| − |R|.
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Now assume that |N(u)∩N(v)| − |R| = 0, in other words, R = {(u, w) ∈ E(G) | w ∈
N(u) ∩ N(v)}. We prove that s(G, R, u, v) ≥ s(G′, R, u, v). Observe that NG′(v) =
N(u) ∩ N(v), but since R ⊆ T1 the set NG′(v) ⊆ V (T1). Hence V (T2) = {v}. So

s(G′, R, u, v) = (n − 1)τR(G′ − v),

where τR(G′ − v) denotes the number of spanning trees of G′ − v which contains the
elements of the set R. Now let us consider the following map. Take a spanning tree T ′

of G′ − v which contains the elements of the set R, let us erase the edges between u and
(NG(v) \ NG(u)) ∩ NT ′(u) (maybe there is no such edge in the tree) and add the edges
between v and (NG(v) \ NG(u)) ∩ NT ′(u). The pair of trees, obtained this way, is an
element of S(G)R. This map is obviously injective; if we get an image (T1, T2) ∈ S(G)R

we simply erase the edges between v and NT2(v) and add the edges between u and NT2(v).
Since n − 1 ≤ k(n − k) for any 1 ≤ k ≤ n − 1 we have

s(G′, R, u, v) =
∑

(T1,T2)∈S(G′)R

1 · (n − 1) ≤
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)| = s(G, R, u, v).

Now assume that |R| < |NG(u)∩NG(v)|. Let h = (u, w) be an edge not in R for which
w ∈ NG(u) ∩ NG(v). Then we can decompose s(G, R, u, v) according to h ∈ T1 where
(T1, T2) ∈ S(G)R or not. Hence

s(G, R, u, v) = s(G, R ∪ {h}, u, v) + s(G − h, R, u, v).

Similarly,
s(G′, R, u, v) = s(G′, R ∪ {h}, u, v) + s(G′ − h, R, u, v).

Note that G′ − h can be obtained from G − h by a Kelmans transformation applied to
the vertices u and v. Since it has fewer edges than G we have

s(G − h, R, u, v) ≥ s(G′ − h, R, u, v).

Similarly, |NG(u)∩NG(v)| − |R∪ {h}| < |NG(u)∩NG(v)| − |R|, so we have by induction
that

s(G, R ∪ {h}, u, v) ≥ s(G′, R ∪ {h}, u, v).

Hence
s(G, R, u, v) ≥ s(G′, R, u, v).

In particular,
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ (G|S1)τ(G|S2) = s(G, ∅, u, v)

≥ s(G′, ∅, u, v) =
∑

S1∩S2=∅, S1∪S2=S

u∈S1, v∈S2

τ (G′|S1)τ (G′|S2).

the electronic journal of combinatorics 18 (2011), #P182 19



Proof of Theorem 8.1. Since the Laplace graph is of exponential-type it is enough to
check the conditions of Lemma 7.1 for the polynomial (−1)nL(G,−x). This satisfies
that bL(G) = τ (G) = |V (G)|τ(G) ≥ 0.

If u, v ∈ S, then according Theorem 8.5, τ(G′|S) ≤ τ(G|S) and so τ(G′|S) ≤ τ (G|S).
If u, v /∈ S then G′|S = G|S and simply τ (G′|S) = τ(G|S).

On the other hand, by Theorem 8.6 we have
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ (G|S1)τ (G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ (G′|S1)τ(G′|S2).

Hence every condition of Lemma 7.1 are satisfied. Thus ak(G
′) ≤ ak(G) for any 1 ≤ k ≤

n.

9 Number of closed walks

Definition 9.1. The NA-Kelmans transformation is the Kelmans transformation applied
to non-adjacent vertices.

Theorem 9.2. The NA-Kelmans transformation increases the number of closed walks of
length k for every k ≥ 1. In other words, Wk(G

′) ≥ Wk(G) for k ≥ 1.

Proof. Let G be an arbitrary graph. Let G′ be the graph obtained from G by a Kelmans
transformation applied to u and v, where u is the beneficiary. Let D(x, y, k) denote
the number of walks from x to y of length k in G. Similarly R(x, y, k) denotes the
number of walks from x to y of length k in G′. If x, y 6= v then for all k we have
R(x, y, k) ≥ D(x, y, k). Indeed, if we have a walk from x to y of length k we can exchange
those v’s to u’s in the walk whose any of the neighbor in the walk is a vertex belonging to
NG(v)\NG(u). (It is one of the steps where we use that u and v are not adjacent.) This
will give an injective mapping from the walks of G to the set of walks of G′. (It is not
surjective since . . . v1uv2 . . . never appears in these “image” walks if v1 ∈ NG(v)\NG(u)
and v2 ∈ NG(u)\NG(v).) In particular, if x 6= u, v then R(x, x, k) ≥ D(x, x, k). On the
other hand,

D(u, u, k) + D(v, v, k) =
∑

x,y∈NG(u)

D(x, y, k − 2) +
∑

x′,y′∈NG(v)

D(x′, y′, k − 2)

≤
∑

x,y∈NG(u)

R(x, y, k − 2) +
∑

x′,y′∈NG(v)

R(x′, y′, k − 2)

≤
∑

x,y∈NG′ (u)

R(x, y, k − 2) +
∑

x′,y′∈NG′ (v)

R(x′, y′, k − 2) = R(u, u, k) + R(v, v, k).

Hence
Wk(G) =

∑

x∈V (G)

D(x, x, k) ≤
∑

x∈V (G)

R(x, x, k) = Wk(G
′).

the electronic journal of combinatorics 18 (2011), #P182 20



Remark 9.3. The statement is not true for any Kelmans transformation. Let G be the 4-
cycle, and let u, v be two adjacent vertices of G. Let us apply the Kelmans transformation
to u and v. Then G has 32 closed walks of length 4 while G′ has only 28 closed walks of
length 4.

10 Polynomials of the threshold graphs

In this section we give some special graph polynomials of the threshold graphs. We start
with the Laplacian polynomial (which can be found implicitly in the paper [15] as well,
although we give the proof here).

Theorem 10.1. Let G be a threshold graph of Kelmans transformation with degree se-
quence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e., for
which v1, . . . , vt induces a clique, but vt and vt+1 are not connected. Then the spectra of
the Laplacian matrix of G is the multiset

{d1 + 1, d2 + 1, . . . , dt−1 + 1, dt+1, . . . , dn, 0}.

In other words, the Laplacian polynomial is

L(G, x) = x

t−1∏

i=1

(x − di − 1)

n∏

i=t+1

(x − di).

Proof. We will use the following well-known facts.

Fact 1. If we add k isolated vertices to the graph G then the Laplacian spectra of the
obtained graph consists of the Laplacian spectra of the graph G and k zeros.

Fact 2. ([10]) If the Laplacian spectra of the graph G is λ1 ≥ λ2 ≥ · · · ≥ λn = 0 then
the Laplacian spectra of G is n − λ1, n − λ2, . . . , n − λn−1, 0.

We prove the theorem by induction on the number of vertices of the graph. The claim
is trivial for threshold graphs having 1 or 2 vertices. If v1 is not adjacent to vn then vn is an
isolated vertex and the claim follows from the induction hypothesis and Fact 1. If v1 and
vn are adjacent then we observe that G has the same structure and v1 is isolated vertex in
G. Note that in G the vertices vn, vn−1, . . . , vt+1, vt induce a clique, but vt and vt−1 are not
adjacent. So we can apply the induction hypothesis to G\{v1} obtaining that its Laplacian
spectra is {n−1−dn+1, n−1−dn−1+1, . . . , n−1−dt+1+1, n−1−dt−1, . . . , n−1−d2, 0}.
Thus using Fact 2 and d1 = n − 1 we get that the Laplacian spectra of the graph G is
{d1 + 1, d2 + 1, . . . , dt−1 + 1, dt+1, . . . , dn, 0}.

The threshold graphs are also chordal graphs so the roots of their chromatic polyno-
mials are integers. The more precise (and trivial) result is the following.
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Theorem 10.2. Let G be a threshold graph of Kelmans transformation with degree se-
quence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e., for
which v1, . . . , vt induce a clique, but vt and vt+1 are not connected. Then the chromatic
polynomial of the graph G is the following

ch(G, λ) =
t∏

i=1

(λ − i + 1)
n∏

i=t+1

(λ − di).

Proof. We can color the clique of size t in
∏t

i=1(λ−i+1) ways. For i ≥ t+1, the vertex vi

has di neighbors in the clique induced by v1, . . . , vt, so we can color it in λ− di ways.

It is also easy to determine the independence polynomial of a threshold graph.

Theorem 10.3. Let G be a threshold graph of Kelmans transformation with degree se-
quence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e. , for
which v1, . . . , vt induces a clique, but vt and vt+1 are not connected. Then the independence
polynomial of G is

I(G, x) = (1 − x)n−t − x

t∑

i=1

(1 − x)n−1−di .

Proof. Since every independent set can contain at most one vertex from the clique induced
by the vertices of v1, . . . , vt we can decompose the terms of the independence polynomials
as follows. Those independent sets which does not contain any of the vertex v1, . . . , vt

contribute (1 − x)n−t to the sum. Those independent sets which contain the vertex vi

(1 ≤ i ≤ t) contribute −x(1 − x)n−1−di to the sum.

Remark 10.4. One can consider the previous theorem as an inclusion-exclusion formula.
A more general formula can be found in [7].

It remains to consider the matching polynomials of the threshold graphs. In this
case the answer is a bit more complicated. Some notation is in order. First of all, let
M(Kn, x) = Hn(x) for brevity. Furthermore, let G be a threshold graph with degree
sequence d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e., for
which v1, . . . , vt induce a clique, but vt and vt+1 are not adjacent and set

M(G, x) = P (n, t, dt+1, . . . , dn; x).

Then we have

Theorem 10.5.

P (n, t, dt+1, . . . , dn; x) = xP (n − 1, t, dt+1, . . . , dn−1; x)

−dnP (n − 1, t − 1, dt+1 − 1, . . . , dn−1 − 1; x)
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Furthermore,

P (n, t, dt+1, . . . , dn; x) =
n−t∑

k=0

σ̃k(dt+1, . . . , dn)(−1)kxn−t−kHt−k(x),

where

σ̃k(r1, . . . , rm) =
∑

1≤i1<i2<···<ik≤m

(ri1 − k + 1)(ri2 − k + 2) . . . (rik−1
− 1)rik .

Proof. The recursion follows from the recursion formula for the matching polynomial
applied to the edges incident to vn: if e = (vi, vn) ∈ E(G) then G−{vi, vn} is a threshold
graph with the matching polynomial P (n−1, t−1, dt+1−1, . . . , dn−1−1; x). If dn = 0 then
the second term vanishes and so it does not cause any problem that P (n− 1, t− 1, dt+1 −
1, . . . , dn−1−1; x) is not the matching polynomial of G− vn and maybe meaningless. The
other formula for the matching polynomial easily follows from the recursion formula.

11 Concluding remarks

In this last section we wish to make some remarks on the use of the Kelmans transfor-
mation. As one can see the threshold graphs of these transformations are very special, so
the use of this transformation is restricted to those problems where the extremal graph
is conjectured to belong to this class of graphs. But if it is the case then the Kelmans
transformation is probably the right tool to attack the problem. One of its main strengths
is that it is very simple to work with. The other strength of this transformation is that
it is very compatible with the deletion-contraction algorithms; in most of the proofs we
used only some special recursion formula for the corresponding polynomial.

Although the Kelmans transformation could handle various problems, the reason why
it worked maybe totally different. We try to explain it through two examples. If we
are looking for the graph maximizing the spectral radius among graphs with prescribed
number of edges then we know from Rowlinson’s result [18] that the extremal graph is
as “clique-like” as it is possible. The Kelmans transformation works properly because it
makes the graphs more “clique-like”. Now if we consider the problem of finding the graph
maximizing the largest root of the matching polynomial among graphs with prescribed
number of edges, the situation is completely different. We believe that the Kelmans
transformation works because it generates some large-degree vertices. We conjecture that
in this case the extremal graph will be as “star-like” as it is possible: it has as many
vertices of degree n − 1 as it is possible and one more vertex of the clique part of the
threshold graph has some additional edges.
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