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Abstract

Let G be a graph with adjacency matrix A, let H(t) = exp(itA). G is called a
periodic graph if there exists a time τ such that H(τ) is diagonal. If u and v are
distinct vertices in G, we say that perfect state transfer occurs from u to v if there
exists a time τ such that |H(τ)u,v| = 1. A necessary and sufficient condition for
G is periodic is given. We give the existence for the perfect state transfer between
antipodal vertices in graphs with extreme diameter.

1 Introduction

All the graphs considered in this paper are simple undirected. Let G be a graph with
adjacency matrix A. The eigenvalues of A are called the eigenvalues of G. The multiset of
all the eigenvalues of G is called the spectrum of G. Let H(t) denote the matrix function

H(t) = exp(itA) =
∞

∑

n=0

intnAn

n!
,

where i =
√
−1. For a matrix M , let Mu,v denote the (u, v)-entry of M . G is called a

periodic graph if there exists a time τ such that H(τ) is diagonal. G has perfect state
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transfer between distinct vertices u and v in G if there exists a time τ such that |H(τ)u,v| =
1 (see [8]).

The quantum spin network has important applications in the quantum information
system. We can find a one-to-one correspondence between a quantum spin network and a
connected graph G. Every vertex of G stands for a qubit. If G has perfect state transfer
between distinct vertices (qubits) u and v in G, then the state transfer between them is
perfect, i.e., the fidelity is 1. For certain quantum systems with fixed nearest-neighbour
couplings, periodicity is a necessary condition for perfect state transfer (see [11, 12]).

In [6], Christandl et al. proved that there exists perfect state transfer between two
end-vertices in the paths of length one and two, and between vertices at maximal distance
in Cartesian powers of these graphs. Some results for the existence of the perfect state
transfer in integral circulant graphs are given in [1-3, 11]. Perfect state transfer in cubelike
graphs is studied in [5]. In [8], Godsil gave some eigenvalue characterizations for the
periodicity of graphs, and constructed a family of distance-regular graphs with perfect
state transfer. In [9], Godsil offered a survey of the work on perfect state transfer. In this
paper, we will study the periodicity and perfect state transfer between antipodal vertices.

This paper is organized as follows. In Section 2, a necessary and sufficient condition
for the periodicity of graphs is given. In Section 3, we consider the existence of the perfect
state transfer between antipodal vertices in graphs with extreme diameter.

2 The periodicity of graphs

A graph is said to be integral if all its eigenvalues are integers. An integer is called a
square-free integer if it is not divisible by a square number, except 1. For example, 14 is
a square-free integer but 18 is not, because 18 = 32 × 2. The smallest positive square-free
integers are

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, . . .

Lemma 2.1. [8] A graph G is a periodic graph if and only if either:
(a) G is an integral graph, or
(b) G is bipartite and the eigenvalues of G are rational multiples of

√
Ω, for some square-

free integer Ω.

For a graph G, let V (G) be the vertex set of G. Let B be a set of non-zero binary
n-tuples, i.e., B ⊆ {0, 1}n\{(0, . . . , 0)}. The NEPS of graphs G1, . . . , Gn with basis B is
the graph with vertex set V (G1) × · · · × V (Gn), in which two vertices, say (x1, . . . , xn)
and (y1, . . . , yn), are adjacent if and only if there exists an n-tuple β = (β1, . . . , βn) ∈ B
such that xj = yj whenever βj = 0, and xj is adjacent to yj (in Gj) whenever βj = 1 (see
[7]).

Let G1 ×G2 denote the NEPS of graph G1 and graph G2 with basis B = {(1, 1)}. We
can obtain the the eigenvalues of G1 × G2 from the eigenvalues of G1 and G2.

Lemma 2.2. [7] If λ1, . . . , λn and µ1, µ2, . . . , µm are the eigenvalues of graph G and graph
H respectively, then λrµs (r = 1, . . . , n; s = 1, . . . , m) are the eigenvalues of G × H.
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It is well-know that a graph is bipartite if and only if its spectrum is symmetric with
respect to the origin. Let G be a periodic graph which is not integral. By Lemma 2.1,
there exist rational numbers µ1, µ2, . . . , µm and a square-free integer Ω such that the
nonzero eigenvalues of G are

±µ1

√
Ω,±µ2

√
Ω, . . . ,±µm

√
Ω.

We will show that µ1, µ2, . . . , µm are integers, i.e., the theorem below.

Theorem 2.3. A graph G is a periodic graph if and only if one of the following holds:
(a) G is an integral graph
(b) There exist integers µ1, µ2, . . . , µm and a square-free integer Ω (Ω 6= 1) such that all
the nonzero eigenvalues of G are

±µ1

√
Ω,±µ2

√
Ω, . . . ,±µm

√
Ω.

Proof. By Lemma 2.1, the given conditions are sufficient, we only need to show that they
are necessary. If G is a periodic graph, by Lemma 2.1, G is an integral graph or a bipartite
graph whose eigenvalues are rational multiples of

√
Ω for some square-free integer Ω. We

only need to consider the case that G is not integral. In this case, G is a bipartite graph.
For any eigenvalue λ of G, by Lemma 2.1, there exist a rational number µ

α
(µ, α are

integers and α 6= 0) and a square-free integer Ω such that λ = µ

α

√
Ω. By Lemma 2.2,

λ2 = µ2

α2 Ω is an eigenvalue of G×G. µ2

α2 Ω is a rational number. Since µ2

α2 Ω is an algebraic

integer, µ2

α2 Ω is an integer. By Ω is a square-free integer, we have α = 1, λ = µ
√

Ω. If
G is a periodic graph which is not integral, then there exist integers µ1, µ2, . . . , µm such
that all the nonzero eigenvalues of G are

±µ1

√
Ω,±µ2

√
Ω, . . . ,±µm

√
Ω,

where Ω 6= 1.

Remark 2.1. Some NEPS operations can be used to construct periodic graphs. For
instance, if G and H are periodic graphs, then G×H is a periodic graph (cf. Lemma 2.2
and Theorem 2.3).

Let G be a graph with adjacency matrix A. Let D be the diagonal matrix of vertex
degrees of G. The matrix Q = D + A is called the signless Laplacian matrix of G. The
eigenvalues of Q are called the Q-eigenvalues of G. The subdivision graph of G, denoted
by S(G), is the graph obtained from G by inserting a vertex of degree 2 in each edge
of G. Obviously S(G) is bipartite. Let φ(S(G), λ) be the characteristic polynomial of
the adjacency matrix of S(G), let ϕ(G, λ) be the characteristic polynomial of the signless
Laplacian matrix of G. If G has n vertices and m edges, then

φ(S(G), λ) = λm−nϕ(G, λ2). (1)

By equation (1), if the nonzero Q-eigenvalues of G are µ1, µ2, . . . , µk, then the nonzero
eigenvalues of S(G) are ±√

µ1,±
√

µ2, . . . ,±
√

µk (see [14]).
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Corollary 2.4. Let G be a graph. Then S(G) is a periodic graph if and only if the nonzero
Q-eigenvalues of G are

q2

1
Ω, q2

2
Ω, . . . , q2

nΩ,

where q1, . . . , qn are nonzero integers, Ω is a square-free integer.

Proof. Suppose that µ1, µ2, . . . , µn are the nonzero Q-eigenvalues of G, then the nonzero
eigenvalues of S(G) are

±√
µ1,±

√
µ2, . . . ,±

√
µn.

From Theorem 2.3, S(G) is a periodic graph if and only if there exist nonzero integers qj

and a square-free integer Ω such that
√

µj = qj

√
Ω (j = 1, . . . , n).

Example. Let Kn1,n2
be the complete bipartite graph with parts of size n1 and n2. The

nonzero Q-eigenvalues of Kn1,n2
are n1, n2 and n1 + n2. By Corollary 2.4, the subdivision

graph S(Kn1,n2
) is a periodic graph if and only if

n1 = q2

1
Ω, n2 = q2

2
Ω, n1 + n2 = r2Ω,

where q1, q2, r are integers, Ω is a square-free integer. Obviously q2

1
+ q2

2
= r2. If Ω 6= 1,

then S(Kn1,n2
) is not integral. It is well know that there are infinite Pythagorean triples.

Hence there are infinite integers n1, n2 such that S(Kn1,n2
) is a periodic graph which is

not integral.

Remark 2.2. The search for integral graphs began in 1974 with a paper by Harary and
Schwenk (see [10]). Let G be a periodic graph which is not integral. By Lemma 2.2 and
Theorem 2.3, G × G is an integral graph. If we know all integral graphs, the periodic
graphs which are not integral can be extracted from integral graphs. Hence the search for
periodic graphs can be restricted to integral graphs.

3 Perfect state transfer between antipodal vertices

Let G be a graph with adjacency matrix A. If µ1, µ2, . . . , µm are all the distinct eigenvalues
of G, then the minimal polynomial of A is

m(x) = (x − µ1)(x − µ2) · · · (x − µm).

Let f(x) = exp(itx), then f(A) = exp(itA) = H(t). Since f(x) is analytic in some open
set containing the spectrum of G, there exist a polynomial g(x) such that g(A) = f(A) =
H(t). Assume that g(x) = ξ0 + ξ1x + · · ·+ ξm−1x

m−1, then g(A) = H(t) if and only if

g(µk) = f(µk) (k = 1, 2, . . . , m). (2)
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Let

B =











1 µ1 · · · µm−1

1

1 µ2 · · · µm−1

2

...
...

...
1 µm · · · µm−1

m











, ξ =











ξ0

ξ1

...
ξm−1











, η(t) =











exp(iµ1t)
exp(iµ2t)

...
exp(iµmt)











. (3)

By equation (2), we have
Bξ = η(t), ξ = B−1η(t). (4)

Since B is a Vandermonde matrix, we can get

ξm−1 =
(−1)m

det B

m
∑

j=1

(−1)j exp(iµjt)
∏

s<r, s,r 6=j

(µr − µs). (5)

If ξ = B−1η(t), then

H(t) = g(A) = ξ0I + ξ1A + · · ·+ ξm−1A
m−1. (6)

Let wk[u, v] denote the number of walks of length k that start at vertex u and end at
vertex v. It is well-know that the (u, v)-entry of Ak is wk[u, v]. By equations (4) and (6)
we can get the theorem below.

Theorem 3.1. Let G be a graph with distinct eigenvalues µ1, µ2, . . . , µm. Let B and η(t)
be the matrix and the vector defined in (3). Perfect state transfer occurs between distinct
vertices u and v in G if and only if there exists time τ such that

|w(u, v)B−1η(τ)| = 1,

where w(u, v) = (w0[u, v], w1[u, v], . . . , wm−1[u, v]).

Let G be a connected graph with diameter D, and G has precisely m distinct eigenval-
ues. It is well-know that D ≤ m− 1. We say that two vertices u and v in G are antipodal
if the distance between u and v is the diameter D. For two antipodal vertices u and v, if
D = m− 1, then wm−1[u, v] > 0 and wk[u, v] = 0 (k = 0, 1, . . . , m− 2). By equations (4),
(5) and Theorem 3.1, we can get the corollary below.

Corollary 3.2. Let G be a connected graph with diameter D, all the distinct eigenvalues of
G are µ1, µ2, . . . , µm, and D = m− 1. Perfect state transfer occurs between two antipodal
vertices u and v in G if and only if there exists time τ such that

wD[u, v]|
m

∑

j=1

(−1)j exp(iµjτ)
∏

s<r, s,r 6=j

(µr − µs)| = |
∏

1≤s<r≤m

(µr − µs)|.

Let G be a connected graph with diameter D and adjacency matrix A. For two distinct
vertices u and v in G, let d(u, v) denote the distance between u and v. We can define
distance matrices A0, A1, . . . , AD of G as follows: the (u, v)-entry of Ar is 1 if d(u, v) = r,
and 0 otherwise (A0 = I, A1 = A). Let G1, G2, . . . , GD denote the graphs whose adjacency
matrices are A1, A2, . . . , AD, respectively. Two vertices of G lie in the same component
of GD if and only if they are antipodal.
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Corollary 3.3. Let G be a connected graph with diameter D, and G has precisely D + 1
distinct eigenvalues. If perfect state transfer occurs between two antipodal vertices u and
v in G, then u and v form a component with 2 vertices in GD.

Proof. Let H(t)∗ be the conjugate transpose of H(t), then

H(t)∗ = exp(−itA) = H(t)−1.

Hence H(t) is a unitary matrix. If perfect state transfer occurs between two antipodal
vertices u and v in G, then there exists time τ such that |H(τ)u,v| = 1. Since H(τ)
is a unitary matrix, H(τ)u,v is the only non-zero entry in its row and column. Since
d(u, v) = D, we have wD[u, v] > 0 and wk[u, v] = 0 (k = 0, 1, . . . , D − 1). Let V be
the vertex set of G. Since H(τ)u,v is the only non-zero entry in its row and column, by
equation (6), we have d(u, j) < D, d(v, j) < D for any j ∈ V \{u, v}. Hence u and v

belongs to the same component in GD, and this component only has 2 vertices.

Note that a distance-regular graph with diameter D has precisely D + 1 distinct
eigenvalues [4, 13].
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[3] M. Bašić, M.D. Petković, Perfect state transfer in integral circulant graphs of non-
square-free order, Linear Algebra Appl. 433 (2010) 149-163.

[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag,
Berlin, 1989.

[5] W.-C. Cheung, C. Godsil, Perfect state transfer in cubelike graphs, Linear Algebra
Appl. 435 (2011) 2468-2474.

[6] M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Perfect
transfer of arbitrary states in quantum spin networks, Physical Review A 71 (2005)
032312.
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