Connected, Bounded Degree, Triangle Avoidance Games

Nishali Mehta*

The Ohio State University nishali@math.ohio-state.edu

Ákos Seress*

The Ohio State University Centre for Mathematics of Symmetry and Computation University of Western Australia

akos@math.ohio-state.edu

Submitted: May 31, 2010; Accepted: Sept 6, 2011; Published: Sep 26, 2011 Mathematics Subject Classification: 05C57

Abstract

We consider variants of the triangle-avoidance game first defined by Harary and rediscovered by Hajnal a few years later. A graph game begins with two players and an empty graph on n vertices. The two players take turns choosing edges within K_n , building up a simple graph. The edges must be chosen according to a set of restrictions \mathcal{R} . The winner is the last player to choose an edge that does not violate any of the restrictions in \mathcal{R} . For fixed n and \mathcal{R} , one of the players has a winning strategy. For a pair of games where \mathcal{R} includes bounded degree, connectedness, and triangle-avoidance, we determine the winner for all values of n.

1 Introduction

Two players, \mathcal{A} and \mathcal{B} , begin with an empty graph on n vertices, where $n \geq 3$. Player \mathcal{A} goes first, choosing an edge between two vertices. The two players take turns choosing edges within K_n , building up a simple graph. The edges have to be chosen according to a set of restrictions \mathcal{R} . The winner is the last player to choose an edge that does not violate any of the restrictions in \mathcal{R} . For fixed n and \mathcal{R} , one of the players has a winning strategy. Let $\Gamma_{\mathcal{R}}(n)$ represent the game with restriction set \mathcal{R} on n vertices. Let $f_{\mathcal{R}} : \mathbb{N} \setminus \{1, 2\} \to \{\mathcal{A}, \mathcal{B}\}$ be the function defined by

^{*}Research partially supported by the NSF and by ARC Grant DP1096525.

 $f_{\mathcal{R}}(n) = \text{winner of } \Gamma_{\mathcal{R}}(n).$

We will look at games with one or more of the following restrictions and determine the winner for all values of n.

Let $G(V, E) \leq K_n$ be the graph made up of all edges chosen so far in the game. Let $u, v \in V, u \neq v, (u, v) \notin E$.

Restriction B2 (Bounded Degree). If $max\{deg_G(u), deg_G(v)\} \ge 2$, then the edge (u, v) cannot be chosen.

Restriction B3 (Bounded Degree). If $max\{deg_G(u), deg_G(v)\} \ge 3$, then the edge (u, v) cannot be chosen.

Restriction T (Triangle Avoidance). If $\exists w \in V \setminus \{u, v\}$ such that both edges $(u, w), (v, w) \in E$, then the edge (u, v) cannot be chosen.

Let M be the upper bound on the vertex degree, e.g. M = 3 if \mathcal{R} includes Restriction B3. When no upper bound is specified, M = n - 1.

Restriction C (Connectedness). If $deg_G(u) = 0$, $deg_G(v) = 0$ and there is $w \in V$ such that $0 < deg_G(w) < M$, then the edge (u, v) cannot be chosen.

In this paper we prove the following two theorems:

Theorem 4.5. For $n \ge 5$, $f_{\{B3,C\}}(n) = \mathcal{B} \iff n \equiv 2 \pmod{4}$.

Theorem 5.6. For $n \ge 12$, $f_{\{B3,T,C\}}(n) = \mathcal{B} \iff n \equiv 1, 2 \pmod{4}$.

The games with $\mathcal{R} = \{B2, C\}$ and $\mathcal{R} = \{B2, T, C\}$ are relatively simple. As a result, it is not too difficult to show the following.

Proposition. For $n \ge 4$, $f_{\{B2,C\}}(n) = \mathcal{A} \iff n \equiv 0 \pmod{2}$. For $n \ge 3$, $f_{\{B2,T,C\}}(n) = \mathcal{A} \iff n \equiv 2 \pmod{4}$.

In an accompanying paper [5], we give a complete analysis of the four games with $\mathcal{R} \subset \{B2, B3, T\}$ and $|\mathcal{R} \cap \{B2, B3\}| = 1$.

2 Background

The triangle avoidance game $\Gamma_{\{T\}}(n)$, suggested by Frank Harary [3] and six years later by András Hajnal, remains open in the general case. The function $f_{\{T\}}(n)$ is known for values of $n \leq 15$. The winners for $n \leq 12$ were computed by Cater, Harary, and Robinson [1]. Pralat [6] computed the winners for n = 13, 14, 15. Gordinowicz and Pralat [2] computed the winner for n = 16.

The connected version of the triangle avoidance game, $\Gamma_{\{T,C\}}(n)$, was solved by Seress [7]. He proved $f_{\{T,C\}}(n) = \mathcal{A} \iff n \equiv 0 \pmod{2}$.

This paper and the accompanying paper by Mehta and Seress [5], are based on the thesis work by Mehta [4].

3 Definitions

When |V| = n, write $V = \{v_1, \ldots, v_n\}$. Let e_i denote the *i*th edge chosen and $E_k = \{e_1, \ldots, e_k\}$. For given *n* and *k*, let $G_{n,k}$ be the graph on vertex set *V* with edge set E_k . The graphs $G = G_{n,k}$ we consider will always satisfy $deg_G(v) \leq 3$ for all vertices $v \in V$.

We make the following convention, simplifying the description of the games. The ordering of V defines a natural lexicographic ordering < of the edges of the complete graph K_n . Given a graph $G_{n,k}$, if the next player chooses the edge e_{k+1} then there is no edge $e < e_{k+1}$ such that $G_{n,k+1} \simeq G_{n,k} \cup e$.

A vertex v_i is said to be *out of play* if, $\forall v_j \in V \setminus \{v_i\}$ such that $(v_i, v_j) \notin E$, choosing the edge (v_i, v_j) will violate a restriction in \mathcal{R} . A vertex v_i that is not out of play is *in play*. In each game mentioned here, once a vertex is out of play it remains out of play for the rest of the game.

We make a second convention, further simplifying the description. Given a graph $G_{n,k}$, if the next player chooses the edge e_{k+1} then there is no edge $e < e_{k+1}$ such that game play for the remainder of the game is identical in $G_{n,k+1}$ and $G_{n,k} \cup e$. (This situation can occur if the induced subgraphs on the vertices still in play are isomorphic, even if the graphs themselves are not.)

The choice of the kth edge e_k will be called the kth round.

Define sets $Z, P, T \subset V$ on a graph G according to vertex degree:

$$Z(G) = \{ v \in V(G) : deg_G(v) = 0 \}, \quad z(G) = |Z(G)|$$

$$P(G) = \{ v \in V(G) : deg_G(v) = 1 \}, \quad p(G) = |P(G)|$$

$$T(G) = \{ v \in V(G) : deg_G(v) = 2 \}, \quad t(G) = |T(G)|.$$

$\mathbf{4} \quad \mathcal{R} = \{B3, C\}$

In the game $\Gamma_{\{B3,C\}}(n)$, we define graph classes $\mathcal{K}_i(z)$ for i=1,2,3,4, where $z \geq 0$ is an integer. One player can maintain that, for particular values of k, the graph $G_{n,k} \in \mathcal{K}_i(z)$ for some i. That is, this player does not stay within $\mathcal{K}_i(z)$ after each of his turns, but regularly returns to it after a few rounds. Following this strategy until the end of the game forces a win.

Define sets of graphs $\mathcal{K}_i(z)$ for i=1,2,3,4 as follows:

- 1. For any integer $z \ge 0$, $G(V, E) \in \mathcal{K}_1(z) \iff z(G) = z, p(G) = 0$, and t(G) = 2, with $T(G) = \{u_1, u_2\}, (u_1, u_2) \in E$.
- 2. For any integer $z \ge 0$, $G(V, E) \in \mathcal{K}_2(z) \iff z(G) = z$, p(G) = 0, and t(G) = 1.

- 3. For any integer $z \ge 0$, $G(V, E) \in \mathcal{K}_3(z) \iff z(G) = z$, p(G) = 1, and t(G) = 0.
- 4. For any integer $z \ge 0$, $G(V, E) \in \mathcal{K}_4(z) \iff z(G) = z, p(G) = 1$, and t(G) = 1, with $u_1 \in P(G), u_2 \in T(G), (u_1, u_2) \in E$.

Lemma 4.1. For $n \geq 3$, in $\Gamma_{\{B3,C\}}(n)$ if either player chooses an edge that creates a graph in $\mathcal{K}_1(z)$ with $z \equiv 0 \pmod{4}$ then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{K}_1(z)$ with $z \equiv 0 \pmod{4}$. Then $T(G_{n,k}) = \{u_1, u_2\}$ with $(u_1, u_2) \in E_k$. The strategy described here will work for \mathcal{B} as well. We proceed by induction on z.

Base case: z = 0. All vertices are out of play except u_1 and u_2 , which are already connected by an edge. Since no new edge can be chosen, \mathcal{A} wins.

Assume for induction that the statement holds when z = 4m for some $m \ge 0$. Suppose z = 4(m+1). Let $Z(G_{n,k}) = \{w_1, \ldots, w_{4m+4}\}$. Each vertex $v \notin (Z(G_{n,k}) \cup T(G_{n,k}))$ has $deg_{G_{n,k}}(v) = 3$ and is out of play.

Up to game play equivalence, \mathcal{B} must choose (u_1, w_1) . \mathcal{A} chooses (u_2, w_1) . \mathcal{B} must choose (w_1, w_2) . \mathcal{A} chooses (w_2, w_3) . \mathcal{B} has two choices: (w_2, w_4) or (w_3, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now vertices u_1, u_2, w_1, w_2 are out of play, $z(G_{n,k+6}) = 4m$, $p(G_{n,k+6}) = 0$, and $t(G_{n,k+6}) = 2$ with $T(G_{n,k+6}) = \{w_3, w_4\}$, $(w_3, w_4) \in E_{k+6}$. Thus $G_{n,k+6} \in \mathcal{K}_1(4m)$, so \mathcal{A} wins by induction.

Lemma 4.2. For $n \geq 3$, in $\Gamma_{\{B3,C\}}(n)$ if either player chooses an edge that creates a graph in $\mathcal{K}_2(z)$ with $z \equiv 0 \pmod{4}$ then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{K}_2(z)$ with $z \equiv 0 \pmod{4}$. The strategy described here will work for \mathcal{B} as well. We proceed by induction on z.

Base case: z = 0. All but one vertex are out of play, so no new edge can be chosen. Thus \mathcal{A} wins.

Assume for induction that the statement holds when z = 4m for some $m \ge 0$. Suppose z = 4(m+1). Let $Z(G_{n,k}) = \{w_1, \ldots, w_{4m+4}\}$. Let $T(G_{n,k}) = \{u\}$. Each vertex $v \notin (Z(G_{n,k}) \cup T(G_{n,k}))$ has $deg_{G_{n,k}}(v) = 3$ and is out of play.

Up to isomorphism, \mathcal{B} must choose (u, w_1) . \mathcal{A} chooses (w_1, w_2) . \mathcal{B} has two choices: (w_1, w_3) or (w_2, w_3) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} must choose (w_2, w_4) . \mathcal{A} chooses (w_3, w_4) . Now vertices u, w_1, w_2, w_3 are out of play, $z(G_{n,k+6}) = 4m$, $p(G_{n,k+6}) = 0$, and $t(G_{n,k+6}) = 1$. Thus $G_{n,k+6} \in \mathcal{K}_2(4m)$, so \mathcal{A} wins by induction. \Box

Lemma 4.3. For $n \geq 3$, in $\Gamma_{\{B3,C\}}(n)$ if either player chooses an edge that creates a graph in $\mathcal{K}_3(z)$ with $z \equiv 0 \pmod{4}$ then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{K}_3(z)$ with $z \equiv 0 \pmod{4}$. The strategy described here will work for \mathcal{B} as well. We proceed by induction.

Base case: z = 0. All but one vertex are out of play, so no new edge can be chosen. Thus \mathcal{A} wins.

Assume for induction that the statement holds when z = 4m for some $m \ge 0$. Suppose z = 4(m + 1). Let $Z(G_{n,k}) = \{w_1, \ldots, w_{4m+4}\}$. Let $P(G_{n,k}) = \{u\}$. Each vertex $v \notin (Z(G_{n,k}) \cup P(G_{n,k}))$ has $deg_{G_{n,k}}(v) = 3$ and is out of play.

Up to isomorphism, \mathcal{B} must choose (u, w_1) . \mathcal{A} chooses (u, w_2) . \mathcal{B} has two choices: (w_1, w_3) or (w_1, w_2) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} has three choices: (w_2, w_3) , (w_2, w_4) , or (w_3, w_4) .

- If \mathcal{B} chooses (w_2, w_3) then \mathcal{A} chooses (w_3, w_4) . Now vertices u, w_1, w_2, w_3 are out of play, $z(G_{n,k+6}) = 4m$, $p(G_{n,k+6}) = 1$, and $t(G_{n,k+6}) = 0$. Thus $G_{n,k+6} \in \mathcal{K}_3(4m)$, so \mathcal{A} wins by induction.
- If \mathcal{B} chooses one of (w_2, w_4) or (w_3, w_4) , then \mathcal{A} chooses the other edge. Now vertices u, w_1, w_2 are out of play, $z(G_{n,k+6}) = 4m$, $p(G_{n,k+6}) = 0$, and $t(G_{n,k+6}) = 2$ with $T(G_{n,k+6}) = \{w_3, w_4\}, (w_3, w_4) \in E_{k+6}$. Thus $G_{n,k+6} \in \mathcal{K}_1(4m)$, so \mathcal{A} wins by Lemma 4.1.

Lemma 4.4. For $n \geq 3$, in $\Gamma_{\{B3,C\}}(n)$ if either player chooses an edge that creates a graph in $\mathcal{K}_4(z)$ with $z \equiv 0 \pmod{4}$ then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{K}_4(z)$ with $z \equiv 0 \pmod{4}$. Then $P(G_{n,k}) = \{u_1\}$ and $T(G_{n,k}) = \{u_2\}$, with $(u_1, u_2) \in E_k$. The strategy described here will work for \mathcal{B} as well. We proceed by induction.

Base case: z = 0. All vertices are out of play except u_1 and u_2 , which are already connected by an edge. Since no new edge can be chosen, \mathcal{A} wins.

Assume for induction that the statement holds when z = 4m for some $m \ge 0$. Suppose z = 4(m+1). Let $Z(G_{n,k}) = \{w_1, \ldots, w_{4m+4}\}$. Each vertex $v \notin (Z(G_{n,k}) \cup P(G_{n,k}) \cup T(G_{n,k}))$ has $deg_{G_{n,k}}(v) = 3$ and is out of play.

Up to isomorphism, \mathcal{B} has two choices: (u_1, w_1) or (u_2, w_1) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} must choose (u_1, w_2) . \mathcal{A} chooses (w_1, w_2) . \mathcal{B} must choose (w_2, w_3) . \mathcal{A} chooses (w_3, w_4) . Now vertices u_1, u_2, w_1, w_2 are out of play, $z(G_{n,k+6}) = 4m$, $p(G_{n,k+6}) = 1$, and $t(G_{n,k+6}) = 1$ with $P(G_{n,k+6}) = \{w_4\}$, $T(G_{n,k+6}) = \{w_3\}$, $(w_3, w_4) \in E_{k+6}$. Thus $G_{n,k+6} \in \mathcal{K}_4(4m)$, so \mathcal{A} wins by induction.

Theorem 4.5. For $n \ge 5$, $f_{\{B3,C\}}(n) = \mathcal{B} \iff n \equiv 2 \pmod{4}$.

Proof. For small values of n, an exhaustive case analysis can be carried out by hand calculation.

 $n \equiv 0 \pmod{4}$:

We proceed by induction on n.

Base case: n = 8. This was solved by hand calculation.

Assume for induction that $f_{\{B3,C\}}(n) = \mathcal{A}$ when n = 4m for some $m \ge 2$. Suppose n = 4m + 4. $V = \{v_1, \ldots, v_{4m+4}\}$.

 \mathcal{A} chooses (v_1, v_2) . \mathcal{B} must choose (v_1, v_3) . \mathcal{A} chooses (v_2, v_3) to make a triangle. \mathcal{B} must choose (v_1, v_4) . \mathcal{A} chooses (v_2, v_4) . \mathcal{B} has two choices: (v_3, v_4) or (v_3, v_5) .

- If \mathcal{B} chooses (v_3, v_4) , then vertices v_1, v_2, v_3, v_4 are out of play. The remaining vertices v_5, \ldots, v_{4m+4} have degree zero and it is \mathcal{A} 's turn. Play continues as in $\Gamma_{B3,C}(4m)$, so \mathcal{A} wins by induction.
- If \mathcal{B} chooses (v_3, v_5) , then \mathcal{A} chooses (v_4, v_5) . Now vertices v_1, v_2, v_3, v_4 are out of play. \mathcal{B} must choose (v_5, v_6) . \mathcal{A} chooses (v_6, v_7) . \mathcal{B} has two choices: (v_6, v_8) or (v_7, v_8) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now v_5, v_6 are also out of play. $z(G_{4m+4,11}) = 4m 4$, $p(G_{4m+4,11}) = 0$, and $t(G_{4m+4,11}) = 2$ with $T(G_{4m+4,11}) = \{v_7, v_8\}, (v_7, v_8) \in E_{11}$. Thus $G_{4m+4,11} \in \mathcal{K}_1(4m 4)$, so \mathcal{A} wins by Lemma 4.1.

 $n \equiv 1 \pmod{4}$:

We proceed by induction on n.

Base case: n = 5. This was solved by hand calculation.

Assume for induction that $f_{\{B3,C\}}(n) = \mathcal{A}$ when n = 4m + 1 for some $m \ge 1$. Suppose n = 4m + 5. $V = \{v_1, \ldots, v_{4m+5}\}.$

 \mathcal{A} chooses (v_1, v_2) . \mathcal{B} must choose (v_1, v_3) . \mathcal{A} chooses (v_2, v_3) to make a triangle. \mathcal{B} must choose (v_1, v_4) . \mathcal{A} chooses (v_2, v_4) . \mathcal{B} has two choices: (v_3, v_4) or (v_3, v_5) .

- If \mathcal{B} chooses (v_3, v_4) , then vertices v_1, v_2, v_3, v_4 are out of play. The remaining vertices v_5, \ldots, v_{4m+5} have degree zero and it is \mathcal{A} 's turn. Play continues as in $\Gamma_{B3,C}(4m+1)$, so \mathcal{A} wins by induction.
- If \mathcal{B} chooses (v_3, v_5) , then \mathcal{A} chooses (v_4, v_5) . Now vertices v_1, v_2, v_3, v_4 are out of play. $z(G_{4m+5,7}) = 4m, \ p(G_{4m+5,7}) = 0$, and $t(G_{4m+5,7}) = 1$. Thus $G_{4m+5,7} \in \mathcal{K}_2(4m)$, so \mathcal{A} wins by Lemma 4.2.

 $n \equiv 2 \pmod{4}$:

Suppose n = 4m+2 for some $m \ge 1$. $V = \{v_1, \ldots, v_{4m+2}\}$. We give a winning strategy for player \mathcal{B} .

 \mathcal{A} must choose (v_1, v_2) . \mathcal{B} chooses (v_1, v_3) . \mathcal{A} has three choices: (v_1, v_4) , (v_2, v_3) , or (v_2, v_4) .

- If \mathcal{A} chooses (v_1, v_4) then \mathcal{B} chooses (v_2, v_3) .
- If \mathcal{A} chooses one of (v_2, v_3) or (v_2, v_4) , then \mathcal{B} chooses (v_1, v_4) .

The three possible resulting graphs are isomorphic, so without loss of generality, consider the first case. \mathcal{A} again has three choices: (v_2, v_4) , (v_2, v_5) , or (v_4, v_5) .

- If \mathcal{A} chooses (v_2, v_4) then \mathcal{B} chooses (v_3, v_5) .
- If \mathcal{A} chooses (v_2, v_5) then \mathcal{B} chooses (v_3, v_4) .
- If \mathcal{A} chooses (v_4, v_5) then \mathcal{B} chooses (v_2, v_4) .

As above, the three resulting graphs are isomorphic. Without loss of generality, consider the first case. \mathcal{A} has three choices: (v_4, v_5) , (v_4, v_6) , or (v_5, v_6) .

- If \mathcal{A} chooses one of (v_4, v_5) or (v_5, v_6) , then \mathcal{B} chooses the other one. Now vertices v_1, v_2, v_3, v_4, v_5 are out of play. $z(G_{4m+2,8}) = 4m 4$, $p(G_{4m+2,8}) = 1$, and $t(G_{4m+2,8}) = 0$. Thus $G_{4m+2,8} \in \mathcal{K}_3(4m 4)$, so \mathcal{B} wins by Lemma 4.3.
- If \mathcal{A} chooses (v_4, v_6) then \mathcal{B} chooses (v_5, v_6) . Now vertices v_1, v_2, v_3, v_4 are out of play. $z(G_{4m+2,8}) = 4m 4$, $p(G_{4m+2,8}) = 0$, and $t(G_{4m+2,8}) = 2$ with $T(G_{4m+2,8}) = \{v_5, v_6\}, (v_5, v_6) \in E_8$. Thus $G_{4m+2,8} \in \mathcal{K}_1(4m 4)$, so \mathcal{B} wins by Lemma 4.1.

$n \equiv 3 \pmod{4}$:

We proceed by induction on n.

Base case: n = 7. This was solved by hand calculation.

Assume for induction that $f_{\{B3,C\}}(n) = \mathcal{A}$ when n = 4m + 3 for some $m \ge 1$. Suppose n = 4m + 7. $V = \{v_1, \ldots, v_{4m+7}\}$.

 \mathcal{A} chooses (v_1, v_2) . \mathcal{B} must choose (v_1, v_3) . \mathcal{A} chooses (v_2, v_3) to make a triangle. \mathcal{B} must choose (v_1, v_4) . \mathcal{A} chooses (v_2, v_4) . \mathcal{B} has two choices: (v_3, v_4) or (v_3, v_5) .

- If \mathcal{B} chooses (v_3, v_4) , then vertices v_1, v_2, v_3, v_4 are out of play. The remaining vertices v_5, \ldots, v_{4m+7} have degree zero and it is \mathcal{A} 's turn. Play continues as in $\Gamma_{B3,C}(4m+3)$, so \mathcal{A} wins by induction.
- If \mathcal{B} chooses (v_3, v_5) , then \mathcal{A} chooses (v_4, v_5) . \mathcal{B} must choose (v_5, v_6) . \mathcal{A} chooses (v_6, v_7) . Vertices v_1, v_2, v_3, v_4, v_5 are out of play. $z(G_{4m+7,9}) = 4m$, $p(G_{4m+7,9}) = 1$, and $t(G_{4m+7,9}) = 1$ with $P(G_{4m+7,9}) = \{v_7\}$ and $T(G_{4m+7,9}) = \{v_6\}, (v_6, v_7) \in E_9$. Thus $G_{4m+7,9} \in \mathcal{K}_4(4m)$, so \mathcal{A} wins by Lemma 4.4.

5 $\mathcal{R} = \{B3, T, C\}$

In the game $\Gamma_{\{B3,T,C\}}$, we define graph classes $\mathcal{L}_i(z)$ for i=1,2,3, where $z \geq 0$ is an integer. For large enough n, one player can force that $G_{n,k} \in \mathcal{L}_1(z)$ early in the game. A few rounds later, the same player can force that $G_{n,k} \in (\mathcal{L}_2(z) \cup \mathcal{L}_3(z))$. From here, this player then maintains a periodic method of gameplay, continuously returning to graphs in $\mathcal{L}_2(z) \cup \mathcal{L}_3(z)$ after a fixed number of rounds. Following this strategy until the end of the game forces a win. For any graph G(V, E), define the set F(G) to be the set of edges in E^c that will create a triangle if chosen. That is,

$$F(G) = \{ (v_i, v_j) \notin E | \exists w \in V \text{ such that } (v_i, w), (v_j, w) \in E \}.$$

Define sets of graphs $\mathcal{L}_i(z)$ for i=1,2,3 as follows:

- 1. For any integer $z \ge 0$, $G(V, E) \in \mathcal{L}_1(z) \iff z(G) = z$ and ONE of the following holds:
 - (a) p(G) = 1, t(G) = 1, and if $u_1 \in P(G), u_2 \in T(G)$, then $(u_1, u_2) \in F(G)$,
 - (b) p(G) = 1, t(G) = 1, and if $u_1 \in P(G), u_2 \in T(G)$, then $(u_1, u_2) \notin (E \cup F(G))$,
 - (c) p(G) = 0, t(G) = 3, and, for some ordering of T(G), if $u_1, u_2, u_3 \in T(G)$, then $(u_1, u_2) \in E$ and $(u_1, u_3), (u_2, u_3) \in F(G)$, or
 - (d) p(G) = 0, t(G) = 3, and, for some ordering of T(G), if $u_1, u_2, u_3 \in T(G)$, then $(u_1, u_2) \in E, (u_1, u_3) \in F(G)$, and $(u_2, u_3) \notin (E \cup F(G))$.
- 2. For any integer $z \ge 0$, $G(V, E) \in \mathcal{L}_2(z) \iff z(G) = z$ and ONE of the following holds:
 - (a) p(G) = 1, t(G) = 1, and if $u_1 \in P(G), u_2 \in T(G)$, then $(u_1, u_2) \in F(G)$,
 - (b) p(G) = 0, t(G) = 2, and if $u_1, u_2 \in T(G)$, then $(u_1, u_2) \in E$, or
 - (c) p(G) = 0, t(G) = 2, and if $u_1, u_2 \in T(G)$, then $(u_1, u_2) \in F(G)$.
- 3. For any integer $z \ge 0$, $G(V, E) \in \mathcal{L}_3(z) \iff z(G) = z$ and ONE of the following holds:
 - (a) p(G) = 1 and t(G) = 0, or
 - (b) p(G) = 0, t(G) = 3, and, for some ordering of T(G), if $u_1, u_2, u_3 \in T(G)$, then $(u_1, u_2), (u_1, u_3) \in E$.

In the proof of the following Lemma, the set $\mathcal{L}_i(z)(j)$ refers to those graphs in $\mathcal{L}_i(z)$ that result from case (j). For example, the set $\mathcal{L}_1(z)(a)$ consists of graphs in $\mathcal{L}_1(z)$ such that case (a) is satisfied: For any integer $z \ge 0$, $G(V, E) \in \mathcal{L}_1(z)(a) \iff z(G) = z$, p(G) = 1, t(G) = 1, and if $u_1 \in P(G)$, $u_2 \in T(G)$, then $(u_1, u_2) \in F(G)$.

Lemma 5.1. In $\Gamma_{\{B3,T,C\}}(n)$, \mathcal{A} can choose edges e_1, e_3, \ldots, e_k so that:

- when $n \ge 11$ and k = 15, $G_{n,15} \in \mathcal{L}_1(n-11)$, or
- when $n \ge 15$ and k = 21, $G_{n,21} \in \mathcal{L}_1(n-15)$.

Proof. Let $n \geq 11$. \mathcal{A} chooses (v_1, v_2) . Up to isomorphism, \mathcal{B} must choose (v_1, v_3) . \mathcal{A} chooses (v_1, v_4) . \mathcal{B} must choose (v_2, v_5) . \mathcal{A} chooses (v_2, v_6) . \mathcal{B} has two choices: (v_3, v_5) or (v_3, v_7) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now \mathcal{B} has six choices: (v_4, v_5) , (v_4, v_6) , (v_4, v_8) , (v_5, v_8) , (v_6, v_7) , or (v_6, v_8) .

- If \mathcal{B} chooses one of (v_4, v_5) or (v_4, v_8) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_6, v_7) or (v_6, v_9) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} has five choices: $(v_7, v_8), (v_7, v_{10}), (v_8, v_9), (v_8, v_{10}), \text{and } (v_9, v_{10}).$
 - If \mathcal{B} chooses one of (v_7, v_8) or (v_8, v_{10}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_9, v_{10}) or (v_9, v_{11}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
 - If \mathcal{B} chooses one of (v_7, v_{10}) or (v_8, v_9) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: (v_8, v_{10}) , (v_8, v_{11}) , or (v_{10}, v_{11}) . If \mathcal{B} chooses (v_8, v_{10}) , \mathcal{A} chooses (v_9, v_{11}) . If \mathcal{B} chooses (v_8, v_{11}) , \mathcal{A} chooses (v_9, v_{10}) . If \mathcal{B} chooses (v_{10}, v_{11}) , \mathcal{A} chooses (v_8, v_{10}) . In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.
 - If \mathcal{B} chooses (v_9, v_{10}) , then \mathcal{A} chooses (v_7, v_{10}) . \mathcal{B} has three choices: (v_8, v_9) , (v_8, v_{11}) , or (v_9, v_{11}) . If \mathcal{B} chooses one of (v_8, v_9) or (v_8, v_{11}) , \mathcal{A} chooses the other edge. If \mathcal{B} chooses (v_9, v_{11}) , \mathcal{A} chooses (v_8, v_{10}) . In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.
- If \mathcal{B} chooses one of (v_4, v_6) or (v_5, v_8) , then \mathcal{A} chooses the other edge.

If \mathcal{B} chooses one of (v_6, v_7) or (v_6, v_8) , then \mathcal{A} chooses (v_5, v_8) .

The resulting three graphs have:

- 1. n-8 vertices of degree 0, two vertices of degree 1, and two vertices of degree 2,
- 2. the two vertices of degree 2 are connected by an edge, and
- 3. for each pair of vertices v_i and v_j of degree 1 or 2, not both of degree 2, the distance between v_i and v_j is at least 3.

Gameplay is identical in each case, so we may assume the first case. \mathcal{B} has four choices: (v_4, v_7) , (v_4, v_9) , (v_7, v_8) , or (v_7, v_9) .

- If \mathcal{B} chooses (v_4, v_7) , then \mathcal{A} chooses (v_6, v_9) .
 - If \mathcal{B} chooses (v_4, v_9) , then \mathcal{A} chooses (v_6, v_7) .
 - If \mathcal{B} chooses (v_7, v_9) , then \mathcal{A} chooses (v_4, v_7) .

The resulting three graphs have:

1. n-9 vertices of degree 0, two vertices of degree 1, and one vertex of degree 2, and

2. for each pair of vertices v_i and v_j of degree 1 or 2, the distance between v_i and v_j is at least 3.

Gameplay is identical in each case, so we may consider the first case. \mathcal{B} has four choices: (v_7, v_8) , (v_7, v_{10}) , (v_8, v_9) , or (v_8, v_{10}) .

- * If \mathcal{B} chooses one of (v_7, v_8) or (v_8, v_{10}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_9, v_{10}) or (v_9, v_{11}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
- * If \mathcal{B} chooses one of (v_7, v_{10}) or (v_8, v_9) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: (v_8, v_{10}) , (v_8, v_{11}) , or (v_{10}, v_{11}) . If \mathcal{B} chooses (v_8, v_{10}) , \mathcal{A} chooses (v_9, v_{11}) . If \mathcal{B} chooses (v_8, v_{11}) , \mathcal{A} chooses (v_9, v_{10}) . If \mathcal{B} chooses (v_{10}, v_{11}) , \mathcal{A} chooses (v_8, v_{10}) . In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.
- If \mathcal{B} chooses (v_7, v_8) , then \mathcal{A} chooses (v_4, v_9) . \mathcal{B} has five choices: (v_6, v_7) , $(v_6, v_{10}), (v_7, v_9), (v_7, v_{10}), \text{ or } (v_9, v_{10})$.
 - * If \mathcal{B} chooses (v_6, v_7) , then \mathcal{A} chooses (v_8, v_{10}) . \mathcal{B} has two choices: (v_9, v_{10}) or (v_9, v_{11}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
 - * If \mathcal{B} chooses one of (v_6, v_{10}) or (v_7, v_9) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: (v_8, v_{10}) , (v_8, v_{11}) , or (v_{10}, v_{11}) . If \mathcal{B} chooses (v_8, v_{10}) , \mathcal{A} chooses (v_9, v_{11}) . If \mathcal{B} chooses (v_8, v_{10}) , \mathcal{A} chooses (v_9, v_{11}) . If \mathcal{B} chooses (v_8, v_{10}) . If \mathcal{B} chooses (v_{10}, v_{11}) , \mathcal{A} chooses (v_8, v_{10}) . In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.
 - * If \mathcal{B} chooses one of (v_7, v_{10}) or (v_9, v_{10}) , then \mathcal{A} chooses the other edge. \mathcal{B} has four choices: (v_6, v_8) , (v_6, v_{10}) , (v_6, v_{11}) , or (v_9, v_{11}) .
 - If \mathcal{B} chooses one of (v_6, v_8) or (v_9, v_{11}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
 - If \mathcal{B} chooses one of (v_6, v_{10}) or (v_6, v_{11}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-11)(b)$.

Now let $n \geq 15$. \mathcal{A} chooses (v_1, v_2) . Up to isomorphism, \mathcal{B} must choose (v_1, v_3) . \mathcal{A} chooses (v_1, v_4) . \mathcal{B} must choose (v_2, v_5) . \mathcal{A} chooses (v_3, v_5) . \mathcal{B} has four choices: (v_2, v_6) , (v_4, v_5) , (v_4, v_6) , or (v_5, v_6) .

- If \mathcal{B} chooses one of (v_2, v_6) or (v_4, v_6) , then \mathcal{A} chooses the other edge. Now \mathcal{B} has two choices: (v_3, v_6) or (v_3, v_7) .
 - If \mathcal{B} chooses (v_3, v_6) , then \mathcal{A} chooses (v_4, v_7) . Call this graph $G_{(1)}^1$.
 - If \mathcal{B} chooses (v_3, v_7) , then \mathcal{A} chooses (v_4, v_5) . This graph is isomorphic to $G^1_{(1)}$.
- If \mathcal{B} chooses (v_4, v_5) , then \mathcal{A} chooses (v_2, v_6) . Now \mathcal{B} has three choices: (v_3, v_6) , (v_3, v_7) , or (v_6, v_7) .

- If \mathcal{B} chooses (v_3, v_6) , then \mathcal{A} chooses (v_4, v_7) . This graph is isomorphic to $G_{(1)}^1$.
- If \mathcal{B} chooses (v_3, v_7) , then \mathcal{A} chooses (v_4, v_6) . This graph is isomorphic to $G_{(1)}^1$.
- If \mathcal{B} chooses (v_6, v_7) , then \mathcal{A} chooses (v_3, v_6) . This graph is isomorphic to $G^1_{(1)}$.
- If \mathcal{B} chooses (v_5, v_6) , then \mathcal{A} chooses (v_4, v_6) . Now \mathcal{B} has two choices: (v_2, v_7) or (v_4, v_7) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Call this graph $G^1_{(2)}$.

We can now examine the two graphs $G_{(1)}^1$ and $G_{(2)}^1$. **Case 1.1:** $G_{n,9} = G_{(1)}^1$. \mathcal{B} has three choices: (v_5, v_7) , (v_5, v_8) , or (v_7, v_8) .

- If \mathcal{B} chooses (v_5, v_7) , then \mathcal{A} chooses (v_7, v_8) . Call this graph $G_{(1)}^2$.
- If \mathcal{B} chooses one of (v_5, v_8) or (v_7, v_8) , then \mathcal{A} chooses the other edge. Call this graph $G^2_{(2)}$.

Case 1.2: $G_{n,9} = G_{(2)}^1$. \mathcal{B} has three choices: $(v_3, v_7), (v_3, v_8), \text{ or } (v_6, v_8).$

- If \mathcal{B} chooses one of (v_3, v_7) or (v_6, v_8) , then \mathcal{A} chooses the other edge. This graph is isomorphic to $G^2_{(1)}$.
- If \mathcal{B} chooses (v_3, v_8) , then \mathcal{A} chooses (v_6, v_9) . Call this graph $G_{(3)}^2$.

Now we look at the three graphs $G_{(i)}^2$, for i = 1, 2, 3. **Case 2.1:** $G_{n,11} = G_{(1)}^2$. \mathcal{B} must choose (v_8, v_9) . \mathcal{A} chooses (v_8, v_{10}) . \mathcal{B} must choose (v_9, v_{11}) . \mathcal{A} chooses (v_{10}, v_{11}) . \mathcal{B} has two choices: (v_9, v_{12}) or (v_{11}, v_{12}) .

If \mathcal{B} chooses (v_9, v_{12}) , \mathcal{A} chooses (v_{11}, v_{13}) .

If \mathcal{B} chooses (v_{11}, v_{12}) , \mathcal{A} chooses (v_9, v_{13}) .

The resulting two graphs are isomorphic, so without loss of generality we may consider the first case. \mathcal{B} has five choices: $(v_{10}, v_{12}), (v_{10}, v_{14}), (v_{12}, v_{13}), (v_{12}, v_{14}), \text{ or } (v_{13}, v_{14}).$

- If \mathcal{B} chooses one of (v_{10}, v_{12}) or (v_{12}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses one of (v_{10}, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: $(v_{12}, v_{14}), (v_{12}, v_{15}),$ or $(v_{14}, v_{15}).$
 - If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{15}) , then \mathcal{A} chooses (v_{13}, v_{14}) .
 - If \mathcal{B} chooses (v_{14}, v_{15}) , then \mathcal{A} chooses (v_{12}, v_{14}) .

The resulting three graphs are in $\mathcal{L}_1(n-15)(b)$.

• If \mathcal{B} chooses (v_{13}, v_{14}) , then \mathcal{A} chooses (v_{10}, v_{14}) . \mathcal{B} has three choices: (v_{12}, v_{13}) , (v_{12}, v_{15}) , or (v_{13}, v_{15}) .

If \mathcal{B} chooses one of (v_{12}, v_{13}) or (v_{12}, v_{15}) , then \mathcal{A} chooses the other edge.

If \mathcal{B} chooses (v_{13}, v_{15}) , then \mathcal{A} chooses (v_{12}, v_{14}) .

The resulting two graphs are in $\mathcal{L}_1(n-15)(b)$.

Case 2.2: $G_{n,11} = G_{(2)}^2$. \mathcal{B} must choose (v_7, v_9) . \mathcal{A} chooses (v_8, v_{10}) . \mathcal{B} has two choices: (v_9, v_{10}) or (v_9, v_{11}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} has two choices: (v_{10}, v_{12}) or (v_{11}, v_{12}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} must choose (v_{11}, v_{13}) . \mathcal{A} chooses (v_{12}, v_{14}) . \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.

Case 2.3: $G_{n,11} = G_{(3)}^2$. \mathcal{B} has four choices: $(v_7, v_8), (v_7, v_{10}), (v_8, v_9), \text{ or } (v_8, v_{10}).$

Subcase 2.3.1: If \mathcal{B} chooses one of (v_7, v_8) or (v_8, v_9) , then \mathcal{A} chooses the other edge. \mathcal{B} must choose (v_9, v_{10}) . \mathcal{A} chooses (v_{10}, v_{11}) . \mathcal{B} has two choices: (v_{10}, v_{12}) or (v_{11}, v_{12}) .

If \mathcal{B} chooses (v_{10}, v_{12}) , then \mathcal{A} chooses (v_{11}, v_{13}) .

If \mathcal{B} chooses (v_{11}, v_{12}) , then \mathcal{A} chooses (v_{10}, v_{13}) .

The resulting two graphs are isomorphic, so without loss of generality we may consider the first case. \mathcal{B} has four choices: (v_{11}, v_{14}) , (v_{12}, v_{13}) , (v_{12}, v_{14}) , or (v_{13}, v_{14}) .

- If \mathcal{B} chooses one of (v_{11}, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has four choices: $(v_{12}, v_{14}), (v_{12}, v_{15}), (v_{13}, v_{15}),$ or (v_{14}, v_{15}) .
 - If \mathcal{B} chooses one of (v_{12}, v_{14}) or (v_{13}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{14}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(c)$.
- If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{11}, v_{14}) . \mathcal{B} has four choices: (v_{12}, v_{13}) , (v_{12}, v_{15}) , (v_{13}, v_{15}) , or (v_{14}, v_{15}) .
 - If \mathcal{B} chooses one of (v_{12}, v_{13}) or (v_{13}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses (v_{12}, v_{15}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(c)$.
 - If \mathcal{B} chooses (v_{14}, v_{15}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(d)$.
- If \mathcal{B} chooses (v_{13}, v_{14}) , then \mathcal{A} chooses (v_{12}, v_{13}) . \mathcal{B} has two choices: (v_{11}, v_{15}) or (v_{14}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n 15)(d)$.

Subcase 2.3.2: If \mathcal{B} chooses (v_7, v_{10}) , then \mathcal{A} chooses (v_8, v_{11}) .

If \mathcal{B} chooses (v_8, v_{10}) , then \mathcal{A} chooses (v_7, v_{11}) .

The two resulting graphs are isomorphic, so without loss of generality we may consider the first case. \mathcal{B} has six choices: (v_8, v_9) , (v_8, v_{12}) , (v_9, v_{10}) , (v_9, v_{11}) , (v_9, v_{12}) , or (v_{11}, v_{12}) .

- If \mathcal{B} chooses one of (v_8, v_9) or (v_9, v_{12}) , then \mathcal{A} chooses the other edge. Call this graph $G^3_{(1)}$.
- If \mathcal{B} chooses one of (v_8, v_{12}) or (v_9, v_{10}) , then \mathcal{A} chooses the other edge. Call this graph $G^3_{(2)}$.
- If \mathcal{B} chooses one of (v_9, v_{11}) or (v_{11}, v_{12}) , then \mathcal{A} chooses the other edge. Call this graph $G^3_{(3)}$.

All that remains is for us to look at the three graphs $G_{(i)}^3$, for i = 1, 2, 3.

Case 3.1: $G_{n,15} = G_{(1)}^3$. \mathcal{B} has two choices: (v_{10}, v_{11}) or (v_{10}, v_{13}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} has five choices: $(v_{11}, v_{13}), (v_{11}, v_{14}), (v_{12}, v_{13}), (v_{12}, v_{14})$, or (v_{13}, v_{14}) .

- If \mathcal{B} chooses one of (v_{11}, v_{13}) or (v_{13}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{12}, v_{14}) or (v_{12}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses one of (v_{11}, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: (v_{12}, v_{14}) , (v_{12}, v_{15}) , or (v_{14}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{14}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.
- If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{11}, v_{14}) . \mathcal{B} has three choices: (v_{12}, v_{13}) , (v_{12}, v_{15}) , or (v_{13}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{13}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{13}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.

Case 3.2: $G_{n,15} = G_{(2)}^3$. \mathcal{B} has three choices: $(v_9, v_{11}), (v_9, v_{13}), \text{ or } (v_{11}, v_{13}).$

Subcase 3.2.1: If \mathcal{B} chooses one of (v_9, v_{11}) or (v_{11}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has five choices: $(v_{10}, v_{12}), (v_{10}, v_{14}), (v_{12}, v_{13}), \text{ or } (v_{12}, v_{14}).$

• If \mathcal{B} chooses one of (v_{10}, v_{12}) or (v_{12}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.

If B chooses one of (v₁₀, v₁₄) or (v₁₂, v₁₃), then A chooses the other edge. B has three choices: (v₁₂, v₁₄), (v₁₂, v₁₅), or (v₁₄, v₁₅).
If B chooses (v₁₂, v₁₄), then A chooses (v₁₃, v₁₅).
If B chooses (v₁₂, v₁₅), then A chooses (v₁₃, v₁₄).
If B chooses (v₁₄, v₁₅), then A chooses (v₁₂, v₁₄).
The resulting three graphs are in L₁(n - 15)(b).

Subcase 3.2.2: If \mathcal{B} chooses (v_9, v_{13}) , then \mathcal{A} chooses (v_{10}, v_{11}) . \mathcal{B} has five choices: $(v_{11}, v_{13}), (v_{11}, v_{14}), (v_{12}, v_{13}), (v_{12}, v_{14}), \text{ or } (v_{13}, v_{14}).$

- If \mathcal{B} chooses one of (v_{11}, v_{13}) or (v_{13}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{12}, v_{14}) or (v_{12}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses one of (v_{11}, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: (v_{12}, v_{14}) , (v_{12}, v_{15}) , or (v_{14}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{14}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.
- If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{11}, v_{14}) . \mathcal{B} has three choices: (v_{12}, v_{13}) , (v_{12}, v_{15}) , or (v_{13}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{13}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{13}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.

Case 3.3: $G_{n,15} = G_{(3)}^3$. \mathcal{B} has five choices: $(v_8, v_{10}), (v_8, v_{13}), (v_{10}, v_{12}), (v_{10}, v_{13}), or <math>(v_{12}, v_{13})$.

Subcase 3.3.1: If \mathcal{B} chooses one of (v_8, v_{10}) or (v_{10}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has five choices: $(v_9, v_{13}), (v_9, v_{14}), (v_{12}, v_{13}), (v_{12}, v_{14}),$ or (v_{13}, v_{14}) .

- If \mathcal{B} chooses one of (v_9, v_{13}) or (v_{13}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{12}, v_{14}) or (v_{12}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses one of (v_9, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: $(v_{12}, v_{14}), (v_{12}, v_{15}),$ or $(v_{14}, v_{15}).$
 - If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.

- If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{14}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.
- If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_9, v_{14}) . \mathcal{B} has three choices: (v_{12}, v_{13}) , (v_{12}, v_{15}) , or (v_{13}, v_{15}) .
 - If \mathcal{B} chooses (v_{12}, v_{13}) , then \mathcal{A} chooses (v_{13}, v_{15}) . The resulting graph is in $\mathcal{L}_1(n-15)(b)$.
 - If \mathcal{B} chooses one of (v_{12}, v_{15}) or (v_{13}, v_{15}) , then \mathcal{A} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-15)(d)$.

Subcase 3.3.2: If \mathcal{B} chooses (v_8, v_{13}) , then \mathcal{A} chooses (v_9, v_{10}) . \mathcal{B} has five choices: $(v_{10}, v_{12}), (v_{10}, v_{14}), (v_{12}, v_{13}), \text{ or } (v_{12}, v_{14}).$

- If \mathcal{B} chooses one of (v_{10}, v_{12}) or (v_{12}, v_{14}) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses one of (v_{10}, v_{14}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has three choices: $(v_{12}, v_{14}), (v_{12}, v_{15}),$ or $(v_{14}, v_{15}).$

If \mathcal{B} chooses (v_{12}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) .

If \mathcal{B} chooses (v_{12}, v_{15}) , then \mathcal{A} chooses (v_{13}, v_{14}) .

If \mathcal{B} chooses (v_{14}, v_{15}) , then \mathcal{A} chooses (v_{12}, v_{14}) .

The resulting three graphs are in $\mathcal{L}_1(n-15)(b)$.

Subcase 3.3.3: If \mathcal{B} chooses one of (v_{10}, v_{12}) or (v_{12}, v_{13}) , then \mathcal{A} chooses the other edge. \mathcal{B} has five choices: (v_8, v_{10}) , (v_8, v_{13}) , (v_8, v_{14}) , (v_{10}, v_{14}) , or (v_{13}, v_{14}) .

- If \mathcal{B} chooses (v_8, v_{10}) , then \mathcal{A} chooses (v_9, v_{14}) . \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.
- If \mathcal{B} chooses (v_8, v_{13}) , then \mathcal{A} chooses (v_9, v_{14}) . \mathcal{B} has three choices: (v_{10}, v_{14}) , (v_{10}, v_{15}) , or (v_{14}, v_{15}) .

If \mathcal{B} chooses (v_{10}, v_{14}) , then \mathcal{A} chooses (v_{13}, v_{15}) .

If \mathcal{B} chooses (v_{10}, v_{15}) , then \mathcal{A} chooses (v_{13}, v_{14}) .

If \mathcal{B} chooses (v_{14}, v_{15}) , then \mathcal{A} chooses (v_{10}, v_{14}) .

The resulting three graphs are in $\mathcal{L}_1(n-15)(b)$.

• If \mathcal{B} chooses (v_8, v_{14}) , then \mathcal{A} chooses (v_9, v_{10}) . \mathcal{B} has two choices: (v_{13}, v_{14}) or (v_{13}, v_{15}) . \mathcal{A} chooses whichever edge \mathcal{B} did not. The resulting graph is in $\mathcal{L}_1(n-15)(a)$.

If B chooses one of (v₁₀, v₁₄) or (v₁₃, v₁₄), then A chooses the other edge. B has three choices: (v₈, v₁₃), (v₈, v₁₅), or (v₁₃, v₁₅).
If B chooses (v₈, v₁₃), then A chooses (v₉, v₁₅).
If B chooses (v₈, v₁₅), then A chooses (v₉, v₁₃).
If B chooses (v₁₃, v₁₅), then A chooses (v₈, v₁₄).
The resulting three graphs are in L₁(n - 15)(b).

Lemma 5.2. In $\Gamma_{\{B3,T,C\}}(n)$, \mathcal{B} can choose edges e_2, e_4, \ldots, e_k so that:

- when $n \ge 9$ and k=12, $G_{n,12} \in \mathcal{L}_1(n-9)$, or
- when $n \ge 13$ and k=18, $G_{n,18} \in \mathcal{L}_1(n-13)$.

Proof. Let $n \ge 9$. Up to isomorphism, \mathcal{A} must choose (v_1, v_2) . \mathcal{B} chooses (v_1, v_3) . \mathcal{A} has two choices: (v_1, v_4) or (v_2, v_4) .

- If \mathcal{A} chooses (v_1, v_4) , then \mathcal{B} chooses (v_2, v_5) .
- If \mathcal{A} chooses (v_2, v_4) , then \mathcal{B} chooses (v_1, v_5) .

The two resulting graphs are isomorphic, so without loss of generality we may consider the first case. \mathcal{A} has four choices: (v_2, v_6) , (v_3, v_5) , (v_3, v_6) , or (v_5, v_6) .

• If \mathcal{A} chooses one of (v_2, v_6) or (v_3, v_5) , then \mathcal{B} chooses the other edge.

If \mathcal{A} chooses (v_3, v_6) , then \mathcal{B} chooses (v_3, v_5) .

The two resulting graphs are isomorphic, so without loss of generality, we may consider the first case. \mathcal{A} has four choices: (v_3, v_6) , (v_3, v_7) , (v_4, v_6) , or (v_4, v_7) .

- If \mathcal{A} chooses (v_3, v_6) , then \mathcal{B} chooses (v_5, v_7) . Call this graph $G_{(1)}$.
- If \mathcal{A} chooses one of (v_3, v_7) or (v_4, v_6) , then \mathcal{B} chooses the other edge. Call this graph $G_{(2)}$.
- If \mathcal{A} chooses (v_4, v_7) , then \mathcal{B} chooses (v_3, v_7) . This graph is isomorphic to $G_{(2)}$.
- If \mathcal{A} chooses (v_5, v_6) , then \mathcal{B} chooses (v_3, v_5) . \mathcal{A} has three choices: (v_2, v_7) , (v_4, v_6) , or (v_4, v_7) .
 - If \mathcal{A} chooses one of (v_2, v_7) or (v_4, v_7) , then \mathcal{B} chooses the other edge. This graph is isomorphic to $G_{(2)}$ above.
 - If \mathcal{A} chooses (v_4, v_6) , then \mathcal{B} chooses (v_2, v_7) . Call this graph $G_{(3)}$.

We can now examine the three graphs $G_{(i)}$ for i = 1, 2, 3. Case 1: $G_{n,8} = G_{(1)}$. \mathcal{A} has four choices: $(v_4, v_6), (v_4, v_7), (v_4, v_8), \text{ or } (v_6, v_8)$.

- If \mathcal{A} chooses one of (v_4, v_6) or (v_4, v_8) , then \mathcal{B} chooses the other edge. \mathcal{A} has two choices: (v_7, v_8) or (v_7, v_9) . \mathcal{B} chooses whichever edge \mathcal{A} did not. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
- If \mathcal{A} chooses one of (v_4, v_7) or (v_6, v_8) , then \mathcal{B} chooses the other edge. \mathcal{A} has three choices: (v_4, v_8) , (v_4, v_9) , or (v_8, v_9) .
 - If \mathcal{A} chooses (v_4, v_8) , \mathcal{B} chooses (v_7, v_9) .

If \mathcal{A} chooses (v_4, v_9) , \mathcal{B} chooses (v_7, v_8) .

If \mathcal{A} chooses (v_8, v_9) , \mathcal{B} chooses (v_4, v_8) .

In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.

Case 2: $G_{n,8} = G_{(2)}$. \mathcal{A} has seven choices: (v_4, v_5) , (v_4, v_7) , (v_4, v_8) , (v_5, v_8) , (v_6, v_7) , (v_6, v_8) , or (v_7, v_8) .

- If \mathcal{A} chooses one of (v_4, v_5) or (v_6, v_8) , then \mathcal{B} chooses the other edge. \mathcal{A} has two choices: (v_7, v_8) or (v_7, v_9) . \mathcal{B} chooses whichever edge \mathcal{A} did not. The resulting graph is in $\mathcal{L}_1(n-11)(a)$.
- If \mathcal{A} chooses one of (v_4, v_7) or (v_5, v_8) , then \mathcal{B} chooses the other edge. \mathcal{A} has three choices: (v_6, v_8) , (v_6, v_9) , or (v_8, v_9) .

If \mathcal{A} chooses (v_6, v_8) , \mathcal{B} chooses (v_7, v_9) .

- If \mathcal{A} chooses (v_6, v_9) , \mathcal{B} chooses (v_7, v_8) .
- If \mathcal{A} chooses (v_8, v_9) , \mathcal{B} chooses (v_6, v_8) .

In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.

- If \mathcal{A} chooses (v_4, v_8) , then \mathcal{B} chooses (v_5, v_8) . \mathcal{A} has three choices: (v_6, v_7) , (v_6, v_9) , or (v_7, v_9) .
 - If \mathcal{A} chooses (v_6, v_7) , \mathcal{B} chooses (v_7, v_9) .
 - If \mathcal{A} chooses (v_6, v_9) , \mathcal{B} chooses (v_7, v_8) .
 - If \mathcal{A} chooses (v_7, v_9) , \mathcal{B} chooses (v_6, v_7) .

In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.

- If \mathcal{A} chooses (v_6, v_7) , then \mathcal{B} chooses (v_4, v_8) . \mathcal{A} has three choices: (v_5, v_8) , (v_5, v_9) , or (v_8, v_9) .
 - If \mathcal{A} chooses (v_5, v_8) , \mathcal{B} chooses (v_7, v_9) .

If \mathcal{A} chooses (v_5, v_9) , \mathcal{B} chooses (v_7, v_8) .

If \mathcal{A} chooses (v_8, v_9) , \mathcal{B} chooses (v_5, v_8) .

In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.

If A chooses (v₇, v₈), then B chooses (v₄, v₇). A has three choices: (v₅, v₈), (v₅, v₉), or (v₈, v₉).
If A chooses (v₅, v₈), B chooses (v₆, v₉).
If A chooses (v₅, v₉), B chooses (v₆, v₈).
If A chooses (v₈, v₉), B chooses (v₅, v₈).
In each case, the resulting graph is in L₁(n - 11)(b).

Case 3: $G_{n,8} = G_{(3)}$. \mathcal{A} has five choices: $(v_3, v_7), (v_3, v_8), (v_4, v_7), (v_4, v_8), \text{ or } (v_7, v_8)$.

- If A chooses one of (v₃, v₇) or (v₇, v₈), then B chooses the other edge. A has three choices: (v₄, v₈), (v₄, v₉), or (v₈, v₉).
 If A chooses (v₄, v₈), B chooses (v₆, v₉).
 If A chooses (v₄, v₉), B chooses (v₆, v₈).
 If A chooses (v₈, v₉), B chooses (v₄, v₈).
 In each case, the resulting graph is in L₁(n 11)(b).
- If A chooses one of (v₃, v₈) or (v₄, v₇), then B chooses the other edge. A has three choices: (v₆, v₈), (v₆, v₉), or (v₈, v₉).
 If A chooses (v₆, v₈), B chooses (v₇, v₉).
 If A chooses (v₆, v₉), B chooses (v₇, v₈).
 If A chooses (v₈, v₉), B chooses (v₆, v₈).
 In each case, the resulting graph is in L₁(n 11)(b).
- If A chooses one of (v₄, v₈), then B chooses (v₃, v₈). A has three choices: (v₆, v₇), (v₆, v₉), or (v₇, v₉).
 If A chooses (v₆, v₇), B chooses (v₇, v₉).
 If A chooses (v₆, v₉), B chooses (v₇, v₈).
 If A chooses (v₇, v₉), B chooses (v₆, v₇).
 - In each case, the resulting graph is in $\mathcal{L}_1(n-11)(b)$.

Now let $n \geq 13$. Up to isomorphism, \mathcal{A} must choose (v_1, v_2) . \mathcal{B} chooses (v_1, v_3) . \mathcal{A} has two choices: (v_1, v_4) or (v_2, v_4) .

- If \mathcal{A} chooses (v_1, v_4) , then \mathcal{B} chooses (v_2, v_5) .
- If \mathcal{A} chooses (v_2, v_4) , then \mathcal{B} chooses (v_1, v_5) .

The two resulting graphs are isomorphic, so without loss of generality we may assume the first case. \mathcal{A} has four choices: (v_2, v_6) , (v_3, v_5) , (v_3, v_6) , or (v_5, v_6) .

- If \mathcal{A} chooses (v_2, v_6) , then \mathcal{B} chooses (v_3, v_7) .
 - If \mathcal{A} chooses (v_3, v_6) , then \mathcal{B} chooses (v_2, v_7) .
 - If \mathcal{A} chooses (v_5, v_6) , then \mathcal{B} chooses (v_2, v_7) .

The three resulting graphs are isomorphic, so without loss of generality we may assume the first case. \mathcal{A} has eight choices: (v_3, v_5) , (v_3, v_8) , (v_4, v_5) , (v_4, v_7) , (v_4, v_8) , (v_5, v_7) , (v_5, v_8) , or (v_7, v_8) .

- If \mathcal{A} chooses one of (v_3, v_5) or (v_4, v_5) , then \mathcal{B} chooses the other edge. Call this graph $G^1_{(1)}$.
- If \mathcal{A} chooses one of (v_3, v_8) or (v_5, v_7) , then \mathcal{B} chooses the other edge. Call this graph $G^1_{(2)}$.
- If \mathcal{A} chooses (v_4, v_7) , then \mathcal{B} chooses (v_5, v_7) . Call this graph $G^1_{(3)}$.
- If \mathcal{A} chooses one of (v_4, v_8) or (v_7, v_8) , then \mathcal{B} chooses the other edge. Call this graph $G^1_{(4)}$.
- If \mathcal{A} chooses (v_5, v_8) , then \mathcal{B} chooses (v_5, v_7) . This graph is isomorphic to $G^1_{(2)}$.
- If \mathcal{A} chooses (v_3, v_5) , then \mathcal{B} chooses (v_4, v_5) . \mathcal{A} must choose (v_2, v_6) . Then \mathcal{B} chooses (v_3, v_7) . This graph is isomorphic to $G^1_{(1)}$.

Now we need to consider the four graphs $G_{(i)}^1$ for i = 1, 2, 3, 4. **Case 1.1:** $G_{n,8} = G_{(1)}^1$. \mathcal{A} has four choices: $(v_4, v_6), (v_4, v_8), (v_6, v_7),$ or (v_6, v_8) .

- If \mathcal{A} chooses one of (v_4, v_6) or (v_6, v_7) , then \mathcal{B} the other edge. Call this graph $G^2_{(1)}$.
- If \mathcal{A} chooses (v_4, v_8) , then \mathcal{B} chooses (v_6, v_9) . If \mathcal{A} chooses (v_6, v_8) , then \mathcal{B} chooses (v_4, v_9) . The two resulting graphs are isomorphic, so y

The two resulting graphs are isomorphic, so without loss of generality we may consider the first case. Call this graph $G_{(2)}^2$.

Case 1.2: $G_{n,8} = G_{(2)}^1$. \mathcal{A} has seven choices:

• If \mathcal{A} chooses (v_4, v_5) , then \mathcal{B} chooses (v_7, v_9) .

If \mathcal{A} chooses (v_5, v_8) , then \mathcal{B} chooses (v_7, v_9) .

If \mathcal{A} chooses (v_6, v_9) , then \mathcal{B} chooses (v_6, v_7) .

The three resulting graphs are isomorphic, so we may consider the first case. Call this graph $G_{(3)}^2$.

If A chooses (v₄, v₆), then B chooses (v₇, v₉).
If A chooses one of (v₄, v₉) or (v₅, v₉), then B chooses the other edge.
If A chooses (v₆, v₈), then B chooses (v₅, v₉).
The three resulting graphs satisfy:

- 1. (z(G), p(G), t(G)) = (n 9, 2, 3),
- 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3, u_4, u_5\}$, then, up to isomorphism, $(u_3, u_4) \in E(G), (u_1, u_5), (u_4, u_5) \in F(G)$, and all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we may consider the first case. Call this graph $G_{(4)}^2$.

Case 1.3: $G_{n,8} = G_{(3)}^1$. \mathcal{A} has four choices: $(v_3, v_6), (v_3, v_8), (v_5, v_8), \text{ or } (v_6, v_8).$

- If \mathcal{A} chooses (v_3, v_6) , then \mathcal{B} chooses (v_4, v_6) . This graph is isomorphic to $G^2_{(1)}$.
- If \mathcal{A} chooses (v_3, v_8) , then \mathcal{B} chooses (v_5, v_9) . This graph is isomorphic to $G^2_{(3)}$.
- If \mathcal{A} chooses (v_5, v_8) , then \mathcal{B} chooses (v_3, v_9) . This graph is isomorphic to $G^2_{(3)}$.
- If \mathcal{A} chooses (v_6, v_8) , then \mathcal{B} chooses (v_6, v_9) . Call this graph $G_{(5)}^2$.

Case 1.4: $G_{n,8} = G_{(4)}^1$. \mathcal{A} has five choices: $(v_3, v_5), (v_3, v_9), (v_5, v_7), (v_5, v_9), \text{ or } (v_7, v_9).$

- If \mathcal{A} chooses one of (v_3, v_5) or (v_5, v_9) , then \mathcal{B} chooses the other edge. Call this graph $G^2_{(6)}$.
- If \mathcal{A} chooses (v_3, v_9) , then \mathcal{B} chooses (v_8, v_9) . This graph is isomorphic to $G^2_{(5)}$.
- If \mathcal{A} chooses (v_5, v_7) , then \mathcal{B} chooses (v_3, v_9) . This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 9, 2, 3),
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3, u_4, u_5\}$, then, up to isomorphism, $(u_3, u_4) \in E(G), (u_1, u_5), (u_4, u_5) \in F(G)$, and all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(4)}^2$.

• If \mathcal{A} chooses (v_7, v_9) , then \mathcal{B} chooses (v_4, v_9) . This graph is isomorphic to $G^2_{(5)}$.

We now need to look at the graphs $G_{(i)}^2$ for $1 \le i \le 6$.

Case 2.1: $G_{n,10} = G_{(1)}^2$. \mathcal{A} must choose (v_7, v_8) . \mathcal{B} chooses (v_8, v_9) . Call this graph $G_{(1)}^3$.

Case 2.2: $G_{n,10} = G_{(2)}^2$. \mathcal{A} has six choices: $(v_6, v_7), (v_6, v_{10}), (v_7, v_8), (v_7, v_9), (v_7, v_{10}),$ or (v_9, v_{10}) .

• If \mathcal{A} chooses one of (v_6, v_7) or (v_7, v_{10}) , then \mathcal{B} chooses the other edge. Call this graph $G^3_{(2)}$.

- If \mathcal{A} chooses one of (v_6, v_{10}) or (v_7, v_8) , then \mathcal{B} chooses the other edge. Call this graph $G^3_{(3)}$.
- If \mathcal{A} chooses one of (v_7, v_9) or (v_9, v_{10}) , then \mathcal{B} chooses the other edge. Call this graph $G^3_{(4)}$.

Case 2.3: $G_{n,10} = G_{(3)}^2$. \mathcal{A} has four choices: $(v_4, v_6), (v_4, v_{10}), (v_6, v_8), \text{ or } (v_6, v_{10}).$

- If \mathcal{A} chooses one of (v_4, v_6) or (v_6, v_{10}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 10, 3, 0), and
 - 2. for each pair $u_1, u_2 \in P(G), (u_1, u_2) \notin (E(G) \cup F(G)).$

Gameplay is identical to that of $G_{(2)}^3$.

• If \mathcal{A} chooses one of (v_4, v_{10}) or (v_6, v_8) , then \mathcal{B} chooses the other edge. Call this graph $G^3_{(5)}$.

Case 2.4: $G_{n,10} = G_{(4)}^2$. \mathcal{A} has twelve choices: (v_4, v_5) , (v_4, v_8) , (v_4, v_9) , (v_4, v_{10}) , (v_5, v_8) , (v_5, v_{10}) , (v_6, v_8) , (v_6, v_9) , (v_6, v_{10}) , (v_8, v_9) , (v_8, v_{10}) , or (v_9, v_{10}) .

- If \mathcal{A} chooses one of (v_4, v_5) or (v_6, v_{10}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 10, 3, 0), and
 - 2. for each pair $u_1, u_2 \in P(G), (u_1, u_2) \notin (E(G) \cup F(G)).$

Gameplay is identical to that of $G_{(2)}^3$.

• If \mathcal{A} chooses one of (v_4, v_8) or (v_5, v_{10}) , then \mathcal{B} chooses the other edge.

If \mathcal{A} chooses (v_4, v_9) , then \mathcal{B} chooses (v_5, v_{10}) .

- If \mathcal{A} chooses (v_4, v_{10}) , then \mathcal{B} chooses (v_5, v_{10}) .
- If \mathcal{A} chooses (v_6, v_8) , then \mathcal{B} chooses (v_5, v_{10}) .
- If \mathcal{A} chooses (v_6, v_9) , then \mathcal{B} chooses (v_4, v_{10}) .

In each case, the resulting graph satisfies:

- 1. (z(G), p(G), t(G)) = (n 10, 2, 2),
- 2. if $T(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in F(G)$, and
- 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we may consider the first one. Call this graph $G^3_{(6)}$.

- If \mathcal{A} chooses one of (v_5, v_8) or (v_8, v_{10}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 10, 2, 2),
 - 2. if $T(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(5)}^3$.

• If \mathcal{A} chooses (v_8, v_9) , then \mathcal{B} chooses or (v_5, v_{10}) .

If \mathcal{A} chooses (v_9, v_{10}) , then \mathcal{B} chooses or (v_5, v_{10}) .

These two graphs are isomorphic, so we may consider the first case. Call this graph $G^3_{(7)}$.

Case 2.5: $G_{n,10} = G_{(5)}^2$. \mathcal{A} has three choices: $(v_3, v_8), (v_3, v_{10}), \text{ or } (v_8, v_{10}).$

- If \mathcal{A} chooses one of (v_3, v_8) or (v_8, v_{10}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 10, 2, 2),
 - 2. if $T(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(6)}^3$.

• If \mathcal{A} chooses (v_3, v_{10}) , then \mathcal{B} chooses (v_4, v_{10}) . Call this graph $G^3_{(8)}$.

Case 2.6: $G_{n,10} = G_{(6)}^2$. \mathcal{A} has six choices: $(v_4, v_6), (v_4, v_{10}), (v_6, v_8), (v_6, v_9), (v_6, v_{10}),$ or (v_8, v_{10}) .

- If \mathcal{A} chooses one of (v_4, v_6) or (v_6, v_{10}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 10, 2, 2),
 - 2. if $T(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G^3_{(5)}$.

• If \mathcal{A} chooses one of (v_4, v_{10}) or (v_6, v_8) , then \mathcal{B} chooses the other edge. This graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 10, 2, 2),$$

- 2. if $T(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in F(G)$, and
- 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(6)}^3$.

• If \mathcal{A} chooses one of (v_6, v_9) or (v_8, v_{10}) , then \mathcal{B} chooses the other edge. Call this graph $G^3_{(9)}$.

Now let us consider the graphs $G_{(i)}^3$ for $1 \le i \le 9$.

Case 3.1: $G_{n,12} = G_{(1)}^3$. \mathcal{A} has two choices: (v_8, v_{10}) or (v_9, v_{10}) .

If \mathcal{A} chooses (v_8, v_{10}) , then \mathcal{B} chooses (v_9, v_{11}) .

If \mathcal{A} chooses (v_8, v_{10}) , then \mathcal{B} chooses (v_9, v_{11}) .

The two resulting graphs are isomorphic, so we may consider the first case. Call this graph $G_{(1)}^4$.

Case 3.2: $G_{n,12} = G_{(2)}^3$. \mathcal{A} has two choices: (v_8, v_9) or (v_8, v_{11}) . \mathcal{B} chooses whichever edge \mathcal{A} did not. Call this graph $G_{(2)}^4$.

Case 3.3: $G_{n,12} = G_{(3)}^3$. \mathcal{A} has three choices: $(v_7, v_9), (v_7, v_{11}), \text{ or } (v_9, v_{11}).$

- If \mathcal{A} chooses one of (v_7, v_9) or (v_9, v_{11}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(3)}^4$.
- If \mathcal{A} chooses (v_7, v_{11}) , then \mathcal{B} chooses (v_8, v_9) . This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1),
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then, up to isomorphism, $(u_1, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(2)}^4$.

Case 3.4: $G_{n,12} = G_{(4)}^3$. \mathcal{A} has five choices: (v_6, v_8) , (v_6, v_{11}) , (v_8, v_{10}) , (v_8, v_{11}) , or (v_{10}, v_{11}) .

- If \mathcal{A} chooses one of (v_6, v_8) or (v_8, v_{11}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1),
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then, up to isomorphism, $(u_1, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(2)}^4$.

• If \mathcal{A} chooses (v_6, v_{11}) , then \mathcal{B} chooses (v_7, v_8) . This graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 11, 2, 1)$$
, and

2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

• If \mathcal{A} chooses one of (v_8, v_{10}) or (v_{10}, v_{11}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(4)}^4$.

Case 3.5: $G_{n,12} = G_{(5)}^3$. \mathcal{A} has four choices: $(v_6, v_9), (v_6, v_{11}), (v_9, v_{10}),$ or $(v_9, v_{11}).$

If A chooses (v₆, v₉), then B chooses (v₈, v₁₁).
If A chooses (v₉, v₁₁), then B chooses (v₆, v₉).
In each case, the resulting graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 11, 2, 1)$$
, and
2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

• If \mathcal{A} chooses one of (v_6, v_{11}) or (v_9, v_{10}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(5)}^4$.

Case 3.6: $G_{n,12} = G_{(6)}^3$. \mathcal{A} has four choices: $(v_6, v_9), (v_6, v_{11}), (v_9, v_{10}),$ or $(v_9, v_{11}).$

- If A chooses (v₆, v₉), then B chooses (v₈, v₁₁).
 If A chooses (v₆, v₁₁), then B chooses (v₈, v₉).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1), and

2. if
$$P(G) = \{u_1, u_2\}$$
 and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

- If \mathcal{A} chooses one of (v_9, v_{10}) or (v_9, v_{11}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 1, 3),
 - 2. if $P(G) = \{u_1, \}$ and $T(G) = \{u_2, u_3, u_4\}$, then, up to isomorphism, $(u_1, u_2), (u_3, u_4) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(4)}^4$.

Case 3.7: $G_{n,12} = G_{(7)}^3$. \mathcal{A} has four choices: $(v_4, v_8), (v_4, v_{10}), (v_4, v_{11}), \text{ or } (v_{10}, v_{11}).$

- If A chooses (v₄, v₈), then B chooses (v₆, v₁₁).
 If A chooses (v₄, v₁₁), then B chooses (v₆, v₈).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1), and 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

- If A chooses (v₄, v₁₁), then B chooses (v₆, v₈).
 If A chooses (v₁₀, v₁₁), then B chooses (v₄, v₁₀).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 1, 3),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3, u_4\}$, then, up to isomorphism, $(u_2, u_3) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we can consider the first case. Call this graph $G_{(6)}^4$.

Case 3.8: $G_{n,12} = G_{(8)}^3$. \mathcal{A} has four choices: $(v_5, v_8), (v_5, v_{10}), (v_5, v_{11}), \text{ or } (v_8, v_{11}).$

- If \mathcal{A} chooses one of (v_5, v_8) or (v_8, v_{11}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1), and
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

- If \mathcal{A} chooses (v_5, v_{10}) , then \mathcal{B} chooses (v_8, v_{11}) . This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1),
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then, up to isomorphism, $(u_1, u_3) \in E(G), (u_2, u_3) \in F(G)$, and
 - 3. $(u_1, u_3) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(1)}^4$.

- If \mathcal{A} chooses (v_5, v_{11}) , then \mathcal{B} chooses (v_8, v_{10}) . This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 11, 2, 1),
 - 2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then, up to isomorphism, $(u_1, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(2)}^4$.

Case 3.9: $G_{n,12} = G_{(9)}^3$. \mathcal{A} has five choices: (v_4, v_6) , (v_4, v_{11}) , (v_6, v_{10}) , (v_6, v_{11}) , or (v_{10}, v_{11}) .

If A chooses (v₄, v₆), then B chooses (v₇, v₁₁).
If A chooses (v₄, v₁₁), then B chooses (v₆, v₇).
In each case, the resulting graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 11, 2, 1)$$
, and

2. if $P(G) = \{u_1, u_2\}$ and $T(G) = \{u_3\}$, then all pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^4$.

- If \mathcal{A} chooses (v_6, v_{10}) , then \mathcal{B} chooses (v_4, v_9) . Call this graph $G_{(7)}^4$.
- If \mathcal{A} chooses one of (v_6, v_{11}) or (v_{10}, v_{11}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(8)}^4$.

Now we consider the graphs $G_{(i)}^4$ for $1 \le i \le 8$. Case 4.1: $G_{n,14} = G_{(1)}^4$. \mathcal{A} has four choices: $(v_9, v_{12}), (v_{10}, v_{11}), (v_{10}, v_{12}), \text{ or } (v_{11}, v_{12}).$

- If A chooses one of (v₉, v₁₂) or (v₁₀, v₁₁), then B chooses the other edge.
 If A chooses (v₁₀, v₁₂), then B chooses (v₉, v₁₂).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then, up to isomorphism, $(u_2, u_3) \in E(G)$, $(u_1, u_2) \in F(G)$, and
 - 3. $(u_1, u_3) \in (E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we may consider the first case. Call this graph $G_{(1)}^5$.

• If \mathcal{A} chooses (v_{11}, v_{12}) , then \mathcal{B} chooses (v_{10}, v_{11}) . Call this graph $G_{(2)}^5$.

Case 4.2: $G_{n,14} = G_{(2)}^4$. \mathcal{A} has five choices: $(v_9, v_{10}), (v_9, v_{12}), (v_{10}, v_{11}), (v_{10}, v_{12}),$ or (v_{11}, v_{12}) .

- If \mathcal{A} chooses one of (v_9, v_{10}) or (v_{10}, v_{12}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(3)}^5$.
- If A chooses one of (v₉, v₁₂) or (v₁₀, v₁₁), then B chooses the other edge.
 If A chooses (v₁₁, v₁₂), then B chooses (v₉, v₁₂).

In each case, the resulting graph satisfies:

- 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
- 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in E(G)$, and
- 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we may consider the first case. Call this graph $G_{(4)}^5$.

Case 4.3: $G_{n,14} = G_{(3)}^4$. \mathcal{A} has four choices: $(v_8, v_{10}), (v_8, v_{12}), (v_{10}, v_{11}), \text{ or } (v_{10}, v_{12}).$

• If \mathcal{A} chooses one of (v_8, v_{10}) or (v_{10}, v_{12}) , then \mathcal{B} chooses the other edge. This graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 12, 2, 0)$$
, and

2. if $P(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^5$.

- If \mathcal{A} chooses one of (v_8, v_{12}) or (v_{10}, v_{11}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(4)}^5$.

Case 4.4: $G_{n,14} = G_{(4)}^4$. \mathcal{A} has five choices: (v_6, v_8) , (v_6, v_{11}) , (v_6, v_{12}) , (v_8, v_{12}) , or (v_{11}, v_{12}) .

If A chooses (v₆, v₈), then B chooses (v₇, v₁₂).
If A chooses (v₆, v₁₂), then B chooses (v₇, v₈).
In each case, the resulting graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 12, 2, 0)$$
, and
2. if $P(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^5$.

- If \mathcal{A} chooses (v_6, v_{11}) , then \mathcal{B} chooses (v_7, v_{12}) . Call this graph $G_{(5)}^5$.
- If \mathcal{A} chooses one of (v_8, v_{12}) or (v_{11}, v_{12}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(6)}^5$.

Case 4.5: $G_{n,14} = G_{(5)}^4$. \mathcal{A} has five choices: (v_8, v_9) , (v_8, v_{12}) , (v_9, v_{11}) , (v_9, v_{12}) , or (v_{11}, v_{12}) .

• If \mathcal{A} chooses (v_8, v_9) , then \mathcal{B} chooses (v_{10}, v_{12}) . This graph satisfies:

1.
$$(z(G), p(G), t(G)) = (n - 12, 2, 0)$$
, and

2. if $P(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^5$.

- If \mathcal{A} chooses one of (v_8, v_{12}) or (v_9, v_{11}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(5)}^5$.

• If \mathcal{A} chooses one of (v_9, v_{12}) or (v_{11}, v_{12}) , then \mathcal{B} chooses the other edge. Call this graph $G_{(7)}^5$.

Case 4.6: $G_{n,14} = G_{(6)}^4$. \mathcal{A} has six choices: $(v_8, v_{10}), (v_8, v_{11}), (v_8, v_{12}), (v_{10}, v_{11}), (v_{10}, v_{11}), (v_{10}, v_{12}),$ or (v_{11}, v_{12}) .

If A chooses (v₈, v₁₀), then B chooses (v₉, v₁₂).
If A chooses (v₈, v₁₂), then B chooses (v₉, v₁₀).
In each case, the resulting graph satisfies:

1. (z(G), p(G), t(G)) = (n - 12, 2, 0), and 2. if $P(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^5$.

- If \mathcal{A} chooses one of (v_8, v_{11}) or (v_{10}, v_{12}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(5)}^5$.

- If \mathcal{A} chooses one of (v_{10}, v_{11}) or (v_{11}, v_{12}) , then \mathcal{B} chooses the other edge. This graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(4)}^5$.

Case 4.7: $G_{n,14} = G_{(7)}^4$. \mathcal{A} must choose (v_7, v_{11}) . Then \mathcal{B} chooses (v_{10}, v_{12}) . This graph satisfies:

- 1. (z(G), p(G), t(G)) = (n 12, 2, 0), and
- 2. if $P(G) = \{u_1, u_2\}$, then $(u_1, u_2) \in (E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(3)}^5$.

Case 4.8: $G_{n,14} = G_{(8)}^4$. \mathcal{A} has seven choices: (v_4, v_9) , (v_4, v_{11}) , (v_4, v_{12}) , (v_9, v_{10}) , (v_9, v_{12}) , (v_{10}, v_{12}) , or (v_{11}, v_{12}) .

- If A chooses (v₄, v₉), then B chooses (v₇, v₁₂).
 If A chooses (v₄, v₁₂), then B chooses (v₇, v₉).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(4)}^5$.

- If A chooses one of (v₄, v₁₁) or (v₉, v₁₂), then B chooses the other edge.
 If A chooses one of (v₉, v₁₀) or (v₁₁, v₁₂), then B chooses the other edge.
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (n 12, 1, 2),
 - 2. if $P(G) = \{u_1\}$ and $T(G) = \{u_2, u_3\}$, then $(u_2, u_3) \in F(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical to that of $G_{(5)}^5$.

• If \mathcal{A} chooses (v_{10}, v_{12}) , then \mathcal{B} chooses (v_9, v_{12}) . Call this graph $G_{(8)}^5$.

Finally, we look at the graphs $G_{(i)}^5$ for $1 \le i \le 8$. **Case 5.1:** $G_{n,16} = G_{(1)}^5$. \mathcal{A} has four choices: $(v_{10}, v_{12}), (v_{10}, v_{13}), (v_{11}, v_{13}), \text{ or } (v_{12}, v_{13}).$

- If \mathcal{A} chooses one of (v_{10}, v_{12}) or (v_{11}, v_{13}) , then \mathcal{B} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-13)(b)$.
- If \mathcal{A} chooses one of (v_{10}, v_{13}) or (v_{12}, v_{13}) , then \mathcal{B} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-13)(c)$.

Case 5.2: $G_{n,16} = G_{(2)}^5$. \mathcal{A} has two choices: (v_9, v_{13}) or (v_{12}, v_{13}) . \mathcal{B} chooses whichever edge \mathcal{A} did not. The resulting graph is in $\mathcal{L}_1(n-13)(d)$.

Case 5.3: $G_{n,16} = G_{(3)}^5$. \mathcal{A} has two choices: (v_{11}, v_{12}) or (v_{11}, v_{13}) . \mathcal{B} chooses whichever edge \mathcal{A} did not. The resulting graph is in $\mathcal{L}_1(n-13)(a)$.

Case 5.4: $G_{n,16} = G_{(4)}^5$. \mathcal{A} has three choices: $(v_{10}, v_{12}), (v_{10}, v_{13}), \text{ or } (v_{12}, v_{13}).$

- If \mathcal{A} chooses (v_{10}, v_{12}) , then \mathcal{B} chooses (v_{11}, v_{13}) . The resulting graph is in $\mathcal{L}_1(n-13)(b)$.
- If \mathcal{A} chooses one of (v_{10}, v_{13}) or (v_{12}, v_{13}) , then \mathcal{B} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-13)(d)$.

Case 5.5: $G_{n,16} = G_{(5)}^5$. \mathcal{A} has three choices: (v_8, v_{12}) , (v_8, v_{13}) , or (v_{12}, v_{13}) . If \mathcal{A} chooses (v_8, v_{12}) , then \mathcal{B} chooses (v_{11}, v_{13}) . If \mathcal{A} chooses (v_8, v_{13}) , then \mathcal{B} chooses (v_{11}, v_{12}) . If \mathcal{A} chooses (v_{12}, v_{13}) , then \mathcal{B} chooses (v_8, v_{12}) . In each case, the resulting graph is in $\mathcal{L}_1(n-13)(b)$. Case 5.6: $G_{n,16} = G_{(6)}^5$. \mathcal{A} has three choices: (v_6, v_{11}) , (v_6, v_{13}) , or (v_{11}, v_{13}) . If \mathcal{A} chooses (v_6, v_{11}) , then \mathcal{B} chooses (v_7, v_{13}) . If \mathcal{A} chooses (v_6, v_{13}) , then \mathcal{B} chooses (v_7, v_{13}) . If \mathcal{A} chooses (v_{11}, v_{13}) , then \mathcal{B} chooses (v_6, v_{12}) . In each case, the resulting graph is in $\mathcal{L}_1(n-13)(b)$. Case 5.7: $G_{n,16} = G_{(7)}^5$. \mathcal{A} has four choices: (v_8, v_{10}) , (v_8, v_{12}) , (v_8, v_{13}) , or (v_{11}, v_{13}) .

- If \mathcal{A} chooses one of (v_8, v_{10}) or (v_{11}, v_{13}) , then \mathcal{B} chooses the other edge. The resulting graph is in $\mathcal{L}_1(n-13)(a)$.
- If A chooses (v₈, v₁₂), then B chooses (v₁₀, v₁₃).
 If A chooses (v₈, v₁₃), then B chooses (v₁₀, v₁₁).
 In each case, the resulting graph is in L₁(n 13)(b).

Case 5.8: $G_{n,16} = G_{(8)}^5$. \mathcal{A} has two choices: (v_4, v_{11}) or (v_4, v_{13}) . If \mathcal{A} chooses (v_4, v_{11}) , then \mathcal{B} chooses (v_7, v_{13}) . If \mathcal{A} chooses (v_4, v_{13}) , then \mathcal{B} chooses (v_7, v_{11}) . In each case, the resulting graph is in $\mathcal{L}_1(n-13)(b)$.

Lemma 5.3. For $n \geq 3$, in $\Gamma_{\{B3,T,C\}}(n)$, if either player chooses an edge e_k that creates a graph $G_{n,k} \in \mathcal{L}_1(z)$, then

- when $z \ge 1$, that player can choose an edge e_{k+2} so that $G_{n,k+2} \in (\mathcal{L}_2(z-1) \cup \mathcal{L}_3(z-1))$, or
- when $z \ge 4$, that player can choose edges $e_{k+2}, e_{k+4}, e_{k+6}$ so that $G_{n,k+6} \in (\mathcal{L}_2(z-4)) \cup \mathcal{L}_3(z-4))$.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{L}_1(z)$ with $z \geq 1$. Let $w_1 \in Z(G_{n,k})$. Each vertex $v \notin (Z(G_{n,k}) \cup P(G_{n,k}) \cup T(G_{n,k}))$ has $deg_{G_{n,k}}(v) = 3$ and is out of play. The strategy described here will work for \mathcal{B} as well.

 $G_{n,k}\in \mathcal{L}_1(z)(a)$:

Let $P(G_{n,k}) = \{u_1\}$ and $T(G_{n,k}) = \{u_2\}$ with $(u_1, u_2) \in F(G_{n,k})$. Up to isomorphism, \mathcal{B} has two choices: (u_1, w_1) or (u_2, w_1) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_2 is out of play, $z(G_{n,k+2}) = z(G_{n,k}) - 1 = z - 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_1, w_1\}$, and $(u_1, w_1) \in E_{k+2}$. So $G_{n,k+2} \in \mathcal{L}_2(z-1)(b)$.

 $G_{n,k} \in \mathcal{L}_1(z)(b)$:

Let $P(G_{n,k}) = \{u_1\}$ and $T(G_{n,k}) = \{u_2\}$ with $(u_1, u_2) \notin (E_k \cup F(G_{n,k}))$. Up to isomorphism, \mathcal{B} has three choices: $(u_1, u_2), (u_1, w_1)$, or (u_2, w_1) .

- If \mathcal{B} chooses (u_1, u_2) then \mathcal{A} chooses (u_1, w_1) . Now u_1, u_2 are out of play, $z(G_{n,k+2}) = z(G_{n,k}) 1 = z 1$, $P(G_{n,k+2}) = \{w_1\}$, and $t(G_{n,k+2}) = 0$. So $G_{n,k+2} \in \mathcal{L}_3(z-1)(a)$.
- If \mathcal{B} chooses one of (u_1, w_1) or (u_2, w_1) , then \mathcal{A} chooses the other edge. This case is identical to the above case $G_{n,k} \in \mathcal{L}_1(z)(a)$ and $G_{n,k+2} \in \mathcal{L}_2(z-1)(b)$.

 $G_{n,k} \in \mathcal{L}_1(z)(c)$:

Let $T(G_{n,k}) = \{u_1, u_2, u_3\}$ with $(u_1, u_2) \in E_k$ and $(u_1, u_3), (u_2, u_3) \in F(G_{n,k})$. Note that $p(G_{n,k}) = 0$. Up to isomorphism, \mathcal{B} has two choices: (u_1, w_1) or (u_3, w_1) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_1, u_3 are out of play, $z(G_{n,k+2}) = z(G_{n,k}) - 1 = z - 1$, $p(G_{n,k+2}) = 0, T(G_{n,k+2}) = \{u_2, w_1\}$, and $(u_2, w_1) \in F(G_{n,k+2})$. So $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$.

$G_{n,k} \in \mathcal{L}_1(z)(d)$:

Let $u_1, u_2, u_3 \in T(G)$, with $(u_1, u_2) \in E$, $(u_1, u_3) \in F(G)$, and $(u_2, u_3) \notin (E \cup F(G))$. Note that $p(G_{n,k}) = 0$. Up to isomorphism, \mathcal{B} has four choices: $(u_1, w_1), (u_2, u_3), (u_2, w_1)$, or (u_3, w_1) .

- If \mathcal{B} chooses one of (u_1, w_1) or (u_2, u_3) , then \mathcal{A} chooses the other edge. Now u_1, u_2, u_3 are out of play, $z(G_{n,k+2}) = z(G_{n,k}) 1 = z 1$, $P(G_{n,k+2}) = \{w_1\}$, and $t(G_{n,k+2}) = 0$. So $G_{n,k+2} \in \mathcal{L}_3(z-1)(a)$.
- If \mathcal{B} chooses (u_2, w_1) , then \mathcal{A} chooses (u_3, w_1) . Now u_2, u_3 are out of play, $z(G_{n,k+2}) = z(G_{n,k}) 1 = z 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_1, w_1\}$, and $(u_1, w_1) \in F(G_{n,k+2})$. So $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$.
- If \mathcal{B} chooses (u_3, w_1) , then \mathcal{A} chooses (u_1, w_1) . Now u_1, u_3 are out of play, $z(G_{n,k+2}) = z(G_{n,k}) 1 = z 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_2, w_1\}$, and $(u_2, w_1) \in F(G_{n,k+2})$. So $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$.

Now suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{L}_1(z)$ with $z \geq 4$. Let $w_1, w_2, w_3, w_4 \in Z(G_{n,k})$.

$G_{n,k}\in \mathcal{L}_1(z)(a)$:

 \mathcal{A} chooses the edge e_{k+2} as above. Now $G_{n,k+2} \in \mathcal{L}_2(z-1)(b)$ with $z(G_{n,k+2}) = z-1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_1, w_1\}$, and $(u_1, w_1) \in E_{k+2}$. Up to game play equivalence, \mathcal{B} must choose (u_1, w_2) . Then \mathcal{A} chooses (w_1, w_3) . Now \mathcal{B} has two choices: (w_2, w_3) or (w_2, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_1, w_1, w_2 are out of play, $z(G_{n,k+6}) = z(G_{n,k}) - 4 = z - 4$, $P(G_{n,k+6}) = \{w_4\}$, $T(G_{n,k+6}) = \{w_3\}$, and $(w_3, w_4) \in F(G_{n,k+6})$. So $G_{n,k+6} \in \mathcal{L}_2(z-4)(a)$.

$G_{n,k}\in \mathcal{L}_1(z)(b)$:

 \mathcal{A} chooses the edge e_{k+2} as above. Now we have two cases.

- 1. $G_{n,k+2} \in \mathcal{L}_3(z-1)(a)$ with $z(G_{n,k+2}) = z-1$, $P(G_{n,k+2}) = \{w_1\}$, and $t(G_{n,k+2}) = 0$. Up to isomorphism, \mathcal{B} must choose (w_1, w_2) . Then \mathcal{A} chooses (w_1, w_3) . \mathcal{B} must choose (w_2, w_4) . \mathcal{A} chooses (w_3, w_4) . Now w_1 is out of play, $z(G_{n,k+6}) = z(G_{n,k}) - 4 = z - 4$, $p(G_{n,k+6}) = 0$, $T(G_{n,k+6}) = \{w_2, w_3, w_4\}$, and $(w_2, w_4), (w_3, w_4) \in E_{k+6}$. So $G_{n,k+6} \in \mathcal{L}_3(z-4)(b)$.
- 2. $G_{n,k+2} \in \mathcal{L}_2(z-1)(b)$ with $z(G_{n,k+2}) = z 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_1, w_1\}$, and $(u_1, w_1) \in E_{k+2}$. This case is identical to $G_{n,k+2}$ in $\mathcal{L}_1(z)(a)$ above and \mathcal{A} follows the same pattern.

$G_{n,k} \in \mathcal{L}_1(z)(c)$:

 \mathcal{A} chooses the edge e_{k+2} as above. Now $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$ with $z(G_{n,k+2}) = z-1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_2, w_1\}$, and $(u_2, w_1) \in F(G_{n,k+2})$. Up to game play equivalence, \mathcal{B} must choose (u_2, w_2) . Then \mathcal{A} chooses (w_1, w_3) . Now \mathcal{B} has two choices: (w_2, w_3) or (w_2, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_1, w_1, w_2 are

out of play, $z(G_{n,k+6}) = z(G_{n,k}) - 4 = z - 4$, $P(G_{n,k+6}) = \{w_4\}$, $T(G_{n,k+6}) = \{w_3\}$, and $(w_3, w_4) \in F(G_{n,k+6})$. So $G_{n,k+6} \in \mathcal{L}_2(z-4)(a)$. $G_{n,k} \in \mathcal{L}_1(z)(d)$:

 \mathcal{A} chooses the edge e_{k+2} as above. Now we have three cases.

- 1. $G_{n,k+2} \in \mathcal{L}_3(z-1)(a)$ with $z(G_{n,k+2}) = z-1$, $P(G_{n,k+2}) = \{w_1\}$, and $t(G_{n,k+2}) = 0$. This case is identical to $G_{n,k+2}$ in the first case of $\mathcal{L}_1(z)(b)$ above and \mathcal{A} follows the same pattern.
- 2. $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$ with $z(G_{n,k+2}) = z 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_1, w_1\}$, and $(u_1, w_1) \in F(G_{n,k+2})$. This case is identical to $G_{n,k+2}$ in $\mathcal{L}_1(z)(c)$ above and \mathcal{A} follows the same pattern.
- 3. $G_{n,k+2} \in \mathcal{L}_2(z-1)(c)$ with $z(G_{n,k+2}) = z 1$, $p(G_{n,k+2}) = 0$, $T(G_{n,k+2}) = \{u_2, w_1\}$, and $(u_2, w_1) \in F(G_{n,k+2})$. This case is identical to $G_{n,k+2}$ in $\mathcal{L}_1(z)(c)$ above and \mathcal{A} follows the same pattern.

Lemma 5.4. For $n \ge 3$, in $\Gamma_{\{B3,T,C\}}(n)$, if either player chooses an edge e_k that creates a graph $G_{n,k} \in \mathcal{L}_2(z)$ for some $z \equiv 0 \pmod{4}$, then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{L}_2(z)$ with $z \equiv 0 \pmod{4}$. The strategy described here will work for \mathcal{B} as well. We proceed by induction.

Base case: z=0. In each graph in $\mathcal{L}_2(0)$, no new edge can be chosen. Since \mathcal{A} chose the last edge, \mathcal{A} wins.

Assume for induction that if \mathcal{A} chooses an edge e_k that creates a graph $G_{n,k} \in \mathcal{L}_2(4m)$ for some $m \geq 0$, then \mathcal{A} has a winning strategy. Suppose z = 4(m+1). Let $w_1, w_2, w_3, w_4 \in Z(G_{n,k})$.

$G_{n,k} \in \mathcal{L}_2(z)(a)$:

Let $P(G_{n,k}) = \{u_1\}$ and $T(G_{n,k}) = \{u_2\}$ with $(u_1, u_2) \in F(G_{n,k})$. Up to isomorphism, \mathcal{B} has two choices: (u_1, w_1) or (u_2, w_1) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Up to game play equivalence, \mathcal{B} must choose (u_1, w_2) . Then \mathcal{A} chooses (w_1, w_3) . Now \mathcal{B} has two choices: (w_2, w_3) or (w_2, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_1, u_2, w_1, w_2 are out of play, $z(G_{n,k+6}) = z(G_{n,k}) - 4 = 4m$, $P(G_{n,k+6}) = \{w_4\}$, $T(G_{n,k+6}) = \{w_3\}$, and $(w_3, w_4) \in F(G_{n,k+6})$. Thus $G_{n,k+6} \in \mathcal{L}_2(4m)(a)$ and \mathcal{A} wins by induction.

 $G_{n,k}\in \mathcal{L}_2(z)(b)$:

Let $T(G_{n,k}) = \{u_1, u_2\}$ with $(u_1, u_2) \in E_k$. Note that $p(G_{n,k}) = 0$. Up to game play equivalence, \mathcal{B} must choose (u_1, w_1) . \mathcal{A} chooses (u_2, w_2) . \mathcal{B} has two choices: (w_1, w_2) or (w_1, w_3) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} again has two choices: (w_2, w_4) or (w_3, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now u_1, u_2, w_1, w_2 are out of play, $z(G_{n,k+6}) = z(G_{n,k}) - 4 = 4m, p(G_{n,k+6}) = 0, T(G_{n,k+6}) = \{w_3, w_4\}, \text{ and } (w_3, w_4) \in E_{k+6}.$ Thus $G_{n,k+6} \in \mathcal{L}_2(4m)(b)$ and \mathcal{A} wins by induction.

$$G_{n,k}\in \mathcal{L}_2(z)(c)$$
 :

Let $T(G_{n,k}) = \{u_1, u_2\}$ with $(u_1, u_2) \in F(G_{n,k})$. Note that $p(G_{n,k}) = 0$. Up to game play equivalence, \mathcal{B} must choose (u_1, w_1) . \mathcal{A} chooses (u_2, w_2) . Now this case is identical to the above case $G_{n,k} \in \mathcal{L}_2(z)(b)$ and \mathcal{A} wins.

Lemma 5.5. For $n \ge 3$, in $\Gamma_{\{B3,T,C\}}(n)$, if either player chooses an edge e_k that creates a graph $G_{n,k} \in \mathcal{L}_3(z)$ for some $z \equiv 0 \pmod{8}$, then that player has a winning strategy.

Proof. Let $n \geq 3$. Suppose the edges e_1, \ldots, e_{k-1} have already been chosen. Suppose player \mathcal{A} chooses the kth edge so that $G_{n,k} \in \mathcal{L}_3(z)$ with $z \equiv 0 \pmod{8}$. The strategy described here will work for \mathcal{B} as well. We proceed by induction.

Base case: z=0. In each graph in $\mathcal{L}_3(0)$, no new edge can be chosen. Since \mathcal{A} chose the last edge, \mathcal{A} wins.

Assume for induction that if \mathcal{A} chooses an edge e_k that creates a graph $G_{n,k} \in \mathcal{L}_3(8m)$ for some $m \geq 0$, then \mathcal{A} has a winning strategy. Suppose z = 8(m + 1). Let $w_1, w_2, \ldots, w_8 \in Z(G_{n,k})$.

$$G_{n,k} \in \mathcal{L}_3(z)(a)$$
:

Let $P(G_{n,k}) = \{u_1\}$. Note that $t(G_{n,k}) = 0$. Up to isomorphism, \mathcal{B} must choose (u_1, w_1) . \mathcal{A} chooses (u_1, w_2) . \mathcal{B} must choose (w_1, w_3) . \mathcal{A} chooses (w_2, w_3) . \mathcal{B} has two choices: (w_1, w_4) or (w_3, w_4) .

- If \mathcal{B} chooses (w_1, w_4) then \mathcal{A} chooses (w_3, w_5) .
- If \mathcal{B} chooses (w_3, w_4) then \mathcal{A} chooses (w_1, w_5) .

The two resulting graphs are isomorphic, so consider the first case. Now \mathcal{B} has five choices: (w_2, w_4) , (w_2, w_6) , (w_4, w_5) , (w_4, w_6) , or (w_5, w_6) .

• If \mathcal{B} chooses one of (w_2, w_4) or (w_4, w_6) , then \mathcal{A} chooses the other edge.

 \mathcal{B} has two choices: (w_5, w_6) or (w_5, w_7) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} again has two choices: (w_6, w_8) or (w_7, w_8) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now $u_1, w_1, w_2, \ldots, w_6$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) - 8 = 8m$, $p(G_{n,k+12}) = 0$, $T(G_{n,k+12}) = \{w_7, w_8\}$, and $(w_7, w_8) \in E_{k+12}$. Thus $G_{n,k+12} \in \mathcal{L}_2(8m)(b)$ and \mathcal{A} wins by Lemma 5.4.

• If \mathcal{B} chooses one of (w_2, w_6) or (w_4, w_5) , then \mathcal{A} chooses the other edge.

If \mathcal{B} chooses (w_5, w_6) , then \mathcal{A} chooses (w_2, w_6) .

The two resulting graphs are isomorphic, so consider the first case. \mathcal{B} has three choices: (w_4, w_6) , (w_4, w_7) , or (w_6, w_7) .

- If \mathcal{B} chooses (w_4, w_6) then \mathcal{A} chooses (w_5, w_7) .
- If \mathcal{B} chooses (w_4, w_7) then \mathcal{A} chooses (w_5, w_6) .
- If \mathcal{B} chooses (w_6, w_7) then \mathcal{A} chooses (w_4, w_6) .

In each case, the resulting graph is in $\mathcal{L}_1(8m+1)(b)$ and gameplay is identical, so without loss of generality we may consider the first case. \mathcal{B} again has three choices: $(w_6, w_7), (w_6, w_8), \text{ or } (w_7, w_8).$

- If \mathcal{B} chooses (w_6, w_7) then \mathcal{A} chooses (w_7, w_8) . Now $u_1, w_1, w_2, \ldots, w_7$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) 8 = 8m$, $P(G_{n,k+12}) = \{w_8\}$, and $t(G_{n,k+12}) = 0$. Thus $G_{n,k+12} \in \mathcal{L}_3(8m)(a)$ and \mathcal{A} wins by induction.
- If \mathcal{B} chooses one of (w_6, w_8) or (w_7, w_8) , then \mathcal{A} chooses the other edge. Now $u_1, w_1, w_2, \ldots, w_6$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) 8 = 8m, p(G_{n,k+12}) = 0, T(G_{n,k+12}) = \{w_7, w_8\}$, and $(w_7, w_8) \in E_{k+12}$. Thus $G_{n,k+12} \in \mathcal{L}_2(8m)(b)$ and \mathcal{A} wins by Lemma 5.4.

$G_{n,k} \in \mathcal{L}_3(z)(b)$:

Let $T(G_{n,k}) = \{u_1, u_2, u_3\}$ with $(u_1, u_2), (u_1, u_3) \in E_k$. Note that $p(G_{n,k}) = 0$ and $(u_2, u_3) \in F(G_{n,k})$. Up to game play equivalence, \mathcal{B} has two choices: (u_1, w_1) or (u_2, w_1) .

- If \mathcal{B} chooses (u_1, w_1) then \mathcal{A} chooses (u_2, w_2) .
- If \mathcal{B} chooses (u_2, w_1) then \mathcal{A} chooses (u_1, w_2) .

The two resulting graphs are isomorphic, so consider the first case. Now \mathcal{B} has five choices: $(u_3, w_2), (u_3, w_3), (w_1, w_2), (w_1, w_3), \text{ or } (w_2, w_3).$

- If \mathcal{B} chooses one of (u_3, w_2) or (w_2, w_3) , then \mathcal{A} chooses the other edge. \mathcal{B} has two choices: (w_1, w_3) or (w_1, w_4) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} again has two choices: (w_3, w_5) or (w_4, w_5) . \mathcal{A} chooses whichever edge \mathcal{B} did not. \mathcal{B} must choose (w_4, w_6) . \mathcal{A} chooses (w_5, w_7) . \mathcal{B} has two choices: (w_6, w_7) or (w_6, w_8) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now $u_1, u_2, U_3, w_1, w_2, \ldots, w_6$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) - 8 = 8m, \ P(G_{n,k+12}) = \{w_8\}, \ T(G_{n,k+12}) = \{w_7\}, \text{ and}$ $(w_7, w_8) \in F(G_{n,k+12})$. Thus $G_{n,k+12} \in \mathcal{L}_2(8m)(a)$ and \mathcal{A} wins by Lemma 5.4.
- If B chooses one of (u₃, w₃) or (w₁, w₂), then A chooses the other edge.
 If B chooses (w₁, w₃), then A chooses (u₃, w₃).
 In each case, the resulting graph satisfies:
 - 1. (z(G), p(G), t(G)) = (8m + 4, 1, 2),
 - 2. if $P(G) = \{x_1\}$ and $T(G) = \{x_2, x_3\}$, then $(x_2, x_3) \in E(G)$, and
 - 3. all other pairs are in $(E(G) \cup F(G))^c$.

Gameplay is identical in each case, so we may consider the first case. \mathcal{B} has three choices: (w_1, w_3) , (w_1, w_4) , or (w_3, w_4) .

- If \mathcal{B} chooses (w_1, w_3) then \mathcal{A} chooses (w_2, w_4) .

- If \mathcal{B} chooses (w_1, w_4) then \mathcal{A} chooses (w_2, w_3) .
- If \mathcal{B} chooses (w_3, w_4) then \mathcal{A} chooses (w_1, w_3) .

In each case, the resulting graph is in $\mathcal{L}_1(8m+4)(b)$ and gameplay is identical, so without loss of generality we may consider the first case. \mathcal{B} again has three choices: $(w_3, w_4), (w_3, w_5), \text{ or } (w_4, w_5).$

- If \mathcal{B} chooses (w_3, w_4) then \mathcal{A} chooses (w_4, w_5) . \mathcal{B} must choose (w_5, w_6) . \mathcal{A} chooses (w_5, w_7) . \mathcal{B} must choose (w_6, w_8) . \mathcal{A} chooses (w_7, w_8) . Now $u_1, u_2, U_3, w_1, w_2, \ldots, w_5$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) - 8 = 8m$, $p(G_{n,k+12}) = 0, T(G_{n,k+12}) = \{w_6, w_7, w_8\}$, and $(w_6, w_8), (w_7, w_8) \in E_{k+12}$. Thus $G_{n,k+12} \in \mathcal{L}_3(8m)(b)$ and \mathcal{A} wins by induction.
- If \mathcal{B} chooses one of (w_3, w_5) or (w_4, w_5) , then \mathcal{A} chooses the other edge. \mathcal{B} must choose (w_4, w_6) . \mathcal{A} chooses (w_5, w_7) . \mathcal{B} has two choices: (w_6, w_7) or (w_6, w_8) . \mathcal{A} chooses whichever edge \mathcal{B} did not. Now $u_1, u_2, U_3, w_1, w_2, \ldots, w_6$ are out of play, $z(G_{n,k+12}) = z(G_{n,k}) - 8 = 8m$, $P(G_{n,k+12}) = \{w_8\}$, $T(G_{n,k+12}) = \{w_7\}$, and $(w_7, w_8) \in F(G_{n,k+12})$. Thus $G_{n,k+12} \in \mathcal{L}_2(8m)(a)$ and \mathcal{A} wins by Lemma 5.4.

Theorem 5.6. For $n \ge 12$, $f_{\{B3,T,C\}}(n) = \mathcal{B} \iff n \equiv 1, 2 \pmod{4}$.

Proof. For small values of n, an exhaustive case analysis can be carried out by hand calculation.

For larger values of n, we will prove a statement that is equivalent to the theorem: For $n \ge 12$, $f_{\{B3,T,C\}}(n) = \mathcal{B} \iff n \equiv 1, 2, 5, 6 \pmod{8}$.

$n \equiv 0 \pmod{8}$:

Let n = 8m for some $m \ge 2$. By Lemma 5.1, \mathcal{A} can choose edges e_1, e_3, \ldots, e_{21} so that $G_{n,21} \in \mathcal{L}_1(n-15)$. Then by Lemma 5.3, \mathcal{A} can choose the edge e_{23} so that $G_{n,23} \in (\mathcal{L}_2(n-16) \cup \mathcal{L}_3(n-16))$. Since $n-16 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{A} wins.

 $n \equiv 1 \pmod{8}$:

Let n = 8m + 1 for some $m \ge 2$. By Lemma 5.2, \mathcal{B} can choose edges e_2, e_4, \ldots, e_{18} so that $G_{n,18} \in \mathcal{L}_1(n-13)$. Then by Lemma 5.3, \mathcal{B} can choose the edges e_{20}, e_{22}, e_{24} so that $G_{n,24} \in (\mathcal{L}_2(n-17) \cup \mathcal{L}_3(n-17))$. Since $n-17 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{B} wins.

 $n \equiv 2 \pmod{8}$:

Let n = 8m + 2 for some $m \ge 1$. By Lemma 5.2, \mathcal{B} can choose edges e_2, e_4, \ldots, e_{12} so that $G_{n,9} \in \mathcal{L}_1(n-9)$. Then by Lemma 5.3, \mathcal{B} can choose the edge e_{14} so that

 $G_{n,14} \in (\mathcal{L}_2(n-10) \cup \mathcal{L}_3(n-10))$. Since $n-10 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{B} wins.

$n \equiv 3 \pmod{8}$:

Let n = 8m + 3 for some $m \ge 2$. By Lemma 5.1, \mathcal{A} can choose edges e_1, e_3, \ldots, e_{21} so that $G_{n,21} \in \mathcal{L}_1(n-15)$. Then by Lemma 5.3, \mathcal{A} can choose the edges e_{23}, e_{25}, e_{27} so that $G_{n,27} \in (\mathcal{L}_2(n-19) \cup \mathcal{L}_3(n-19))$. Since $n-19 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{A} wins.

$n \equiv 4 \pmod{8}$:

Let n = 8m + 4 for some $m \ge 1$. By Lemma 5.1, \mathcal{A} can choose edges e_1, e_3, \ldots, e_{15} so that $G_{n,15} \in \mathcal{L}_1(n-11)$. Then by Lemma 5.3, \mathcal{A} can choose the edge e_{17} so that $G_{n,17} \in (\mathcal{L}_2(n-12) \cup \mathcal{L}_3(n-12))$. Since $n-12 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{A} wins.

 $n \equiv 5 \pmod{8}$:

Let n = 8m + 5 for some $m \ge 1$. By Lemma 5.2, \mathcal{B} can choose edges e_2, e_4, \ldots, e_{12} so that $G_{n,12} \in \mathcal{L}_1(n-9)$. Then by Lemma 5.3, \mathcal{B} can choose the edges e_{14}, e_{16}, e_{18} so that $G_{n,18} \in (\mathcal{L}_2(n-13) \cup \mathcal{L}_3(n-13))$. Since $n-13 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{B} wins.

 $n \equiv 6 \pmod{8}$:

Let n = 8m + 6 for some $m \ge 1$. By Lemma 5.2, \mathcal{B} can choose edges e_2, e_4, \ldots, e_{18} so that $G_{n,18} \in \mathcal{L}_1(n-13)$. Then by Lemma 5.3, \mathcal{B} can choose the edge e_{20} so that $G_{n,20} \in (\mathcal{L}_2(n-14) \cup \mathcal{L}_3(n-14))$. Since $n-14 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{B} wins.

$n \equiv 7 \pmod{8}$:

Let n = 8m + 7 for some $m \ge 1$. By Lemma 5.1, \mathcal{A} can choose edges e_1, e_3, \ldots, e_{15} so that $G_{n,15} \in \mathcal{L}_1(n-11)$. Then by Lemma 5.3, \mathcal{A} can choose the edges e_{17}, e_{19}, e_{21} so that $G_{n,21} \in (\mathcal{L}_2(n-15) \cup \mathcal{L}_3(n-15))$. Since $n-15 \equiv 0 \pmod{8}$, by Lemmas 5.4 and 5.5, \mathcal{A} wins.

References

- S.C. Cater, F. Harary, and R.W. Robinson, One-color triangle avoidance games, Congressus Numerantium 153 (2001), 211-221.
- [2] P. Gordinowicz and P. Pralat, The first player wins the one-colour triangle avoidance game on 16 vertices, *Discussiones Mathematicae Graph Theory*, to appear.
- [3] F. Harary, Achievement and avoidance games for graphs, Annals of Discrete Mathematics 13 (1982), 111-119.
- [4] N. Mehta, Graph Games, Ph.D. thesis, Ohio State University, 2010.
- [5] N. Mehta, A. Seress, Bounded Degree, Triangle Avoidance Graph Games, submitted.
- [6] P. Pralat, A note on the one-colour avoidance game on graphs, Journal of Combinatorial Mathematics and Combinatorial Computing 75 (2010), 85-94.
- [7] Å. Seress, On Hajnal's triangle-free game, *Graphs and Combinatorics* 8 (1992), 75-79.