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Abstract

The nodes of the de Bruijn graph B(d, 3) consist of all strings of length 3,
taken from an alphabet of size d, with edges between words which are distinct
substrings of a word of length 4. We give an inductive characterization of the
maximum independent sets of the de Bruijn graphs B(d, 3) and for the de Bruijn
graph of diameter three with loops removed, for arbitrary alphabet size. We derive
a recurrence relation and an exponential generating function for their number. This
recurrence allows us to construct exponentially many comma-free codes of length 3
with maximal cardinality.
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1 Introduction

For any positive integers d and D, the de Bruijn graph B(d,D) is the directed graph
whose dD nodes consist of all the D-digit words from the alphabet {0, . . . , d− 1}. There
is a directed edge from a word x = x1 . . . xD to y = y1 . . . yD if and only if x2 . . . xD =
y1 . . . yD−1. These graphs were introduced in [7], under the name of T -nets. Since then, de
Bruijn graphs have been used in several contexts, notably as a network topology [2, 6, 13],
and for building protein-binding microarrays [1].

We concern ourselves with the maximum independent sets of these graphs, previously
studied in [11, 12]. The graph B(d,D) contains d nodes of the form x . . . x, which have
an edge to themselves. In a slight abuse of notation, we will refer to such a node as the
loop x. Notice that a loop cannot be in any independent set of B(d,D), and therefore we
call these sets loop-less maximum independent sets (LMISs). The maximum independent
sets of the subgraph of B(d,D) obtained by removing the edges x . . . x → x . . . x are called
maximum independent sets (MISs). Figure 1 depicts B(3, 3) with an MIS highlighted.

A natural question to ask is what is the stable size of B(d,D) for arbitrary d and D, i.e.
the sizes of an MIS and a loop-less MIS. This question was studied in [12]. Lichiardopol
defined α(d,D) to be the size of an MIS with loops and α∗(d,D) to be the size of a
loop-less MIS [12]. For D a prime at least 3, he proved the inequalities

α(d,D) 6
(D − 1)(dD − d)

2D
+ 1 and α∗(d,D) 6

(D − 1)(dD − d)

2D
. (1)

He then showed that in fact, equality holds for D equal to 3, 5 or 7 and conjectured that
the same is true for all odd primes D. He furthermore showed that, given a prime D, if
equality holds in (1) for d = 2, then it holds for any d. As a byproduct of his work, we
conclude that any MIS of B(d,D) has at most two loops.

In the case of D = 3, we give a complete recursive characterization of the maximum
independent sets of B(d, 3). To do so, we give four functions which extend an MIS in
B(d, 3) to an MIS in B(d+1, 3) or B(d+2, 3) (Definitions 2.6, 2.8, 2.10 and 2.11). Our main
result is that every maximum independent set in B(d, 3) can be formed by beginning with
an MIS in B(1, 3) or B(2, 3) and successively applying our four functions and permuting
the alphabet. Moreover, since the sequence of functions and permutations is unique up
to certain transpositions, we can compute the number of MISs, which corresponds to the
Sloane sequence A052608 [14]:

Theorem 4.5. If we let ad be the number of maximum independent sets of B(d, 3), then
ad has exponential generating function

∞∑
d=1

adt
d

d!
=

t + t2

1− 2t− t2
.

In addition, we prove that the number of loop-less maximum independent sets has the
same generating function (Theorem 5.6).
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Figure 1: The de Bruijn graph B(3, 3), with the loops on 000, 111 and 222 removed. The
highlighted nodes belong to one of the 42 possible MISs in B(3, 3). Bold arrows indicate
edges under the shift function θ defined in (2).

A loop-less maximum independent set in B(d, 3) is a maximum comma-free code of
length 3. Comma-free codes were introduced by Crick, Griffith, and Orgel as a hypothet-
ical encoding of amino acid sequences in DNA [5], and further generalized in [9, 10, 15, 3].
A comma-free code is a set S of D-digit words such that if x1 . . . xD and y1 . . . yD are
in S, then no substring of x2 . . . xDy1 . . . yD−1 is in S. In [9] and [8], it was shown that a
comma-free code of length D = 3 could have as many as (d3−d)/3 elements by giving the
same example (up to permuting the alphabet), namely the code consisting of all words
x1x2x3 such that x1 < x2 > x3. In contrast to this single example, our results give an
explicit construction of exponentially many equivalence classes of maximum comma-free
codes (Theorem 5.7).

For D = 2 and d > 4, the maximum independent sets have size α(d, 2) = α∗(d, 2) =
bd2/4c [12, Prop. 5.1], and the same analysis as in that proof shows that number of
maximum independent sets of B(d, 2) is

(
d

d/2

)
if d is even and 2

(
d

(d−1)/2

)
if d is odd.

On the other hand, for D > 3, even small values of d yield de Bruijn graphs with a
large number of maximum independent sets in B(d,D). For example, using the computer
algebra system CoCoA [4], we found out that there are 1 and 44 maximum independents
sets of B(1, 5) and B(2, 5), respectively. However, we know that there are at least 210492
maximum independent sets of B(3, 5). This rapid growth means that the maximum
independent sets in B(3, 5) cannot be produced from smaller independent sets using only
permutations of the alphabet and a handful of functions.

We conjecture that an analogue of Theorem 4.5(1) for D > 3 would require starting
with MISs in B(d,D) for all d < D. Moreover, as it occurs for diameter three, we would
also need functions taking a maximum independent set in B(d,D) to one in B(d + k,D)
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for all k < D. Finding explicit formulas for these functions would require knowledge of
the sets B(k,D) for k < D. To summarize:

Conjecture 1.1. Let D be a fixed odd prime number. Then the exponential generat-
ing function of the number of maximum independent sets of B(d,D) is the ratio of two
polynomials, each of degree D − 1.

The rest of this paper is organized as follows. In Section 2, we define two functions
f and f ′ that take a maximum independent set of B(d, 3) to a maximum independent
sets of B(d + 1, 3). Likewise, we construct another two functions g and g′ that take a
maximum independent set of B(d, 3) to a maximum independent set of B(d + 2, 3). In
Section 3 we compute the stabilizers of the maximum independent sets produced by f ,
f ′, g and g′ under the action of the symmetric group Sd, and show that the functions take
disjoint orbits to disjoint orbits. In Section 4, we prove our main theorems. In Section 5,
we give a bijection between the maximum independent sets and the loop-less maximum
independent sets of B(d, 3), from which we conclude that their numbers coincide.

2 Inductive Construction of Maximum Independent

Sets

In this section, we present two pairs of combinatorial operations that transform a maxi-
mum independent set in the de Bruijn graph B(d, 3) into a maximum independent set in
either B(d + 1, 3) or B(d + 2, 3).

Convention 2.1. Throughout this paper, we let [d] stand for the set {0, . . . , d− 1}.

Essential to the structure of the de Bruijn graph B(d, 3) are the cycles under the shift
function θ, defined as

θ : V (B(d, 3)) → V (B(d, 3)) θ(xyz) = yzx, (2)

where V (B(d, 3)) denotes the set of nodes of the graph B(d, 3) [12]. Note that the fixed
points of θ are exactly the loops of B(d, 3). On the other hand, if xyz is not a loop, then
xyz, θ(xyz), and θ2(xyz) form a directed 3-cycle. In Figure 1, the θ-cycles are indicated
by bold edges.

Convention 2.2. Whenever we speak of cycles, we mean the cycles induced by θ.

The action of θ induces a decomposition of the nodes of B(d, 3) into (d3−d)/3 cycles of
length 3, and d cycles of length 1 (i.e. the loops). Each of these disjoint cycles contributes
at most one node to any independent set of B(d, 3).

The following proposition explains the role played by a loop in a maximum independent
set of B(d,D) and it shows that such a set can have at most two loops.

the electronic journal of combinatorics 18 (2011), #P194 4



Proposition 2.3. Let D be an odd prime number, and let S be a maximum independent

set of B(d,D) achieving the maximum possible size (D−1)(dD−d)
2D

+ 1. Then S contains one
or two loops. Moreover, if a is a loop in S and x is any digit which is not a loop of S,
then the node (ax)

D−1
2 a is in S. If S has two loops a, b, then, possibly after swapping a

and b, (ab)
D−1

2 a is in S. Moreover, each cycle contributes exactly (D − 1)/2 nodes to S,
except for one of the form bD−2i(ab)i, for some 1 6 i 6 (D− 1)/2, which only contributes
(D − 1)/2− 1 nodes.

Proof. The proof is contained in the proof of [12, Proposition 4.3].

From the previous result we see that the loops of an MIS play a special role. More
precisely, if S is a maximum independent set then all the cycles of B(d,D) of length D
contribute at most (D − 1)/2 elements to S. If D is an odd prime, and S has only one
loop, then Lichiardopol’s conjecture says that equality holds [12]. If, on the other hand, S

contains two loops a, b, then (up to swapping a and b) we can assume that (ab)
D−1

2 a ∈ S.
Hence, all cycles of B(d,D) of length D contribute at most (D − 1)/2 nodes, except
for one cycle with more b’s than a’s, which contributes at most (D − 1)/2 − 1. Again,
Lichiardopol’s conjecture states that these maximal contributions are achieved [12].

Since the conjecture holds for D = 3, every cycle (with the possible exception of the
cycle of bab) contributes one element to any maximum independent set. This motivates
the following definition, which will play an essential role in our inductive construction of
maximum independent sets of B(d, 3).

Definition 2.4. Let A be a set of nodes from B(d, 3). Let x and y be two digits in [d].
We say that y appears between x in A if the node xyx belongs to A. We define Mx(A) as
the set of digits which do not appear between x in A. We define mx(A) as the number of
digits which do not appear between x in A, i.e. mx(A) = |Mx(A)|.

Notation 2.5. If w is a node in B(d, 3), we will denote by w[x → y] the node that results
from replacing every occurrence of the digit x by the digit y in w. We write x ∈ w to
mean that x is one of the digits that appear in w.

We denote by L(S) the set of loops of a maximum independent set S. We denote by
a the element of L(S) such that ma(S) = 0. We will refer to it as the distinguished loop.
If S has another loop we denote it b. This distinction will be extremely important for the
construction of our four operations on B(d, 3).

We now define our first operation, sending a maximum independent set of B(d, 3) to a
subset of B(d+1, 3). Proposition 2.7 will show that this subset is a maximum independent
set.

Definition 2.6. Let S be a maximum independent set of B(d, 3). Following Notation 2.5,
we define f(S) ⊂ B(d + 1, 3) as the set S ∪

⋃5
i=1 Ui(S), where

U1(S) = {w[a → d] | w ∈ S, a ∈ w,w 6= aaa, w 6= aba},
U2(S) = {axd | x ∈ [d]\L(S)}, U3(S) = {dxa | x ∈ [d]\L(S)},
U4(S) = {udv | u, v ∈ L(S)}, U5(S) = {udd | u ∈ L(S)}.
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Proposition 2.7. If S is a maximum independent set of B(d, 3), then f(S) is a maximum
independent set of B(d + 1, 3).

Proof. By definition, f(S) is made up of six disjoint sets. We will see that f(S) is an
independent set and that it has the right cardinality, as in (1). We start by showing that
f(S) is an independent set. This amounts to noticing that there are no arrows between
the six sets defining f(S). The only remark to bear in mind is that axa is in S for all x,
and that bxb is also in S, except for x = a. We leave the details to the reader.

We now compute the cardinality of f(S). Let l be the number of loops of S. We have
|S| = 1 + (d3 − d)/3, and

|U1(S)| = (d− 1)2 − (l − 1) + (d− l) = d2 − d + 2− 2l

|U2(S)| = |U3(S)| = (d− l), |U4(S)| = l2, |U5(S)| = l.

Only the cardinality of U1(S) requires explanation. Notice that B(d, 3) has (d−1)2 cycles
whose nodes contain the digit a once. Each of these contributes one element to S and
thus to U1(S), with the exception of abb → bba → bab in the case that l = 2, that
contributes no node to S nor U1(S). Likewise, S and U1(S) contain one element from
each of the d − l cycles of the form aax → axa → xaa, where x is not a loop. Hence,
|U1(S)| = d2 − d + 2− 2l.

We add the sizes of our six constituents, to obtain

|f(S)| =
(d + 1)3 − (d + 1)

3
+ 1 + (l − 1)(l − 2).

Since l is either 1 or 2 by Proposition 2.3, f(S) has the size of an MIS in B(d + 1, 3).

We next define another function very similar to f and prove that it has analogous
properties.

Definition 2.8. Let S be a maximum independent set of B(d, 3). We define f ′(S) ⊂
B(d + 1, 3) as the union of S, the sets U1(S), U2(S), U3(S), U4(S) from Definition 2.6,
and U ′

5(S) = {ddu | u ∈ L(S)}, which is the reverse of U5(S).

Proposition 2.9. If S is a maximum independent set of B(d, 3), then f ′(S) is a maximum
independent set of B(d + 1, 3).

Proof. This proposition is proved analogously to Proposition 2.7.

We now define another pair of operators g and g′. These will send a maximum inde-
pendent set of B(d, 3) to a maximum independent set of B(d+2, 3). As before, we follow
the convention of Notation 2.5.
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Definition 2.10. Let S be a maximum independent set of B(d, 3). We define g(S) ⊂
B(d + 2, 3) to be the union S ∪

⋃8
i=1 Vi(S), where

V1(S) = {w[a → y] | y ∈ {d, d + 1}, w ∈ S, a ∈ w,w 6= aaa, w 6= aba},
V2(S) = {axy | x ∈ [d]\L(S), y ∈ {d, d + 1}},
V3(S) = {yxa | x ∈ [d]\L(S), y ∈ {d, d + 1}},
V4(S) = {yxz | y, z ∈ {d, d + 1}, y 6= z, x ∈ [d]\L(S)},
V5(S) = {uyv | u, v ∈ L(S), y ∈ {d, d + 1}},
V6(S) = {uyy | u ∈ L(S)}, y ∈ {d, d + 1}},
V7(S) = {yzu | y, z ∈ {d, d + 1}, y 6= z, u ∈ L(S)},
V8(S) = {d(d + 1)(d + 1), (d + 1)dd}.

Definition 2.11. Let S be a maximum independent set of B(d, 3). We define g′(S) ⊂
B(d + 2, 3) to be the union of S, the sets V1(S), V2(S), V3(S), V4(S), V5(S) from Defini-
tion 2.10, and the sets

V ′
6(S) = {yyu, u ∈ L(S), y ∈ {d, d + 1}},

V ′
7(S) = {uyz, y, z ∈ {d, d + 1}, y 6= z, u ∈ L(S)},

V ′
8(S) = {(d + 1)(d + 1)d, dd(d + 1)},

which are the reverses of V6(S), V7(S), and V8(S) respectively.

Proposition 2.12. If S is a maximum independent set of B(d, 3), then g(S) and g′(S)
are maximum independent sets of B(d + 2, 3).

Proof. We will prove the statement for the set g(S). The result for g′(S) can be proven
analogously. The set g(S) is made up of nine disjoint sets. By definition, it is easy to see
that g(S) is an independent set. We now show that it has the desired cardinality. We
have |S| = 1 + (d3 − d)/3. If l is the number of loops of S, then

|V1(S)| = 2|U1(S)| = 2(d2 − d + 2− 2l),

|V2(S)| = 2|U2(S)| = 2|U3(S)| = |V3(S)| = 2(d− l),

|V4(S)| = 2|U4(S)| = 2l2, |V5(S)| = 2(d− l),

|V6(S)| = 2|U5(S)| = 2l, |V7(S)| = 2l, |V8(S)| = 2.

The sum of these sizes is |g(S)| =
(
(d + 2)3 − (d + 2)

)
/3 + 1 + 2(l− 1)(l− 2). Since l = 1

or 2, the result follows.

3 Action of the Symmetric Group on B(d, 3)

In this section, we study the interaction between Sd, the group of permutations of [d], and
the four functions we defined in the previous section. In particular, we show that, up to

the electronic journal of combinatorics 18 (2011), #P194 7



a permutation of the digits, every maximum independent set in B(d, 3) can be obtained
uniquely by successively composing our four operators and evaluating this new function
at a maximum independent set of B(1, 3) or B(2, 3).

The group Sd acts on the nodes of B(d,D) by σ(x1 · · ·xD) = σ(x1) · · ·σ(xD) for
σ ∈ Sd. This action preserves the graph structure, and therefore permutes the maximum
independent sets. We will write A ∼ B to mean A and B are two sets in the same orbit
under the action of Sd. Note that the functions f , f ′, g, and g′ are defined so that if
A ∼ B, then f(A) ∼ f(B), etc. Therefore, each of these functions takes an Sd-orbit of
MISs to an Sd+1- or Sd+2-orbit of MISs.

Proposition 3.1. Let S be a maximum independent set of B(d, 3). Let H ⊂ Sd and
H ′, H ′′ ⊂ Sd+1 be the stabilizers of S, f(S) and f ′(S), respectively. Then H = H ′ = H ′′,
where we identify H with its image under the inclusion Sd ↪→ Sd+1.

Proof. We only show the equality H = H ′. The result for H and H ′′ will follow in much
the same way. We know that H ⊆ H ′, and we must prove the other inclusion. Let σ ∈ H ′,
and let L(S) be the loops of S, with a the distinguished loop with ma(S) = 0. The set
of loops must be preserved by σ and moreover, by Proposition 2.3, σ fixes each loop. We
want to show that σ(d) = d. Suppose that σ(d) = z 6= d and σ(x) = d, for some x 6= d.
Since x is not a loop, the node axd then belongs to the set U2(S) from Definition 2.6, and
so to f(S). That means that σ(axd) = adz must be in f(S). Since this word begins with
a, and has d in the middle, it could only be in U4(S). But z /∈ L(S), and so adz /∈ U4(S).
Therefore, σ(d) = d.

Now, since σ(d) = d, σ is also an element of Sd. Furthermore, it must be in the
stabilizer of S. Otherwise, it should map a node of S into a node having a d. Since this
is not possible, σ ∈ H.

Proposition 3.2. Let S be a maximum independent set of B(d, 3). Let H ⊂ Sd and
H ′, H ′′ ⊂ Sd+2 be the stabilizers of S, g(S) and g′(S), respectively. Let τ ∈ Sd+2 be the
transposition interchanging d and d + 1. Then

H ′ = H ′′ = 〈τ,H〉,

where, again, we identify H with its image in Sd+2. Note that τ commutes with every
element of H.

Proof. Again, we only show the equality H ′ = 〈τ,H〉, since the statement involving H ′′

is analogous.
As in the proof of Proposition 3.1, we know that 〈τ,H〉 ⊆ H ′. Now, let σ ∈ H ′. Again,

σ must preserve the set L(S) of loops in g(S), and by Proposition 2.3, σ in fact fixes each
loop. We will show that either σ or τσ fixes d and d + 1. Let x, y, z and v be such that

x � σ // d
� σ // y and z � σ // d + 1

� σ // v.

We know that x, y, z, v /∈ L(S). Suppose that x is neither d nor d + 1. Then we must
have dxa ∈ V3(S) from Definition 2.10. The node σ(dxa) = yda has to be in g(S), but it
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can only be in V7(S). That means that y = d + 1. Likewise, considering

σ((d + 1)za) = v(d + 1)a,

we have v = d. So σ(d) = d+1 and σ(d+1) = d. This contradicts our assumption about
x, and implies that x = d or d + 1. Analogously, z = d + 1 or d. That means that σ
fixes d and d + 1 or that it transposes them. Therefore, either σ or τσ is in H, and so
σ ∈ 〈τ,H〉.

We now show the precise way in which our functions and Sd interact.

Lemma 3.3. Let S and S ′ be maximum independent sets of B(d, 3). Then f(S) 6∼ f ′(S ′)
and g(S) 6∼ g′(S ′).

Proof. We first prove the result for f and f ′. For contradiction, suppose that there is
σ ∈ Sd+1 such that f(S) = σf ′(S ′). Let L(S) and L(S ′) be the loops of S and S ′.
By construction, we have σL(S ′) = σL(f ′(S ′)) = L(f(S)) = L(S). Call a and a′ the
distinguished loops of S and S ′. By Proposition 2.3, we know that σ(a′) = a.

Let x /∈ L(S ′) and y /∈ L(S) be such that x � σ // d
� σ // y. Suppose that y 6= d. Then

the node ayd is in U2(S), and hence in f(S). Therefore, σ−1(ayd) must be in f ′(S ′). But
σ−1(ayd) = a′dx, which cannot be in any of the sets that make up f ′(S ′). This implies
that y = d, hence σ(d) = d. In other words, σ lies in the image of Sd in Sd+1, and so
σf ′(S ′) = f ′(σS ′). However, f(S) has at least one element of the form udd, and f ′(σS ′)
has none, so f(S) 6∼ f ′(S ′).

The proof for g and g′ is similar. Namely, suppose that there exists σ ∈ Sd+2 such
that g(S) = σg′(S ′). Let x, z /∈ L(S ′), y, v /∈ L(S) be such that

x � σ // d
� σ // y and z � σ // d + 1

� σ // v.

Suppose that y 6= d, d + 1. Then the node ayd is in V2(S), and therefore in g(S). That
means that σ−1(ayd) = a′dx must be in g′(S ′). But such a node does not belong to
any of the sets that make up g′(S ′). This implies that either σ(d) = d or σ(d) = d + 1.
Analogously, we can prove that σ(d + 1) = d + 1 or σ(d + 1) = d.

Therefore, σ transposes d and d + 1 or leaves them fixed. By Proposition 3.2, the
transposition (d, d + 1) is in the stabilizer of g′(S ′) and so by possibly multiplying σ on
the right by this transposition, we can assume that σ fixes d and d+1 and so it lies in Sd.
Therefore, σg′(S ′) = g′(σS ′), but g(S) has at least one node of the form udd, and g′(σS ′)
has none, so g(S) 6∼ g′(S ′).

We now state two invariants that completely characterize maximum independent sets
of B(d, 3). This is useful to prove that our functions f, f ′, g, and g′, together with the
action of Sd, allow us to construct all maximum independent sets of B(d, 3). In order to
reverse these functions, we make the following observation, which also holds for loop-less
maximum independent sets. Since we will use it in Section 5 we state it in full generality.
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Proposition 3.4. Let S be a (possibly loop-less) maximum independent set of B(d, 3),
with loops L(S). Let d′ be any integer such that c < d′ < d for all c ∈ L(S). Then,
S ′ = S ∩B(d′, 3) is a maximum independent set of B(d′, 3) with loops L(S).

Proof. Since B(d′, 3) is a subgraph of B(d, 3), S ′ is clearly an independent set. Further-
more, since S has one element from each cycle except possibly a cycle that only uses
the digits a and b, then S ′ has the same property. Therefore, S ′ has the cardinality of a
maximum independent set.

Proposition 3.5. Let S be a maximum independent set of B(d, 3) with l loops, where d
is at least 3. There exists a digit x such that mx(S) = l+1 if and only if there exist σ ∈ Sd

and S ′ a maximum independent set of B(d− 1, 3) such that S = σf(S ′) or S = σf ′(S ′).

Proof. The reverse implication follows from the definitions of f and f ′, taking x = σ(d−1).
Conversely, suppose that there is an x with mx(S) = l + 1. We know it is not a loop by
Proposition 2.3. We define the transposition σ = (d−1, x) and the set S ′ = σS∩B(d−1, 3),
which is a maximum independent set of B(d− 1, 3) by Proposition 3.4.

Let a denote the distinguished loop of S. We know that the node xax /∈ S. Therefore,
either xxa or axx must be in S. Suppose that axx ∈ S, in which case we claim that
S = σf(S ′).

We now consider each of the sets that make up σf(S ′), and show that they are included
in S. The nodes of σS ′ belong to S, by definition of S ′. Let us consider the nodes of
σU1(S

′). The nodes of this set are of the form xyx, xyy, yyx, xyz or yzx, for y and z
distinct from x and y, z /∈ L(S).

• The nodes of the form xyx are all in S by the hypothesis on x.

• If xyy ∈ σU1(S
′), then ayy ∈ S ′. This means that ayy ∈ S, and so yyx cannot be

in S. The node yxy cannot be in S either, since xyx is. So, xyy ∈ S. Analogously,
if yyx ∈ σU1(S

′), then yyx ∈ S.

• If xyz ∈ σU1(S
′), then ayz ∈ S ′ and ayz ∈ S. Since neither zxy (adjacent to xyx)

nor yzx (adjacent to ayz) can be in S, xyz must be in S. The same reasoning
applies to yzx.

Let us consider the nodes of σU2(S
′). These have the form ayx. The nodes yxa

(adjacent to xyx) and xay (adjacent to aya) cannot be in S, which implies that ayx ∈ S.
The same reasoning shows that σU3(S

′) ⊂ S.
A node from σU4(S

′) is of the form uxv, with u and v loops. The nodes xuv (adjacent
to uxu) and uvx (adjacent to vxv) cannot be in S. Therefore, uxv ∈ S, and σU4(S

′) ⊂ S.
Finally, we know that axx ∈ S or xxa ∈ S. Assume the first case. If S has a single

loop, we have that σU5(S
′) ⊂ S. If S has an extra loop b, the nodes xbx (adjacent to

bxb) and xxb (adjacent to axx) cannot be in S. That implies that bxx ∈ S, which means
σU5(S

′) ⊂ S. This proves that S ⊇ σf(S ′). Since both sets have the same cardinality, we
conclude that equality holds.

On the other hand, if xxa ∈ S, an analogous procedure shows that S = σf ′(S ′).
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The following lemma is used in the proof of Proposition 3.7, which is the analogue
of Proposition 3.5 for the operators g and g′. Note that in preparation for our study
of loop-less maximum independent sets in Section 5, we prove Lemma 3.6 for loop-less
maximum independent sets as well.

Lemma 3.6. Let S be a (possibly loop-less) maximum independent set of B(d, 3), with
d > 3. If there exist two different digits y and z, which are not loops, such that

my(S) = mz(S) = l + 2,

then yzy /∈ S and zyz /∈ S.

Proof. Suppose that yzy ∈ S. Then, by the assumptions on my(S), there must be some
v 6= y such that yvy /∈ S. Suppose that vyy ∈ S. The node zyz cannot be in S, and by the
assumption on mz(S), zvz ∈ S. Therefore, the nodes zvy (adjacent to vyy), vyz (adjacent
to yzy) and yzv (adjacent to zvz) are not in S. But then the cycle zvy → vyz → yzv
contributes no nodes to S, which contradicts the fact that S has maximum cardinality.
If we assume that yyv ∈ S, then the cycle yvz → vzy → zyv cannot contribute any node
to S, a contradiction.

In conclusion, our assumption that yzy is in S is inconsistent with S being a maximum
independent set. By symmetry, the same holds if we assume zyz ∈ S.

Proposition 3.7. Let S be a maximum independent set of B(d, 3), d > 3, with l loops
(l = 1 or 2). Then, there are two different digits y and z such that

my(S) = mz(S) = l + 2

and no digit x such that mx(S) = l+1, if and only if there exist σ ∈ Sd and S ′ a maximum
independent set of B(d− 2, 3) such that

S = σg(S ′) or S = σg′(S ′).

Proof. One implication follows from the construction of g and g′ taking y = σ(d− 1) and
z = σ(d−2). The proof in the other direction is analogous to the proof of Proposition 3.5.
We can safely assume that y = d − 1 and z = d − 2. By Lemma 3.6, either the pair
(d− 1)(d− 2)(d− 2) and (d− 2)(d− 1)(d− 1) are in S, or the pair (d− 1)(d− 1)(d− 2)
and (d − 2)(d − 2)(d − 1) are in S. In the former case, we find that there is an S ′ such
that S = σg(S ′). In the latter case, we find that S = σg′(S ′).

Corollary 3.8. Let S and S ′ be maximum independent sets of B(d−1, 3) and B(d−2, 3)
with d > 3. Then for F = f, f ′ and G = g, g′, we have F(S) 6∼ G(S ′).

Proof. This result follows from the invariants of F(S) and G(S ′) that are stated in Propo-
sitions 3.5 and 3.7.

This corollary, together with Lemmas 3.3 and 3.3, shows that all four functions produce
essentially different (i.e. in different Sd-orbits) maximum independent sets.
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4 Characterization of Maximum Independent Sets

In this section, we show that the functions f , f ′, g, and g′, together with the action of
Sd are sufficient to construct every maximum independent set of B(d, 3). For the rest of
this section, L will denote the set of loops of S, and l will denote the cardinality of L. In
Section 5, we will work with loop-less maximum independent sets. For that reason, we
prove some of the results of this section in that context too.

As we mentioned in Section 2, the sets Mx(S) from Definition 2.4 play a key role. We
start our discussion with two technical lemmas about them.

Lemma 4.1. Let S be a (possibly loop-less) maximum independent set of B(d, 3). There
cannot be three different digits x, y, and z, with x, y, z /∈ L, such that

Mx(S) = My(S) = L ∪ {x, y, z},
Mz(S) = L ∪ {x, z} or L ∪ {x, y, z}.

(3)

Proof. Suppose that S is a maximum independent set and x, y, and z satisfy (3). Without
loss of generality, we can assume that x, y, z, and the loops are smaller than l + 3. Then
S ′ = S ∩B(l + 3, 3) is a maximum independent set in B(l + 3, 3) by Proposition 3.4 with
Mx(S

′) = Mx(S), My(S
′) = My(S), and Mz(S

′) = Mz(S).
Without loss of generality we may assume that xyy, yxx, xzz, zyy, zxx ∈ S ′ since yxy,

xyx, zxz, yzy, xzx /∈ S ′. But this implies that there is no element of the cycle containing
zyx in S ′, a contradiction. Therefore, no such S exists.

Lemma 4.2. Let S be a (possibly loop-less) maximum independent set of B(d, 3). There
cannot be three different digits x, y, and z, none of which are loops, such that

mx(S) = my(S) = mz(S) = l + 2.

Proof. We prove the result by contradiction. Suppose there are such x, y and z. We know
that L ∪ {x} ⊂ Mx(S) and |Mx(S)| = l + 2. Therefore, at least one of y and z must
appear between x. An analogous statement holds for y and z. Without loss of generality,
suppose that y appears between x. Then yxy (adjacent to xyx) is not in S, which forces
z to appear between y. That, in turn, forces x to appear between z. That is, the nodes
xyx, yzy and zxz are in S. But then, none of the nodes xyz → yzx → zxy are in S,
contradicting the maximality of S.

Remark 4.3. Note that a maximum independent set S of B(d, 3) with l loops can have
at most one digit satisfying mx(S) = l + 1. If there were two, say x and y, then xyx and
yxy would have to be in S, a contradiction.

The next proposition shows that, up to permutation, any maximum independent set
lies in the image of one of our four operations.

Proposition 4.4. Let S be a (possibly loop-less) maximum independent set of B(d, 3) with
d > 3. Suppose there is no digit z such that mz(S) = l+1. Then, there must be exactly two
digits x and y such that mx(S) = my(S) = l+2. Moreover, Mx(S) = My(S) = L∪{x, y}.
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Proof. We just need to show that mx(S) = my(S) = l + 2. Lemma 3.6 implies that
Mx(S) = My(S) = L ∪ {x, y}. By reordering the digits, we can assume that md−1(S) 6
md−2(S) 6 mi(S) for all i < d− 2. By hypothesis, we know that md−1(S) > l + 2 and we
want to prove that md−2(S) = l + 2. Lemma 4.2 will then imply that d− 2 and d− 1 are
the only digits with this property.

We prove that md−2(S) = l + 2 by induction on d. Our base cases are d 6 l + 3.
If d = l + 1, then the unique z not in L satisfies mz(S) = l + 1, which contradicts our
hypothesis. If d = l+2, and x and y are not in L, then mx(S) > l+2 implies mx(S) = l+2,
and likewise for y. If d = l + 3, then Lemma 4.1 gives us the result.

Now, let d be greater than l + 3 and consider S ′ = S ∩ B(d− 1, 3). By the inductive
hypothesis, we must have one of two possibilities:

Case 1: S ′ has exactly one digit z with mz(S
′) = l + 1. If z = d − 2, we are done.

Suppose that z 6= d − 2. By Remark 4.3, md−2(S
′) > mz(S

′), md−2(S) 6 mz(S) and
md−2(S

′) 6 md−2(S). Thus, we must have mz(S
′) = mz(S)− 1 and md−2(S

′) = md−2(S).
This means that z(d− 1)z is not in S and (d− 2)(d− 1)(d− 2) ∈ S, which implies that
md−2(S) = l + 2, as we wanted to show.

Case 2: S ′ has exactly two digits x and y with mx(S
′) = my(S

′) = l + 2. We split
this situation in two subcases.

Case 2.1: We suppose x, y 6= d − 2. By an argument similar to that of Case 1, we
know that Mx(S) = My(S) = L ∪ {x, y, d− 1} and

md−2(S) = l + 3, Md−2(S) ⊇ L ∪ {d− 2, d− 1, x, y},

which is a contradiction.
Case 2.2: Either x or y equals d − 2. Suppose y = d − 2. Since md−2(S

′) = l + 2,
then md−2(S) = l + 2 (and we are done) or md−2(S) = mx(S) = l + 3. Hence,

Mx(S) = Md−2(S) = L ∪ {x, d− 2, d− 1}. (4)

Since md−1(S) 6 md−2(S) = l + 3, we have that

Md−1(S) = L ∪ {d− 1, u, v} or L ∪ {d− 1, u}.

Case 2.2.1: Suppose md−1(S) = l + 3. We will show that Md−1(S) = L ∪ {x, d −
2, d− 1}, which, together with (4), contradicts Lemma 4.1.

Assume u, v 6= d− 2. That means that (d− 1)(d− 2)(d− 1) ∈ S. Since u 6= v, we can
assume without loss of generality that u 6= x. Then xux ∈ S and (d−2)u(d−2) ∈ S. The
nodes (d− 1)u(d− 2) and (d− 2)u(d− 1) must be in S, because the rest of the nodes in
their cycles are adjacent to something just shown to be in S. We know that (d−1)u(d−1)
is not in S, because of the definition of u. Additionally, the nodes (d − 1)(d − 1)u and
u(d− 1)(d− 1) are adjacent to the nodes we just showed are in S. Therefore, neither of
them belong to S, a contradiction. Hence, one of u and v must equal d − 2, and so we
have

Md−1(S) = L ∪ {u, d− 2, d− 1}.
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To finish, we need to prove that u = x. Assume the contrary. Then xux and (d −
1)x(d− 1) are in S. Therefore, by inspecting their cycles we see that both xu(d− 1) and
(d−1)ux must be in S. On the other hand, either u(d−1)(d−1) ∈ S or (d−1)(d−1)u ∈ S.
However, u(d − 1)(d − 1) ∈ S implies xu(d − 1) /∈ S, and (d − 1)(d − 1)u ∈ S implies
(d− 1)ux /∈ S. Therefore, u = x.

Case 2.2.2 Suppose md−1(S) = l + 2. If we assume x and d − 2 are not in Md−1(S)
and proceed as in the previous case, we get a contradiction. Therefore, Lemma 4.1 applied
to x, d− 1 and d− 2 leads to a contradiction.

We now state our main result.

Theorem 4.5 (Characterization of the Maximum Independent Sets of B(d,3)).
For all positive d we have:

1. Any orbit of independent sets of B(d, 3) under the action of Sd is obtained from the
{000} and the orbit of {000, 010, 111} under S2 by a unique sequence of applications
of f, f ′, g, and g′.

2. Let S be an MIS of B(d, 3). Then the subgroup of Sd stabilizing S is generated by
disjoint transpositions. In particular, the cardinality of the stabilizer of S is a power
of 2.

3. Let bd,k be the number of orbits of MISs in B(d, 3) whose elements have stabilizers
of size 2k. Then we have the recurrence relation{

b1,0 = 1, b2,0 = 3,

bd,k = 2bd−1,k + 2bd−2,k−1 for d > 3,

and the generating function

∞∑
d=1

∞∑
k=0

bd,kt
dsk =

t + t2

1− 2t− 2t2s
.

4. The number ad of maximum independent sets of B(d, 3) satisfies{
a1 = 1, a2 = 6,

ad = 2dad−1 + d(d− 1)ad−2 for d > 3,

and has exponential generating function

∞∑
d=1

adt
d

d!
=

t + t2

1− 2t− t2
.
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Proof. For d = 1, the only maximum independent set of B(1, 3) consists of the unique
node {000}. For the case of d = 2, it can be checked manually that the three orbits of
maximum independent sets under S2 are the orbits of {000, 010, 011}, {000, 010, 110}, and
{000, 010, 111}. Note that the first two of these are f({000}) and f ′({000}) respectively.
Thus, the existence statement in (1) follows from Propositions 3.5, 3.7 and 4.4. The
uniqueness comes from Lemma 3.3 and Corollary 3.8.

The statements in (2) and (3) follow from the previous result and the description of the
stabilizers in Propositions 3.1 and 3.2. Finally, the generating function in (4) is obtained
by substituting s = 1/2 into the previous generating function, because

ad =
∞∑

k=0

d!bd,k

2k
.

The recurrence follows immediately.

The following table lists the values of bd,k, for all d 6 6.

k\d 1 2 3 4 5 6

0
1 3 6 12 24 48

(1,0) (2,1) (4,2) (8,4) (16,8) (32,16)

1
2 10 32 88

(2,0) (8,2) (24,8) (64,24)

2
4 28

(4,0) (24,4)

In each entry, the first number indicates the number of orbits whose elements have only
one loop. The second one is the number of orbits with two loops.

5 Loop-less Maximum Independent Sets

In this section, we analyze the number of loop-less maximum independent sets (LMISs)
of B(d, 3), for all d. Recall from the introduction that the size of an LMIS of B(d, 3) is

α∗(d, 3) =
d3 − d

3
= α(d, 3)− 1.

By MIS, we will continue to mean a maximum independent set with loops. As in previous
sections, we let a be the loop of S such that ma(S) = 0, and the other loop (if there is
one) is denoted by b.

In what follows, we provide an explicit bijection between LMISs and MISs of B(d, 3).

Definition 5.1. Let S be a maximum independent set of B(d, 3), d > 3. We define

h(S) =


S\{aaa} if S has only one loop,

S\{aaa, bbb, aba} ∪ {aab, bba} if S has two loops a < b,

S\{aaa, bbb, aba} ∪ {baa, abb} if S has two loops a > b.

(5)
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Proposition 5.2. Let S be a maximum independent set of B(d, 3). Then h(S) is an
LMIS of B(d, 3).

Proof. Let S be an MIS of B(d, 3). If S has only one loop, then eliminating it leaves us
with an independent set of the correct size.

If S has two loops, say a and b, then h(S) is a set of the correct size, since the nodes we
added were not already present in S. However, we must see that h(S) is an independent
set. Assume a < b. Suppose we have a node adjacent to aab. Then it is of the form abx
or xaa. Since bxb and aaa are in S, then abx and xaa cannot be in S. A similar argument
show that adding bba to S preserves independence. Therefore, the nodes we add are not
adjacent to any other nodes in the construction, and the result follows. The case a > b is
proved analogously.

Proposition 5.3. The function h is injective.

Proof. Let S and S ′ be two different MISs of B(d, 3). Then showing that h(S) 6= h(S ′) is
just a matter of analyzing all the possible combinations of loops and their relative order
in S and S ′. We leave the details to the reader.

Lemma 5.4. Let S be a maximum independent set with two loops a and b. Let τ be the
transposition of a and b. Let S ′ = S\{aaa, bbb, aba}. Then S ′ = τS ′.

Proof. We must show that for every node w ∈ S ′ such that a ∈ w, we have w[a → b] ∈ S ′

and vice versa. Notice that any node of S ′ cannot contain a and b simultaneously. The
nodes that contain two a’s or two b’s are axa and bxb, and they are in S ′ for all x 6= a, b.
Thus, xay /∈ S ′ for all x, y 6= a.

The nodes that contain only one a are xya or axy for x, y 6= a. If xya ∈ S ′, then
bxy /∈ S ′, and so xyb must be in S ′ in order to have one element from its cycle. We can
prove that axy ∈ S ′ implies bxy ∈ S ′ in a similar way.

Proposition 5.5. The function h is surjective.

Proof. Let S be an LMIS of B(d, 3). By Proposition 4.4, we have two possibilities:
First, if there is a digit x such that mx(S) = 1, then there is no node of the form xxy

or yxx. Therefore, S ′ = S ∪ {xxx} is an MIS of B(d, 3), and S = h(S ′).
Second, if there are two digits x and y such that mx(S) = my(S) = 2, then we have

either xxy, yyx ∈ S or yxx, xyy ∈ S. In the first case, we construct

S ′ = S ∪ {xxx, yyy, xyx}\{xxy, yyx}.

If x < y, then S = h(S ′). If x > y, then by Lemma 5.4, S = h(τS ′), where τ is the
transposition of x and y. The remaining case is dealt with analogously.

Theorem 5.6. Let a∗d be the number of loop-less maximum independent sets of B(d, 3).
Then a∗d = ad.

Proof. This follows from Propositions 5.3 and 5.5.
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We conclude with a result that links comma-free codes and loop-less maximum inde-
pendent sets.

Theorem 5.7. Every loop-less maximum independent set is a maximum comma-free code
of length 3. In particular, the number of equivalence classes of comma-free codes in an
alphabet of size d is at least 2d, where equivalence means equivalence under the action of
Sd.

Proof. If S is an LMIS with x1x2x3 and y1y2y3 elements of S, then x2x3y1 cannot be an
element of S because it is adjacent to x1x2x3 in B(d, 3). Likewise, x3y1y2 cannot be in S
because it is adjacent to y1y2y3. Therefore, S is a comma-free code.

For the second statement, by considering only the first term of the recurrence relation
in Theorem 4.5(4), we see that ad > 2dd!. Therefore, the number of maximum comma-free
codes is at least 2dd!, so the number of equivalence classes under the action of Sd must be
at least 2d.

The set S = {100, 110} is an example of a maximum comma-free code which is not an
independent set for d = 2.
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