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Abstract

If X is a geodesic metric space and x1, x2, x3 ∈ X, a geodesic triangle

T = {x1, x2, x3} is the union of the three geodesics [x1x2], [x2x3] and [x3x1]
in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is
contained in a δ-neighborhood of the union of the two other sides, for every
geodesic triangle T in X. We denote by δ(X) the sharp hyperbolicity constant
of X, i.e., δ(X) := inf{δ ≥ 0 : X is δ-hyperbolic }. The study of hyperbolic
graphs is an interesting topic since the hyperbolicity of a geodesic metric space
is equivalent to the hyperbolicity of a graph related to it. The main aim of
this paper is to obtain information about the hyperbolicity constant of the line
graph L(G) in terms of parameters of the graph G. In particular, we prove
qualitative results as the following: a graph G is hyperbolic if and only if L(G)
is hyperbolic; if {Gn} is a T-decomposition of G ({Gn} are simple subgraphs
of G), the line graph L(G) is hyperbolic if and only if supn δ(L(Gn)) is finite.
Besides, we obtain quantitative results. Two of them are quantitative versions
of our qualitative results. We also prove that g(G)/4 ≤ δ(L(G)) ≤ c(G)/4 + 2,
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where g(G) is the girth of G and c(G) is its circumference. We show that
δ(L(G)) ≥ sup{L(g) : g is an isometric cycle in G }/4. Furthermore, we charac-
terize the graphs G with δ(L(G)) < 1.

Keywords: Infinite Graphs; Line Graphs; Connectivity; Geodesics; Hyperbolicity

1 Introduction

The study of mathematical properties of Gromov hyperbolic spaces and its applications
is a topic of recent and increasing interest in graph theory; see, for instance [4, 5, 6, 7, 10,
11, 14, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 40, 41, 42, 44].

The theory of Gromov’s spaces was used initially for the study of finitely generated
groups (see [16, 17] and the references therein), where it was demonstrated to have an
enormous practical importance. This theory was applied principally to the study of
automatic groups (see [33]), that play an important role in sciences of the computation.
Another important application of this spaces is secure transmission of information by
internet (see [24, 25]). In particular, the hyperbolicity also plays an important role in the
spread of viruses through the network (see [24, 25]). The hyperbolicity is also useful in
the study of DNA data (see [10]).

In recent years several researchers have been interested in showing that metrics used
in geometric function theory are Gromov hyperbolic. For instance, the Gehring-Osgood
j-metric is Gromov hyperbolic; and the Vuorinen j-metric is not Gromov hyperbolic
except in the punctured space (see [20]). The study of Gromov hyperbolicity of the
quasihyperbolic and the Poincaré metrics is the subject of [2, 3, 8, 21, 22, 23, 36, 37, 38,
40, 41]. In particular, in [36, 40, 41, 42] it is proved the equivalence of the hyperbolicity of
Riemann surfaces (with their Poincaré metrics) and the hyperbolicity of a simple graph;
hence, it is useful to know hyperbolicity criteria for graphs.

In our study on hyperbolic graphs we use the notations of [15]. We say that γ is a
geodesic if it is an isometry, i.e., L(γ|[t,s]) = d(γ(t), γ(s)) = |t−s| for every s, t ∈ [a, b]. We
say that X is a geodesic metric space if for every x, y ∈ X there exists a geodesic joining
x and y; we denote by [xy] any of such geodesics (since we do not require uniqueness of
geodesics, this notation is ambiguous, but it is convenient). It is clear that every geodesic
metric space is path-connected. If X is a graph, we use the notation [u, v] for the edge of
a graph joining the vertices u and v.

In order to consider a graph G as a geodesic metric space, we must identify any edge
[u, v] ∈ E(G) with the real interval [0, l] (if l := L([u, v])); hence, if we consider the edge
[u, v] as a graph with just one edge, then it is isometric to [0, l]. Therefore, any point in
the interior of any edge is a point of G. A connected graph G is naturally equipped with
a distance defined on its points, induced by taking shortest paths in G. Then, we see G
as a metric graph. Along the paper we just consider simple connected graphs whose edges
have length 1 and such that every vertex has finite degree; these properties guarantee
that the graphs are geodesic metric spaces.

If X is a geodesic metric space and J = {J1, J2, . . . , Jn} is a polygon, with sides
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Jj ⊆ X, we say that J is δ-thin if for every x ∈ Ji we have that d(x,∪j 6=iJj) ≤ δ. We
denote by δ(J) the sharp thin constant of J , i.e., δ(J) := inf{δ ≥ 0 : J is δ-thin } . If
x1, x2, x3 ∈ X, a geodesic triangle T = {x1, x2, x3} is the union of the three geodesics
[x1x2], [x2x3] and [x3x1]. The space X is δ-hyperbolic (or satisfies the Rips condition
with constant δ) if every geodesic triangle in X is δ-thin. We denote by δ(X) the sharp
hyperbolicity constant of X, i.e., δ(X) := sup{δ(T ) : T is a geodesic triangle in X }. We
say that X is hyperbolic if X is δ-hyperbolic for some δ ≥ 0. If X is hyperbolic, then
δ(X) = inf{δ ≥ 0 : X is δ-hyperbolic }.

There are several definitions of Gromov hyperbolicity (see e.g. [9, 15]). These different
definitions are equivalent in the sense that if X is δA-hyperbolic with respect to the
definition A, then it is δB-hyperbolic with respect to the definition B, and there exist
universal constants c1, c2 such that c1δA ≤ δB ≤ c2 δA. However, for a fixed δ ≥ 0, the set
of δ-hyperbolic graphs with respect to the definition A, is different, in general, from the
set of δ-hyperbolic graphs with respect to the definition B. We have chosen this definition
since it has a deep geometric meaning (see e.g. [15]).

The following are interesting examples of hyperbolic spaces. The real line R is 0-
hyperbolic: in fact, any point of a geodesic triangle in the real line belongs to two sides
of the triangle simultaneously, and therefore we can conclude that R is 0-hyperbolic. The
Euclidean plane R

2 is not hyperbolic: it is clear that equilateral triangles can be drawn
with arbitrarily large diameter, so that R

2 with the Euclidean metric is not hyperbolic.
This argument can be generalized in a similar way to higher dimensions: a normed vector
space E is hyperbolic if and only if dim E = 1. Every arbitrary length metric tree is 0-
hyperbolic: in fact, all point of a geodesic triangle in a tree belongs simultaneously to two
sides of the triangle. Every bounded metric space X is (diam X)-hyperbolic. Every simply
connected complete Riemannian manifold with sectional curvature verifying K ≤ −c2, for
some positive constant c, is hyperbolic. We refer to [9, 15] for more background and further
results.

We would like to point out that deciding whether or not a space is hyperbolic is usually
extraordinarily difficult: Notice that, first of all, we have to consider an arbitrary geodesic
triangle T , and calculate the minimum distance from an arbitrary point P of T to the
union of the other two sides of the triangle to which P does not belong to. And then we
have to take supremum over all the possible choices for P and then over all the possible
choices for T . Without disregarding the difficulty of solving this minimax problem, notice
that in general the main obstacle is that we do not know the location of geodesics in the
space. Therefore, it is interesting to obtain inequalities relating the hyperbolicity constant
and other parameters of graphs. Since to obtain a characterization of hyperbolic graphs
is a very ambitious goal, it seems reasonable to study this problem for a particular class
of graphs.

Line graphs were initially introduced in the papers [43] and [30], although the termi-
nology of line graph was used in [19] for the first time.

The main aim of this paper is to obtain information about the hyperbolicity constant
of the line graph L(G) in terms of parameters of the graph G. In particular, we prove
qualitative results as the following: a graph G is hyperbolic if and only if L(G) is hyper-
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bolic; if {Gn} is a T-decomposition of G ({Gn} are simple subgraphs of G, see Section 3),
the line graph L(G) is hyperbolic if and only if supn δ(L(Gn)) is finite. Besides, we obtain
quantitative results. Two of them are quantitative versions of our qualitative results.

2 Inequalities for the hyperbolicity constant of line

graphs.

Let (X, dX) and (Y, dY ) be two metric spaces. A map f : X −→ Y is said to be an
(α, β)-quasi-isometry, if there exist α ≥ 1, β ≥ 0 such as for every x, y ∈ X :

α−1dX(x, y) − β ≤ dY (f(x), f(y)) ≤ αdX(x, y) + β.

Given a non-negative number ε ≥ 0 we say that f is ε-full if for every y ∈ Y there exists
x ∈ X such that dY (f(x), y) ≤ ε.

A fundamental property of hyperbolic spaces is the following (see e.g. [15, p. 88]):

Theorem 2.1 (Invariance of hyperbolicity). Let (X, dX), (Y, dY ) be two geodesic metric
spaces and f : X −→ Y an (α, β)-quasi-isometry.

i) If Y is δ-hyperbolic, then X is δ′-hyperbolic, where δ′ is a constant which just depends
on δ, α and β.

ii) If f is ε-full, then X is hyperbolic if and only if Y is hyperbolic. Furthermore, if X
is δ′-hyperbolic, then Y is δ-hyperbolic, where δ is a constant which just depends on
δ′, α, β and ε.

If G is a graph, we denote by L(G) its line graph.

Theorem 2.2. There exists a (1/2)-full (1, 1)-quasi-isometry from G on its line graph
L(G) and, consequently, G is hyperbolic if and only if L(G) is hyperbolic.

Furthermore, if G (respectively, L(G)) is δ-hyperbolic, then L(G) (respectively, G) is
δ′-hyperbolic, where δ′ is a constant which depends on δ.

Proof. By Theorem 2.1, it suffices to find a (1/2)-full (1, 1)-quasi-isometry f : G → L(G).
If e ∈ E(G), we denote by p(e) its corresponding vertex in V (L(G)). We define a function
f : G → L(G) in the following way: if x belongs to the interior of some e ∈ E(G), then
f(x) := p(e); if x ∈ V (G), let us choose some edge e ∈ E(G) starting in x and then
f(x) := p(e). Since f(G) = V (L(G)), we deduce that f is (1/2)-full.

Fix x, y ∈ G. If f(x) = f(y), then dG(x, y) ≤ 1 = dL(G)(f(x), f(y)) + 1.
Let us assume that dL(G)(f(x), f(y)) = m, with m ≥ 1. Then there exist vertices
w0 = f(x), w1, . . . , wm−1, wm = f(y) ∈ V (L(G)) and a geodesic γ := [f(x), w1] ∪
[w1, w2]∪ · · · ∪ [wm−1, f(y)] in L(G) joining f(x) and f(y). Therefore, there exist vertices
v0, v1, . . . , vm+1 ∈ V (G), such that x ∈ [v0, v1], y ∈ [vm, vm+1] and p([vj , vj+1]) = wj for
j = 0, 1, . . . , m. Then dG(x, y) ≤ m + 1 = dL(G)(f(x), f(y)) + 1.
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Let us consider now x, y ∈ G \ V (G) and a geodesic η := [xu0] ∪ [u0, u1] ∪ · · · ∪
[ur−1, ur] ∪ [ury] joining them in G. Then dG(x, y) ≥ r and the path in L(G) given
by the r + 2 vertices f(x), p([u0, u1]), . . . , p([ur−1, ur]), f(y) joins f(x) and f(y) in L(G).
Consequently, dL(G)(f(x), f(y)) ≤ r + 1 ≤ dG(x, y) + 1. If we consider now the cases
x ∈ V (G) or y ∈ V (G), a similar argument also gives dL(G)(f(x), f(y)) ≤ dG(x, y)+1.

We have obtained also a quantitative version (with explicit constants) for the hyper-
bolicity constants on Theorem 2.2. In order to do that, we define the Gromov product of
x, y ∈ G with base point w ∈ G by

(x, y)w :=
1

2

(

d(x, w) + d(y, w)− d(x, y)
)

.

If G is a Gromov hyperbolic graph, it holds

(x, z)w ≥ min
{

(x, y)w, (y, z)w

}

− δ (2.1)

for every x, y, z, w ∈ G and some constant δ ≥ 0 (see e.g. [1, 15]). Let us denote by δ∗(G)
the sharp constant for this inequality, i.e.,

δ∗(G) := sup
{

min
{

(x, y)w, (y, z)w

}

− (x, z)w : x, y, z, w ∈ G
}

.

It is known that (2.1) is, in fact, equivalent to our definition of Gromov hyperbolicity;
furthermore, we have δ∗(G) ≤ 4 δ(G) and δ(G) ≤ 3 δ∗(G) (see e.g. [1, 15]).

Theorem 2.3. For any graph G, we have δ∗(G) − 3 ≤ δ∗(L(G)) ≤ δ∗(G) + 6.

Proof. Recall that we have seen in the proof of Theorem 2.2 that there exists a (1/2)-full
(1, 1)-quasi-isometry f : G → L(G).

Consequently, if δ∗(G) = ∞, then δ∗(L(G)) = ∞ and the inequalities trivially hold.
Furthermore, if δ∗(G) < ∞, then δ∗(L(G)) < ∞.
It is not difficult to check that

(x, y)w −
3

2
≤ (f(x), f(y))f(w) ≤ (x, y)w +

3

2

for every x, y, w ∈ G. Then, we deduce for every x, y, z, w ∈ G,

(x, z)w ≥ (f(x), f(z))f(w) −
3

2
≥ min

{

(f(x), f(y))f(w), (f(y), f(z))f(w)

}

− δ∗(L(G)) −
3

2
≥ min

{

(x, y)w, (y, z)w

}

− δ∗(L(G)) − 3.

Then δ∗(G) ≤ δ∗(L(G)) + 3.
Furthermore, given x′, y′, z′, w′ ∈ L(G) there exist x, y, z, w ∈ G with dL(G)(x

′, f(x)) ≤
1/2, dL(G)(y

′, f(y)) ≤ 1/2, dL(G)(z
′, f(z)) ≤ 1/2 and dL(G)(w

′, f(w)) ≤ 1/2. It is not
difficult to check that

(x, y)w − 3 ≤ (x′, y′)w′ ≤ (x, y)w + 3.

Then
(x′, z′)w′ ≥ (x, z)w − 3 ≥ min

{

(x, y)w, (y, z)w

}

− δ∗(G) − 3

≥ min
{

(x′, y′)w′, (y′, z′)w′

}

− δ∗(G) − 6.

Then δ∗(L(G)) ≤ δ∗(G) + 6.
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We deduce directly the following result.

Theorem 2.4. If G is any graph, then 1
12

δ(G) − 3
4
≤ δ(L(G)) ≤ 12 δ(G) + 18.

Proof. Using the inequalities relating δ∗(G) and δ(G) and Theorem 2.3, we conclude

δ(G) ≤ 3 δ∗(G) ≤ 3 (δ∗(L(G)) + 3) ≤ 12 δ(L(G)) + 9,

δ(L(G)) ≤ 3 δ∗(L(G)) ≤ 3 (δ∗(G) + 6) ≤ 12 δ(G) + 18.

Theorem 2.5. For any graph G, we have δ(L(G)) ≤ 1
2
diam V (G)+1, and the inequality

is sharp.

Proof. Let us consider a geodesic side γ in any geodesic triangle T ⊂ G. Denote by x, y
the endpoints of γ, and by γ1, γ2 the other sides of T . For any p ∈ γ, it is clear that

d(p, γ1 ∪ γ2) ≤ d(p, {x, y}) ≤
1

2
L(γ) ≤

1

2
diam G ,

and consequently, δ(G) ≤ 1
2

diam G.
Since diamL(G) ≤ diam V (L(G))+1 and diam V (L(G)) ≤ diam V (G)+1, we conclude

that δ(L(G)) ≤ 1
2
diam V (G) + 1.

Note that the bound is attained when the graph is the complete graph G = K6.

Remark 2.6. Note that, as a consequence of the proof of Theorem 2.5, we obtain that
δ(G) ≤ 1

2
diam G for every graph G.

As usual, by cycle in a graph we mean a simple closed curve, i.e., a closed path with
different vertices, unless the last vertex, which is equal to the first one.

A subgraph Γ of G is said isometric if dΓ(x, y) = dG(x, y) for every x, y ∈ Γ.
The following result appears in [39, Theorem 17].

Lemma 2.7. If G is any graph, then

δ(G) ≥
1

4
sup{L(g) : g is an isometric cycle in G } .

Theorem 2.8. If G is any graph, then

δ(L(G)) ≥
1

4
sup{L(g) : g is an isometric cycle in G } .

Proof. First of all, we prove that if C is any isometric cycle of a graph G, then p(C) is an
isometric cycle of the line graph L(G).

Seeking for a contradiction, assume that p(C) is not an isometric cycle of the line graph
L(G). Then there exist two edges e1, e2 ∈ E(G) of C such that dp(C)(p(e1), p(e2)) = r and
dL(G)(p(e1), p(e2)) = k ≤ r − 1.

Since dp(C)(p(e1), p(e2)) = r, we deduce that dC(e1, e2) = dG(e1, e2) = r − 1.
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Since dL(G)(p(e1), p(e2)) = k ≤ r − 1, there exist edges a1, a2, . . . , ak−1 ∈ E(G) such
that [p(e1), p(a1)]∪ [p(a1), p(a2)]∪· · ·∪ [p(ak−1), p(e2)] is a geodesic joining p(e1) and p(e2)
in L(G). Therefore, a1 ∪ a2 ∪ · · · ∪ ak−1 is a path joining e1 and e2 in G; this implies that
dG(e1, e2) ≤ k−1 ≤ r−2 < r−1 = dG(e1, e2), which is the contradiction we were looking
for.

Now, Lemma 2.7 gives the result.

Given any graph G we define, as usual, its girth g(G) as the infimum of the lengths of
the cycles in G. The following result (see [31, Theorem 17]) relates the girth of a graph
and its hyperbolicity constant.

Lemma 2.9. For any graph G, we have δ(G) ≥ 1
4
g(G), and the inequality is sharp.

Remark 2.10. One can think that the equality δ(G) = g(G)/4 holds if and only if every
cycle g in G verifies L(g) = g(G). However, this is false, as shows the following example.

Let us consider a graph G obtained from a cycle graph C6 by attaching three edges
joining antipodal vertices. It is not difficult to check that diam V (G) = 2, diam G = 2,
δ(G) = 1, g(G) = 4, and there exists a cycle with length 6.

Proposition 2.12 below gives a similar upper bound for δ(G). We need some prelimi-
naries. Let us define the circumference c(G) of a graph G as the supremum of the lengths
of its cycles.

Given any graph G, we denote by τ(G) the set of geodesic triangles in G which are
cycles and such that each one of the three vertices of the triangle is either a vertex in
V (G) or a midpoint of some edge in E(G).

In [4] we found the following result.

Lemma 2.11. In any graph G, we have δ(G) = sup
{

δ(T ) : T ∈ τ(G)
}

.

Proposition 2.12. For any graph G, we have δ(G) ≤ 1
4
c(G), and this inequality is sharp.

Proof. Let us consider any fixed geodesic triangle T = {γ1, γ2, γ3} in G and p ∈ T .
Without loss of generality we can assume that p ∈ γ1 = [xy]. By Lemma 2.11 we can
assume that T is a cycle. Since L(T ) ≤ c(G), then L(γ1) ≤ c(G)/2 and d(p, γ2 ∪ γ3) ≤
d(p, {x, y}) ≤ L(γ1)/2 ≤ c(G)/4. Consequently, δ(G) ≤ c(G)/4.

The bound is attained when the graph is any cycle graph with n ≥ 3 vertices.

Proposition 2.13. For any graph G which is not a tree, we have δ(G) ≥ 1
4
g(L(G)).

Proof. Since G is not a tree, we know that there is at least a cycle in G. By Lemma 2.9,
we have δ(G) ≥ 1

4
g(G). Then it suffices to note that g(L(G)) ≤ g(G), since for every

cycle in G we have a cycle in L(G) with the same length.

The following result, which is a consequence of Theorem 2.8, is a dual version of
Proposition 2.13.

Corollary 2.14. For any graph G, we have δ(L(G)) ≥ 1
4
g(G).
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The bound in Corollary 2.14 is attained when the graph is any cycle graph with n ≥ 3
vertices.

A matching in a finite graph G is a set of edges pairwise non adjacent. An independent
set in a finite graph G is a set of vertices pairwise non adjacent. We denote by M(G)
(respectively, I(G)) the maximum of the cardinal of matching (respectively, independent)
sets in G.

Theorem 2.15. For any finite graph G, we have δ(L(G)) ≤ M(G).

Proof. It is not difficult to check that M(G) = I(L(G)). Let us consider a geodesic γ in
G with L(γ) = diam V (G). Since γ is a geodesic, if v, w ∈ γ∩V (G) and d(v, w) ≥ 2, then
vw /∈ E(G). Hence, since it is possible to choose a set of vertices v1, v2, . . . , vm ∈ γ∩V (G)
with d(vj, vj+1) = 2 and m =

⌊

diam V (G)/2
⌋

+ 1. Thus, for every graph G we have
2I(L(G)) ≥ diam V (L(G)) + 1 ≥ diamL(G).

As a consequence of Remark 2.6 we have δ(L(G)) ≤ 1
2

diamL(G). Thus, 2δ(L(G)) ≤
2M(G).

Let G be any graph with diam V (G) ≥ 2. We define

σ2(G) := min{degG(x) + degG(y) : x, y ∈ V (G), dG(x, y) ≥ 2}.

In [34] we find the following result.

Lemma 2.16. Let G be any graph with σ2(L(G)) ≥ 7. Suppose that, for some r ≥ 3,
L(G) has an r-cycle C but no (r − 1)-cycle. Then C is an isometric subgraph of L(G).

The following result appears in [39, Lemma 5].

Lemma 2.17. If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

Proposition 2.18. Let G be any graph with degG(x) + degG(y) ≥ 6 for every [x, y] ∈
E(G). Suppose that, for some r ≥ 3, L(G) has an r-cycle but no (r − 1)-cycle. Then
δ(L(G)) ≥ r/4.

Proof. Note that if [x, y] ∈ E(G) then degL(G)(p([x, y])) = degG(x) + degG(y) − 2 ≥ 4.
If diam V (L(G)) = 1, then L(G) is isomorphic to a complete graph Km with m ≥ 5,

and δ(L(G)) = 1 (see [39, Theorem 1]); since r = 3 is the unique value of r satisfying the
hypothesis, the inequality δ(L(G)) ≥ 3/4 holds trivially.

If diam V (L(G)) ≥ 2, then σ2(L(G)) ≥ 8. Therefore, if C is an r-cycle in L(G), then
Lemma 2.16 gives that C is an isometric subgraph of L(G). Using that for any cycle
graph Cn with n ≥ 3 we have δ(Cn) = L(Cn)/4 = n/4 (see [39, Theorem 1]) and Lemma
2.17, the lower bound follows.

We deduce the following direct consequence.

Corollary 2.19. Let G be any graph with degG(x) ≥ 3 for every x ∈ V (G). Suppose
that, for some r ≥ 3, L(G) has an r-cycle but no (r − 1)-cycle. Then δ(L(G)) ≥ r/4.
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3 T-decompositions and consequences.

Given a graph G and a family of subgraphs {Gn}n∈Λ of G verifying ∪nGn = G and that
Gn ∩ Gm is either a vertex or the empty set for each n 6= m, we define a graph R as
follows: for each index n ∈ Λ, let us consider a point vn (vn is an abstract point which
is not contained in Gn) and we define the set of vertices of R as V (R) = {vn}n∈Λ; two
vertices of R are neighbors, i.e., [vn, vm] ∈ E(R) if and only if Gn ∩Gm 6= ∅. We say that
the family of subgraphs {Gn}n of G is a T-decomposition of G if the graph R is a tree.

Note that every Gn in any T-decomposition of G is an isometric subgraph of G.

A T-decomposition of G always exists, as we will show now:
We denote by G \ {v} the metric space obtained by removing the point {v} from the

metric space G.
We say that a vertex v of a graph G is a cut vertex if G \ {v} is not connected. Note

that any vertex with degree greater than one in a tree is a a cut vertex.
We denote by {Gn}n the closures in G of the connected components of the set

G \
{

v ∈ V (G) : v is a cut vertex of G
}

.

It is clear that {Gn}n is a T-decomposition of G; we call it the canonical T-decomposition
of G.

Example. Let us consider two cycle graphs Γ1, Γ2, and x1 ∈ V (Γ1), x2 ∈ V (Γ2). Define
the graph G as the graph with V (G) = V (Γ1)∪V (Γ2) and E(G) = E(Γ1)∪E(Γ2)∪[x1, x2].
Then {Γ1, Γ2 ∪ [x1, x2]} is a T-decomposition of G, and {Γ1, Γ2, [x1, x2]} is the canonical
T-decomposition of G.

Consider a graph G and a family of subgraphs {Gn}n∈Λ of G such that ∪nGn = G
and for each n 6= m Gn ∩ Gm is either the empty set or an edge enm such that the graph
Gn∩Gm\{enm} is not connected. We define a graph R as follows: for each index n ∈ Λ, let
us consider a point vn (vn is an abstract point which is not contained in Gn) and we define
the set of vertices of R as V (R) = {vn}n∈Λ; two vertices of R are neighbors if and only if
Gn∩Gm 6= ∅. We say that the family of subgraphs {Gn}n of G is a T-edge-decomposition
of G if the graph R is a tree.

We will need the following result (see [6, Theorem 5]), which allows to obtain global
information about the hyperbolicity of a graph from local information.

Lemma 3.1. Let G be any graph and let {Gn}n be any T-decomposition of G. Then
δ(G) = supn δ(Gn).

T-decompositions are a useful tool in the study of hyperbolic graphs (see e.g. [6, 31,
39]).

We have a similar result to Lemma 3.1 for {L(Gn)}n if {Gn}n is a T-edge-
decomposition of G.
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Theorem 3.2. If {Gn}n is any T-edge-decomposition of any graph G, then δ(L(G)) =
supn δ(L(Gn)).

Proof. If {Gn}n is a T-edge-decomposition of G, then {L(Gn)}n is a T-decomposition of
L(G). Then, Lemma 3.1 gives the result.

Proposition 3.3. Let T be any tree with maximum degree ∆. Then

δ(L(T )) =











1, if ∆ ≥ 4 ,

3/4, if ∆ = 3 ,

0, if ∆ ≤ 2 .

Proof. The canonical T-decomposition {Gn}n of L(T ) has an edge for each vertex v ∈
V (T ) with degT (v) = 2 and a graph isomorphic to Km for each vertex v ∈ V (T ) with
degT (v) = m ≥ 3. Lemma 3.1 gives δ(L(T )) = supn δ(Gn). Besides, [39, Theorem 11]
gives

δ(Km) =

{

1, if m ≥ 4 ,

3/4, if m = 3 .

These facts give the result.

From [31, Proposition 5 and Theorem 7] we deduce the following results.

Lemma 3.4. If G is any graph with a cycle g with length L(g) ≥ 3, then δ(G) ≥ 3/4. If
there exists a cycle g in G with length L(g) ≥ 4, then δ(G) ≥ 1.

Corollary 3.5. Let G be any graph with maximum degree ∆. If ∆ ≥ 3, then δ(L(G)) ≥
3/4. If ∆ ≥ 4, then δ(L(G)) ≥ 1.

Corollary 3.6. If G is any graph with a cycle g with length L(g) ≥ 3, then δ(L(G)) ≥ 3/4.
If there exists a cycle g in G with length L(g) ≥ 4, then δ(L(G)) ≥ 1.

In [29], the authors characterize the bridged graphs which have hyperbolicity constant
1, for a different definition of hyperbolicity constant.

An interesting question is how to characterize the graphs G with δ(L(G)) = 1, but it
seems very difficult to give a description of such graphs in a simple way. However, the
following theorem allows to characterize the graphs with δ(L(G)) < 1.

Theorem 3.7. If G is any graph with δ(L(G)) < 1, then there are just two possibilities:
δ(L(G)) = 0 or δ(L(G)) = 3/4. Furthermore,

• δ(L(G)) = 0 if and only if G is a (finite or infinite) path graph,

• δ(L(G)) = 3/4 if and only if G is either a tree with maximum degree ∆ = 3 or
isomorphic to C3.
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Proof. First of all, [31, Theorem 11] gives that if δ(L(G)) < 1, then we have either
δ(L(G)) = 0 or δ(L(G)) = 3/4.

Proposition 3.3 gives that if G is a path graph, then δ(L(G)) = 0.
It is well known that if δ(L(G)) = 0, then L(G) is a tree. Since every cycle in G

corresponds with a cycle in L(G) with the same length, G is a tree. If a vertex of G has
degree greater or equal than 3, then there is a cycle g in L(G) with length L(g) ≥ 3, and
Lemma 3.4 gives that δ(G) ≥ 3/4; then the maximum degree of G verifies ∆ ≤ 2.

If G is a tree with maximum degree ∆ = 3, then Proposition 3.3 gives that δ(L(G)) =
3/4. If G is isomorphic to C3, then L(G) is also isomorphic to C3 and δ(Cn) = L(Cn)/4 =
n/4 gives δ(L(G)) = 3/4.

If δ(L(G)) = 3/4, then Lemma 3.4 gives that every cycle in L(G) has length 3. If a
vertex of G has degree greater or equal than 4, then Corollary 3.5 gives that δ(L(G)) ≥ 1,
which is a contradiction; then the maximum degree of G verifies ∆ ≤ 3. If G is a tree,
then Proposition 3.3 gives ∆ = 3 and we have the result. If G has a cycle, then it has
length 3 by Corollary 3.6; assume that G is not isomorphic to C3; therefore, G contains
a cycle isomorphic to C3 with a vertex of degree at least 3; then L(G) contains a cycle
with length at least 4, and Lemma 3.4 gives that δ(L(G)) ≥ 1, which is a contradiction;
hence, G is isomorphic to C3.

If {Gn}n is a T-decomposition of G, {L(Gn)}n is not (in general) a T-decomposition
of L(G); however, it is possible to obtain information about δ(L(G)) from δ(L(Gn)).

Theorem 3.8. If {Gn}n is any T-decomposition of any graph G, then

sup
n

δ(L(Gn)) ≤ δ(L(G)) ≤ sup
n

δ(L(Gn)) + 1 .

Proof. First of all note that if a cut vertex v belongs to Gn1
, Gn2

, . . . , Gnr
, degGnj

(v) = dj

for j = 1, . . . , r, and degG(v) = d =
∑r

j=1 dj, then the set of edges starting in v corresponds
to a subgraph Γ of L(G) isomorphic to the complete graph Kd; furthermore, the subgraph
Γ∩L(Gnj

) is isomorphic to Kdj
for j = 1, . . . , r. Hence, for each n, L(Gn) is an isometric

subgraph of L(G); then Lemma 2.17 gives supn δ(L(Gn)) ≤ δ(L(G)).
In order to prove the upper bound of δ(L(G)), let us consider any geodesic triangle

T = {γ1, γ2, γ3} in L(G) and p ∈ T . By Lemma 2.11 we can assume that T is a cycle and
that each one of the three vertices of the triangle T (the endpoints of γ1, γ2 and γ3) is
either a vertex in V (L(G)) or a midpoint of some edge in E(L(G)).

Without loss of generality we can assume that p ∈ γ1.

Case 1. Assume first that p ∈ L(Gm) for some fixed m.
Since L(Gm) is an isometric subgraph of L(G), γm

j := γj ∩ L(Gm) is a (connected)
geodesic in L(Gm) for j = 1, 2, 3. We are going to construct a geodesic triangle Tm in
L(Gm) containing γm

1 , γm
2 , γm

3 . Note that p ∈ γm
1 . We also have that γm

2 ∪ γm
3 6= ∅ since

{Gn}n is a T-decomposition of G. Since T is a cycle, if some endpoint xj of γm
j is not an

endpoint of γj, then there exists an edge eji ∈ E(L(Gm)) connecting xj ∈ γm
j with some

endpoint xi of γm
i (i 6= j).
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The vertices xj , xi of the edge eji ∈ E(L(Gm)) correspond to two edges e1, e2 ∈ E(Gm)
starting in a cut vertex v ∈ V (Gm). Therefore, v belongs to Gm1

, . . . , Gmr
, with m1 = m;

if degG(v) = d, then the set of edges in G starting in v corresponds to a subgraph Γ of
L(G) isomorphic to the complete graph Kd, and eji ∈ E(L(Gm)) ∩ E(Γ).

Let us denote by U the closure of the connected component of T \ L(Gm) which joins
xj and xi (the endpoints of the edge eji).

Case 1.1. Assume first that L(U) ≥ 3.

Case 1.1.1. If there is just a vertex of the geodesic triangle T in U , then there exist
vertices yj, yi ∈ V (Γ) with yj 6= yi, [xj , yj] ⊂ γj ∩ Γ and [xi, yi] ⊂ γi ∩ Γ. Let us define w′

as the midpoint of the edge eji, gm
j := γm

j ∪ [xjw
′] and gm

i := γm
i ∪ [xiw

′]. We will show
that gm

j and gm
i are geodesics in L(Gm).

In fact, we prove that if γm
j = [xjzj], then dL(G)(xj , zj) ≤ dL(G)(xi, zj). Seeking for a

contradiction, assume that dL(G)(xj , zj) > dL(G)(xi, zj). Then

dL(G)(yj, zj) ≤ dL(G)(yj, xi) + dL(G)(xi, zj) < 1 + dL(G)(xj, zj) = L([yj , xj]) + L(γm
j ),

and this implies that γj is not a geodesic. This is the contradiction we were looking for.
Therefore, dL(G)(xj , zj) ≤ dL(G)(xi, zj).

Hence, gm
j is a geodesic in L(Gm). With a similar argument we obtain that gm

i is a
geodesic in L(Gm).

Case 1.1.2. If there are two vertices of the geodesic triangle T in U , let us define
gm

j := γm
j and gm

i := γm
i ; in this case we consider as third side of Tm the edge eji = [xi, xj ].

Note that it is not possible to have the three vertices of the geodesic triangle T in U .

Case 1.2. Assume now that L(U) = 2. Then U ⊂ Γ.

Case 1.2.1. If there is just a vertex of the geodesic triangle T in U , let us denote by
w this vertex of T .

Case 1.2.1.1. If w ∈ V (L(G)), then let us define w′ as the midpoint of the edge eji,
gm

j := γm
j ∪ [xjw

′] and gm
i := γm

i ∪ [xiw
′]; we have that gm

j and gm
i are geodesics in L(Gm).

Case 1.2.1.2. If w is a midpoint of some edge in E(Γ), without loss of generality
we can assume that it is the midpoint of [xj , a], with a ∈ V (Γ); let us define w′ = xj ,
gm

j := γm
j and gm

i := γm
i ∪ [xi, xj ]; we have that gm

j and gm
i are geodesics in L(Gm).

Case 1.2.2. If there are two vertices of the geodesic triangle T in U , let us define
gm

j := γm
j and gm

i := γm
i ; in this case we consider as third side of Tm the edge eji = [xi, xj ].

Note that it is not possible to have L(U) = 1, since in this case we have U ⊂ L(Gm),
which is a contradiction.

This process allows to replace the set U (a connected component of T \ L(Gm)) by a
set U ′ ⊂ L(Gm) such that γm

j ∪ γm
i ∪ U ′ = gm

j ∪ gm
i with gm

j and gm
i geodesics in L(Gm).

Since there are at most three connected components of T \ L(Gm), iterating this process
at most three times, we obtain a geodesic triangle Tm in L(Gm) with sides γm∗

1 , γm∗
2 , γm∗

3 ,
containing γm

1 , γm
2 , γm

3 , respectively.
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Furthermore, dL(G)(p, γ2 ∪ γ3) ≤ dL(Gm)(p, γ
m∗
2 ∪ γm∗

3 ) + 1 ≤ δ(L(Gm)) + 1.

Case 2. Assume now that p /∈ ∪nL(Gn). Then p belongs to a subgraph Γ of L(G)
isomorphic to the complete graph Kd. Since the distance from any vertex in Kd to any
point in Kd is less or equal than 3/2, then dL(G)(p, γ2 ∪ γ3) ≤ 3/2.

Consequently,

δ(T ) ≤ max
{

sup
n

δ(L(Gn)) + 1,
3

2

}

.

Since T is arbitrary, we conclude

δ(G) ≤ max
{

sup
n

δ(L(Gn)) + 1,
3

2

}

.

In order to finish the proof, assume first that G is a tree; Proposition 3.3 gives that
δ(L(G)) ≤ 1, and then δ(L(G)) ≤ supn δ(L(Gn)) + 1.

Assume now that G is not a tree; then there exists a cycle g in G with LG(g) ≥
3. Note that g is in Gn0

for some n0, since {Gn} is a T-decomposition of G. The
corresponding cycle g′ to g in L(Gn0

) verifies LL(G)(g
′) = LG(g) ≥ 3, and Lemma 3.4 gives

that δ(L(Gn0
)) ≥ 3/4. Consequently, δ(L(Gn0

))+1 > 3/2 and δ(L(G)) ≤ supn δ(L(Gn))+
1.

The lower bound in Theorem 3.8 is attained when the graph is any cycle graph Cn

with n ≥ 3, and the upper bound is attained when the graph is any star graph Sn with
n ≥ 5.

Theorem 3.9. If G is any graph such that each graph Gn in its canonical T-decomposition
is either a cycle or an edge, then

δ(G) ≤ δ(L(G)) ≤ δ(G) + 1,

and δ(G) = 1
4
sup{L(g) : g is a cycle in G }.

Proof. If G is a tree, then we just need to check that 0 ≤ δ(L(G)) ≤ 1, and this is a
consequence of Proposition 3.3.

Assume now that G has at least a cycle.
We prove now the formula for δ(G). Lemma 3.1 and δ(Cn) = L(Cn)/4 = n/4 give

δ(G) = sup
n

δ(Gn) =
1

4
sup{L(g) : g is a cycle in G }.

By hypothesis each graph Gn is either a cycle (and then δ(Gn) = δ(L(Gn)) = L(Gn)/4)
or an edge (and then δ(Gn) = δ(L(Gn)) = 0). Since G has at least a cycle, there exists n
such that Gn (and consequently L(Gn)) is not a tree. These facts and Theorem 3.8 give
the result.
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The lower bound in Theorem 3.9 is attained when the graph is any cycle graph Cn

with n ≥ 3, and the upper bound is attained when the graph is any star graph Sn with
n ≥ 5.

In particular, we can bound directly the hyperbolicity constant of the line of an uni-
cycle graph.

Corollary 3.10. If G is any unicycle graph and we denote by g its cycle, then 1
4
L(g) ≤

δ(L(G)) ≤ 1
4
L(g) + 1.

We can improve the upper bound of δ(L(G)) in Corollary 3.10.

Theorem 3.11. If G is any unicycle graph and we denote by g its cycle, then 1
4
L(g) ≤

δ(L(G)) ≤ 1
4
L(g) + 1

2
.

Proof. We know that the first inequality holds from Corollary 3.10.
We prove now the second inequality. The graph G is the union of g and the trees

T1, . . . , Tr. If we denote by G0 the subgraph of G defined as G0 := {x ∈ G : dG(x, g) ≤ 1},
then {G0, T1, . . . , Tr}n is a T-edge-decomposition of G, and Theorem 3.2 gives δ(L(G)) =
max{δ(L(G0)), δ(L(T1)), . . . , δ(L(Tr))}. Since Proposition 3.3 gives δ(L(Tj)) ≤ 1, we have
δ(L(G)) ≤ max{δ(L(G0)), 1}. Since L(g)/4 + 1/2 ≥ 3/4 + 1/2 > 1, it suffices to prove
that δ(L(G0)) ≤ L(g)/4 + 1/2.

In order to do that, we just need to construct the geodesic triangle T0 in L(g) with
sides γ0∗

1 , γ0∗
2 , γ0∗

3 , following the proof of Theorem 3.8 (replacing L(Gm) by L(g)). In this
case, if p ∈ L(g), then dL(G0)(p, γ2 ∪ γ3) ≤ δ(L(g)) + 1/2. Furthermore, if p /∈ L(g), then
dL(G0)(p, γ2 ∪ γ3) ≤ 5/4. Hence, we conclude

δ(L(G0)) ≤ max
{

δ(L(g)) +
1

2
,
5

4

}

,

and, since δ(L(g)) = δ(g) = L(g)/4, we deduce δ(L(g)) + 1/2 ≥ 3/4 + 1/2 = 5/4 and

δ(L(G0)) ≤ δ(L(g)) +
1

2
=

1

4
L(g) +

1

2
.

Both inequalities in Theorem 3.11 are sharp: the first one is attained when the graph
is any cycle graph Cn with n vertices; the second one is attained when the graph is any
cycle graph C2n with two edges attached in antipodal vertices.

We also have the following result.

Theorem 3.12. If G is any graph with δ(G) < 1, then δ(L(G)) ≤ 7/4.

Proof. If G is a tree, then Proposition 3.3 gives that δ(L(G)) ≤ 1 < 7/4. Assume now
that G has a cycle. Since δ(G) < 1, Lemma 3.4 gives that every cycle g in G has length
L(g) = 3. Then each graph Gn in the canonical T-decomposition of G is either a cycle
with length 3 or an edge, and Theorem 3.9 gives δ(G) = 3/4 and L(G) ≤ 7/4.
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The following theorem is a similar result to Proposition 2.12 for line graphs.

Theorem 3.13. For any graph G, we have 1
4
g(G) ≤ δ(L(G)) ≤ 1

4
c(G) + 2.

Proof. The first inequality is just Corollary 2.14.
In order to prove the second inequality, let us consider the canonical T-decomposition

{Gn}n of G. Fix any geodesic triangle T = {γ1, γ2, γ3} in L(G) and p ∈ T . By Lemma
2.11 we can assume that T is a cycle. Without loss of generality we can assume that
p ∈ γ1.

If p /∈ ∪nL(Gn), we have seen in the proof of Theorem 3.8 that dL(G)(p, γ2∪γ3) ≤ 3/2.
Case 1. Assume now that p ∈ L(Gm) for some fixed m and Gm contains cycles. Since

L(Gm) is an isometric subgraph of L(G), γm
j := γj ∩ L(Gm) is a (connected) geodesic in

L(Gm) for j = 1, 2, 3. Then p ∈ γm
1 = [xy]. Note that, since {Gn}n is a T-decomposition

in G, 2 diam Gm ≤ c(Gm). Furthermore, diam V (L(Gm)) ≤ diam V (Gm) + 1 and thus
diamL(Gm) ≤ diam Gm + 2. Since dL(G)(x, γm

2 ∪ γm
3 ), dL(G)(y, γm

2 ∪ γm
3 ) ≤ 1, we deduce

dL(G)(p, γ2 ∪ γ3) ≤ dL(G)(p, γ
m
2 ∪ γm

3 ) ≤ dL(G)(p, {x, y}) + 1

≤
1

2
L(γm

1 ) + 1 ≤
1

2
diamL(Gm) + 1 ≤

1

2
diam Gm + 2

≤
1

4
c(Gm) + 2 ≤

1

4
c(G) + 2.

Case 2. Assume now that Gm is a tree. As a consequence of Proposition 3.3, we
obtain that if T is any tree, then δ(L(T )) ≤ 1.

Therefore, in any case we have

δ(L(G)) ≤
1

4
c(G) + 2.

The lower bound in Theorem 3.13 is attained when the graph is any cycle graph with
n ≥ 3 vertices.

Next, two examples that show how accurate the upper bound in Theorem 3.13 is.
If G is the star graph G = K1,4, then L(G) = K4, δ(G) = 0 and δ(L(G)) = 1 =

c(G)/4 + 1.
If G is the cycle C2n with two edges attached in antipodal vertices, then L(G) is the

cycle C2n with two graphs isomorphic to C3 attached in antipodal edges. It is not difficult
to check that δ(G) = n/2 and δ(L(G)) = n/2 + 1/2 = c(G)/4 + 1/2.
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Denjoy domains, Geom. Dedicata 121 (2006), 221-245.

[3] Balogh, Z. M. and Buckley, S. M., Geometric characterizations of Gromov hyperbol-
icity, Invent. Math. 153 (2003), 261-301.
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[16] Gromov, M., Hyperbolic groups, in “Essays in group theory”. Edited by S. M. Ger-
sten, M. S. R. I. Publ. 8. Springer, 1987, 75-263.

the electronic journal of combinatorics 18 (2011), #P210 16



[17] Gromov, M. (with appendices by M. Katz, P. Pansu and S. Semmes), Metric Struc-
tures for Riemannian and Non-Riemannnian Spaces. Progress in Mathematics, vol.
152. Birkhäuser, 1999.
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equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains, Bull.
London Math. Soc. 42 (2010), 282-294.
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[35] Portilla, A., Rodŕıguez, J. M., Sigarreta, J. M. and Vilaire, J.-M., Gromov hyperbolic
tessellation graphs. To appear in Utilitas Math.
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[37] Portilla, A., Rodŕıguez, J. M. and Touŕıs, E., Stability of Gromov hyperbolicity, J.
Advan. Math. Studies 2 (2009), 77-96.
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