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Abstract

The slope variety of a graph is an algebraic set whose points correspond to
drawings of that graph. A complement-reducible graph (or cograph) is a graph
without an induced four-vertex path. We construct a bijection between the zeroes
of the slope variety of the complete graph on n vertices over F2, and the complement-
reducible graphs on n vertices.

1 Introduction

Fix a field F and a positive integer n. Let P1 = (x1, y1), . . . , Pn = (xn, yn) be points
in the plane F2 such that the xi are distinct. Let L1,2, . . . , Ln−1,n be the

(
n

2

)
lines in F2

where Li,j is the line through Pi and Pj. The slope variety SF(Kn) is the set of possible
(

n

2

)
-tuples (m1,2, . . . , mn−1,n), where mi,j =

yi−yj

xi−xj
denotes the slope of Li,j (if F is a finite

field with q elements then we use the notation Sq(Kn)). Over an algebraically closed field,
the slope variety is the set of simultaneous solutions of certain polynomials τW , called tree
polynomials [4, 5], indexed by wheel subgraphs of the complete graph Kn. (A k-wheel
is a graph formed from a cycle of length k by introducing a new vertex adjacent to all
vertices in the cycle.) The ideal generated by all tree polynomials is radical [5, Theorem
1.1]. It is conjectured, and has been verified experimentally for n ≤ 9, that the ideal
of all tree polynomials is in fact generated by the subset {τQ} [5], where Q is a 3-wheel
(equivalently, a 4-clique) in Kn.

The tree polynomials have integer coefficients, which raises the question of counting
their solutions over a finite field. Let Fq be the field with q elements. In this article, we
count the solutions of the tree polynomials over F2 and give some generalizations for q > 2.

When the slope variety is considered over Fq, the points correspond to drawings, in Fq

2

whose slopes are in Fq. These drawings need not be in F2
q . If q = 2, then there is no way

to draw Kn, for n ≥ 3, so that the vertices have distinct x-coordinates. When considered
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over Z, the tree polynomials are in the kernel of the map from Z[{mi,j ] → Q[{xi, yi,
1

xi−xj
}]

defined by mi,j 7→
yi−yj

xi−xj
.

Theorem 1. Let n be a positive integer and let F2[Kn] := F2[m1,2, . . . , mn−1,n]. Let In

denote the ideal of F2[Kn] generated by the tree polynomials of wheel subgraphs of Kn,
and let Jn denote the ideal generated by the tree polynomials of K4-subgraphs of Kn (so
Jn ⊆ In).

Then the following sets are equinumerous:

1. the zeroes of In, i.e., the points in F
(n

2
)

2 on which all tree polynomials vanish;

2. the zeroes of Jn, i.e., the points in F
(n

2
)

2 on which all tree polynomials of 3-wheels
vanish;

3. complement-reducible graphs (or “cographs”) on vertex set [n] = {1, 2, . . . , n}, that
is, graphs on [n] having no induced subgraph isomorphic to a four-vertex path;

4. switching-equivalence classes of graphs on vertex set [n + 1] such that no member of
the class contains an induced 5-cycle.

We will explain all these combinatorial interpretations below. The following Theorem
appears in [8, Exercise 5.40] and is credited to Cameron [2].

Theorem 2. The following sets are equinumerous:

1. switching-equivalence classes of graphs on vertex set [n + 1] such that no member of
the class contains an induced 5-cycle;

2. series-parallel posets with n labeled vertices;

3. series-parallel networks with n labeled edges.

In this paper, we use the special structure of tree polynomials to prove first the equality
of (1), (2) and (3) of Theorem 1 (Proposition 6), and then a bijection between (3) and
(4) of Theorem 1 (Proposition 7).

We note that a bijection between unlabeled complement-reducible graphs and unlabeled
series-parallel networks was given by Sloane, see sequence A000084 [6]. We have not found
in the literature an explicit bijection for the corresponding labeled objects. The numbers
of points in S2(K1), S2(K2), . . . , are

1, 2, 8, 52, 472, 5504, 78416, . . .

which is sequence A006351 in [6].
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2 Background

2.1 Graph theory

We list some necessary notation here; for a general background on graph theory see [1] or
[9]. A graph G is an ordered pair (V, E) of vertices and edges i.e., V is a finite set, and E

is a set of 2-subsets of V . Two vertices u, v ∈ V are adjacent if there is an edge uv ∈ E

between them. If V, E are not specified then V (G) is the set of vertices of G and E(G)
is the edge set. All graphs in this paper are simple, i.e., they have no loops or multiple
edges.

For U ⊆ V , the induced subgraph G|U of G on U , is the graph with vertex set U and
edge set {uv ∈ E(G) | u, v ∈ U}. The intersection G ∩ H of two graphs G and H is the
graph with vertex set V (G)∩ V (H) and edge set E(G)∩E(H). The complement G of G

is the graph on the same set of vertices as G whose edges are exactly the non-edges of G.
Let Kn denote the complete graph on n vertices. Let Pn denote the path on n vertices,

also called the n-path. A complement-reducible graph, or cograph, has no induced P4. An
important fact that we will need is that G is complement-reducible if and only if for every
induced subgraph H ⊆ G, either H or the complement H is disconnected; see [3].

The k-wheel W (v0; v1, . . . , vk) is the graph on the vertices {v0, . . . , vk} and whose edges
are v0v1, . . . , v0vk, v1v2, . . . , vk−1vk, vkv1, k ≥ 3. Note that the wheel W (v0; v1, . . . , vk) is
invariant up to dihedral permutations of v1, . . . , vk. The vertex v0 is called the center ;
the other vertices are called the spokes. The edges incident to the center are called the
radii, and the other edges are chords. Note that a 3-wheel is the complete graph on four
vertices.

2.2 Series-parallel networks

A network is a graph G with two vertices sG, tG designated as the source and sink,
respectively. Two networks G and H can be connected in series or parallel. The series
connection G ⊕ H is defined by identifying tG with sH , and designating sG as the source
and tH as the sink. The parallel connection G + H is defined by identifying sG with sH

and tG with tH .
A series-parallel network is a graph obtained from the following rules:

1. a graph with one edge st is a series-parallel network;

2. if G and H are series-parallel networks, then G ⊕ H and G + H are series-parallel
networks.

One can define series and parallel connections for posets in a similar fashion; see [7,
Section 3.2]. Two posets P and Q are connected in series by taking their ordinal sum
P ⊕ Q: declaring that all elements of Q are larger than all elements of P (or vice versa)
leaving all other relations unchanged. The two posets are connected in parallel by taking
the disjoint union. A series-parallel poset is a poset built up from single-element posets
by series and parallel extensions.
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Let s(n) be the number of labeled series-parallel networks on n vertices. The sequence
begins

s(1) = 1, s(2) = 2, s(3) = 8, s(4) = 52, s(5) = 472, s(6) = 5504, . . .

This is sequence A006351 in the On-Line Encyclopedia of Integer Sequences [6].

2.3 Switching equivalence

Let G be a graph on [n + 1] and let X ⊆ [n]. The switch of G with respect to X is the
graph sX(G) on [n + 1] whose edges e satisfy one of two conditions:

1. e ∈ E(G) and either both vertices of e belong to X or neither do;

2. e 6∈ E(G) and exactly one vertex of e belongs to X.

This operation is also referred to as graph switching or Seidel switching [10]. Let Gn+1

be the set of graphs on [n + 1]. Then switching defines an action of Zn
2 on Gn+1. For

x = (x1, . . . , xn) ∈ Zn
2 , let X = {i | xi = 1} ⊂ [n]. Then the group action is xG = sX(G).

This action is free because sX(G) = G if and only if X = ∅. The orbits are called switching
classes, denoted by [G]. To see that each orbit contains exactly one graph in which the
vertex n + 1 is isolated, let G ∈ Gn+1 and let X = N(n + 1) be the set of neighbors of
n + 1. Then the graph sX(G) has n + 1 as an isolated vertex. On the other hand if X is
any other subset of [n], then n+1 will be adjacent to some vertex of sX(G). The number
of switching classes on [n + 1] is s(n), the number of labeled series-parallel networks [8,
Exercise 5.40(b)], [2].

2.4 Tree polynomials

We briefly sketch the basics of graph picture spaces; for more details, see [4].

Definition 3. Let G = (V, E) be a graph. For each e ∈ E, let me be a variable. For each
subset F ⊆ E define

mF =
∏

f∈F

mf .

We regard the square-free monomial mF as corresponding to the spanning subgraph
(V, F ), and we will often ignore the distinction between the monomial and the graph.

A picture of a graph G = (V, E) is a collection of labeled points and lines in the
plane, corresponding to the vertices and edges of G, respectively, such that the line ℓe

corresponding to an edge e contains both points corresponding to the endpoints of e. The
vertices have distinct locations. The plane in [4] is taken to be F2 where F is algebraically
closed. Provided that no lines are vertical, each line ℓe has a well-defined slope me, and
so each picture determines a slope vector (me)e∈E . The set of all possible slope vectors is
called the slope variety S(G).
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The slope variety is the set of common zeroes of the set of polynomials called tree
polynomials, as we now explain. A (rigidity) pseudocircuit is a graph H whose edge set
can be partitioned into two spanning trees. A coupled spanning tree of H is a tree whose
complement is also a spanning tree; the set of all coupled spanning trees of H is denoted
Cpl(H). For each pseudocircuit H ⊆ G, there is a polynomial

τH =
∑

T∈Cpl(H)

ǫ(H, T )mT (1)

that vanishes on the slope variety of G; where each ǫ(H, T ) ∈ {1,−1}. The sign ǫ(H, T )
arises because the tree polynomial is the determinant of a matrix whose entries are either
0 or of the form me − mf . For a k-wheel, the sign is determined by the parity of k and
the parity of the number of radii in the coupled spanning tree. Call this polynomial the
tree polynomial of H .

Because the tree polynomials have integer coefficients, it makes sense to consider these
polynomials inside the polynomial ring

Fq[G] := Fq[me | e ∈ E(G)].

Define the q-slope variety Sq(G) to be the zero set of the ideal generated by the tree
polynomials of all pseudocircuit subgraphs of G. The main concern of this paper is
S2(Kn), the set of zeroes of the complete graph over F2.

The most important pseudocircuits are the wheels. The tree polynomial of the wheel
W = W (v0; v1, . . . , vk) has the form

τW =
k∏

i=1

(m0,i − mi,i+1)

︸ ︷︷ ︸

τ1

−
k∏

i=1

(m0,i − mi−1,i)

︸ ︷︷ ︸

τ2

(2)

where mk,k+1 = m1,k [5, eqn. (6)].
Suppose we draw the wheel W (v0; v1, . . . , vk) with v0 in the center and the indices of

the spokes increasing as we travel clockwise around the perimeter. Each binomial factor
in τ1 is a radius minus the adjacent chord pointing in the clockwise direction, whereas
each binomial factor in τ2 is a radius minus the adjacent chord pointing in the counter-
clockwise direction. Therefore, if we expand the expression (2) for τW , then the claw
subgraph (i.e., the graph consisting of three edges that meet at a point) and the cycle of
all the chords each occur twice, and with opposite signs. The only remaining terms are
coupled spanning trees, which are obtained by picking a nontrivial subset of radii along
with all chords pointing clockwise or counterclockwise, but not both. See Figure 1.

The tree polynomials of all the wheels in Kn generate the ideal of tree polynomials of
all rigidity pseudocircuits in Kn [5]. Define ideals In, Jn ⊆ F2[G] as follows:

In = (τW | W is a wheel in Kn),

Jn = (τQ | Q ⊆ Kn is isomorphic to K4).

It was conjectured in [5] that In = Jn when considered as ideals over C. Using the
computer algebra system Macaulay this conjecture has been verified for n ≤ 9 [5].
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Figure 1: Two complementary coupled spanning trees of a 5-wheel

3 A bijection between slope vectors and complement-

reducible graphs

In this section we count the points of S2(Kn), the slope variety of Kn over F2. The points

of F
(n

2
)

2 have their coordinates indexed by the edges of Kn and have value either 0 or 1,
which motivates the following notation:

Definition 4. Let a = (a1,2, a1,3, . . . , an−1,n) ∈ F
(n

2
)

2 . We define the graph Ga to be the
graph on [n] with edge set E(Ga) = {ij | ai,j = 1}.

Proposition 5. Let W = W (v0; v1, . . . , vk) be a wheel and a ∈ F
(n

2
)

2 . Then τW (a) 6= 0 if
and only if Ha := Ga ∩ W is a coupled spanning tree of W .

Proof. (⇐) Suppose that Ha is a coupled spanning tree of W . When τW is written in the
form of equation (1), over F2, it is the sum of all coupled spanning trees of W . Evaluating
τW at a gives exactly one non-zero term, hence τW (a) 6= 0.

(⇒) Suppose τW (a) 6= 0. First we show that Ha is a spanning tree of W . Over F2

exactly one of τ1(a) or τ2(a) has value 1, say τ1(a) = 1. Each binomial factor of τ1(a)
must contain exactly one variable with value 1. Therefore, Ha contains exactly k edges,
which is the number of edges of a spanning tree of W . In order to show that Ha is a
spanning tree it is enough to show that it is acyclic. If Ha contains a cycle C, then either
there exist i and j, 1 ≤ i < j ≤ k, such that v0vi, vivi+1, vj−1vj , v0vj ∈ E(C), or C is the
set of chords of W . In the first case, both terms τ1(a) and τ2(a) have value 0 because
m0i − mi(i+1) is a factor of τ1 and m0j − m(j−1)j is a factor of τ2. In the second case,
formula (2) will be

τW (a) =

k∏

i=1

(a0i − 1) −
k∏

i=1

(a0i − 1) = 0.

Now we show that Ha is in fact a coupled spanning tree of W . Define a ∈ F
(n

2
)

2 by
aij = 1 − aij for all 1 ≤ i < j ≤ n. Therefore, Ga = Ga is the complement of Ga. If
τW (a) 6= 0 then τW (a) 6= 0 because each binomial factor of τi(a) will have the same value
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as in τi(a), for i = 1, 2. Therefore Ha = Ha ∩ W is a spanning tree of W , hence Ha is a
coupled spanning tree of W .

The following proposition gives additional evidence to suggest that In and Jn are equal,
but whether or not they are equal is still unknown.

Proposition 6. Let a ∈ F
(n

2
)

2 . The following are equivalent:

1. a is a zero of In;

2. a is a zero of Jn;

3. Ga is a complement-reducible graph.

Proof. (1 ⇒ 2) This implication follows from the containment Jn ⊆ In.

(2 ⇒ 3) Suppose a ∈ F
(n

2
)

2 is a zero of Jn. By Proposition 5, if W ⊆ Kn is any 3-wheel
(and hence isomorphic to K4), then Ga ∩ W is not a coupled spanning tree of W . Since
every coupled spanning tree of K4 is isomorphic to P4 (the only spanning trees of K4 are
isomorphic to P4 or the three edge claw), Ga does not contain an induced P4.

(3 ⇒ 1) Let a ∈ F
(n

2
)

2 be such that Ga is a complement-reducible graph. Let W ⊆ Kn

be a wheel with V = V (W ). Either Ga|V or Ga|V is disconnected, because Ga is a
complement-reducible graph. Therefore either Ga ∩ W or Ga ∩ W is disconnected. Since
these two graphs are complementary subgraphs of W , neither one is a coupled spanning
tree. Therefore, by Proposition 5, τW (a) = 0 for every wheel W ⊆ Kn.

4 A bijection between complement-reducible graphs

and switching classes

In this section, we establish a bijection (Proposition 7) between the set of graphs on n

labeled vertices with an induced P4, and the switching classes on n + 1 labeled vertices
containing a graph with an induced 5-cycle. Recall from Section 2.3 that each switching
class contains exactly one graph in which the vertex n + 1 is isolated. Therefore the
bijection from the set of graphs on [n] to the switching classes on [n + 1] is given by
sending G ⊆ Kn to [G], the orbit containing G.

Proposition 7. Let the additive group Zn
2 act on Gn+1 by switching as described in Section

2.3. Then:

1. If G ∈ Gn+1 has an induced 5-cycle, then every H ∈ [G] has an induced 4-path.

2. If G ∈ Gn has an induced 4-path, then, regarding G as a graph on [n + 1] by intro-
ducing n + 1 as an isolated vertex, there is an H ∈ Gn+1 such that G ∈ [H ] and H

has an induced 5-cycle.
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Figure 2: The action with X = {v3, v4}

v2
v
5

1v

v
3v

4

v2
v
5

1v

v
3v

4

X={ , }v v
2 5

Figure 3: The action with X = {v2, v5}

Proof. (1) Let G ∈ Gn+1 have an induced 5-cycle C = {v1, . . . , v5}, and let X ⊆ [n].
If |V (C) ∩ X| < 2, then four of the vertices, say U = {v1, v2, v3, v4}, are in [n] \ X.
Switching by X does not affect the induced subgraph on U . Similarly, if |V (C)∩X| > 3,
then (sX(G) | U) ∼= P4.

Suppose |V (C)∩X| = 2. Without loss of generality we may assume either X = {v2, v5}
or X = {v3, v4}. In both cases v5v3v4v2 is an induced 4-path in sX(G), as shown in the
figure. If |V (C) ∩ X| = 3, then |V (C) ∩ ([n + 1] \ X)| = 2. The same results as above
will hold for this case, therefore sX(G) has an induced P4.

(2) Suppose v5v3v4v2 is an induced P4 in G ⊆ Kn and X = {v2, v5}. Then sX(G) has
the induced 5-cycle C = {v1, . . . , v5} with v1 = n + 1.

5 Counting points over other finite fields

It is natural to ask whether these techniques can be extended to enumerate points of the
slope variety Sq(Kn) over Fq. This problem appears to be difficult, because the zeroes of
a tree polynomial over an arbitrary field do not seem to admit a uniform graph-theoretic
description as they do over F2. In this section, we describe some partial progress in this
direction, and explicitly work out the simplest nontrivial case (n = 4, q = 3) to illustrate
the kinds of difficulties involved.

A point in F
(n

2
)

q corresponds to an Fq-weighted Kn, that is, a copy of Kn whose edges
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Figure 4: A weight induced P4

are assigned weights in Fq. For a ∈ F
(n

2
)

q define Ga to be the Fq-weighted Kn where edge
ij is given weight aij . We say that Ga has a weight-induced subgraph H if there is some
value α ∈ Fq such that

E(H) = {e ∈ E(Kn) | ae = α}.

One possible approach to generalizing the previous results would be to define a q-

analogue to switching. Let the additive group Fn
q act on F

(n

2
)

q by

((x1, . . . , xn) · a))ij = (aij + xi + xj).

If q = 2, then this is exactly the switching action described in Section 2.3. Note that this
is not the same definition of q-switching given by Zaslavsky [10]. The present definition
seems more likely to be relevant in the context of slopes because it does not rely on an
orientation of the edges. (Recall that the weight of an edge is the slope of the correspond-
ing line segment in a picture of Kn; the slope does not depend on the direction in which
way the edge is traversed.) One would hope to generalize the q = 2 case by describing
the points of Sq(Kn) in terms of forbidden weight-induced subgraphs. It is not clear how
to generalize the definition over an arbitrary field, or what the forbidden weight-induced
subgraphs should be. However, some facts do carry over to the setting of an arbitrary
finite field.

Proposition 8. Let W = W (v0; v1, v2, v3) be a 3-wheel, and let a ∈ F
(4

2
)

q be a point whose
coordinates correspond to assigning weights to the edges of W . Then:

1. If Ga has a weight-induced P4, then a is not a zero of τW .

2. If Ga has a weight-induced claw (that is, a star with three edges), then a is a zero
of τW .

3. If Ga has a weight-induced cycle, then a is a zero of τW .

Proof. (1) Suppose that Ga has a weight-induced P4. The induced subgraph on the
vertices of that P4 can be drawn as in Figure 4. where α, β, γ, δ ∈ Fq, and α does not
equal any of the other values. Then,

τW (a) = (α − α)(β − α)(γ − δ) − (α − δ)(β − α)(γ − α) 6= 0.
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(2) Suppose that Ga has a weight-induced claw, whose edges have the weight α ∈ Fq.
If we draw W so that the center of the claw is the center of the wheel, then

τQ(a) = (α − β)(α − γ)(α − δ) − (α − γ)(α − δ)(α − β) = 0,

for some β, γ, δ ∈ Fq.
(3) Suppose that Ga has a weight-induced cycle C. The graph W can be drawn so

that C contains the vertex v0. Then, for some 1 ≤ i < j ≤ 3, the edges v0vi, vivi+1, v0vj ,
vjvj−1 all have the same weight α. (Note that if the cycle is a 3-cycle then vj−1 = vi.)
Then both τ1(a) and τ2(a) contain the factor α − α, so τW (a) = 0.

Corollary 9. Let a ∈ F
(n

2
)

q . If Ga contains a weight-induced P4, then a is not a zero
of In over Fq. Conversely, if every 4-clique of Ga contains a weight-induced cycle or a
weight-induced claw, then a is a zero of Jn over Fq.

Example 10. Let W = W (v0; v1, v2, v3) be a 3-wheel. We use Proposition 8 to count the
number of zeroes of τW over F3.

If some value occurs at least four times in a, then τW (a) = 0 because Ga has a weight-
induced cycle. If some value α occurs exactly three times in a, then τW (a) 6= 0 if and only
if the weight-induced graph on α is a 4-path. The cases where each value of a occurs two
times are not covered by Proposition 8, so we must consider them separately. For distinct
α, β, γ ∈ F3 there are three possibilities, up to a relabeling of the vertices; see Figure 5.

γ

γ

α

β

β

α

βγ

α

α

β γγ α

βγ

β

α

Figure 5: The first weight corresponds to a zero of τW , but the second two do not.

Define the type of a ∈ Fd
q to be the partition whose parts are the numbers of occurrences

of each element of Fq among the entries of a. Some simple counting gives the following
table:

Type Number of zeroes Number of non-zeroes
(6) 3 0

(5, 1) 36 0
(4, 2) 90 0

(4, 1, 1) 90 0
(3, 3) 24 36

(3, 2, 1) 144 216
(2, 2, 2) 36 54
Total 423 306
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If q > 3, then there are more cases to check which are not covered by Proposition 8.
Using the computer algebra software Maple, one can check that over F3 the number of
zeroes of I4 and I5 are 423 and 9243, respectively. Over F5 the numbers are 4909, 262645,
respectively. It is not clear what combinatorial structure (analogous to complement-
reducible graphs) might count these points; for instance, these numbers do not appear in
the Encyclopedia of Integer Sequences [6].
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