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Abstract

There are well known necessary conditions for the existence of a generalized
Bhaskar Rao design over a group G, with block size k = 3. We prove that they are
sufficient for nilpotent groups G of even order, and in particular for 2-groups. In
addition, we prove that they are sufficient for semi-dihedral groups.
Key words: Generalized Bhaskar Rao design. 2-groups. Nilpotent groups. Semi-
dihedral groups. Normal subgroups. Hall-Paige Conjecture.

1 Introduction

1.1 Definitions and Notation

Throughout this paper G is a finite group written multiplicatively, 0 6∈ G is a zero symbol,
and v, b, r, k, λ are positive integers with v ≥ 3. We denote the cyclic group of order n
by C(n). A group is a p-group, if the order |G| = pr for some prime p and integer r. A
group is elementary abelian if it is the direct product of cyclic groups of order p for some
prime p. A group is nilpotent if it is the direct product of Pi where each Pi is a pi-group
for some prime pi. The trivial group (or subgroup) is the group with only one element.
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Groups with more than one element are non-trivial. A subgroup is a proper subgroup if
it is strictly smaller than the whole group.

There are several infinite families of groups of particularly importance in this paper.
Each of them has a normal, cyclic subgroup of index 2 and this can lead to added compli-
cations when using normal subgroup constructions of designs. We recall their definitions
here and set up notation in which we parameterize each family by the group order. They
are all non-abelian, except for the first one or two groups in each family.

Definition 1. The dihedral group, D(2m) of order 2m.

D(2m) =
〈

a, b : am = 1, b2 = 1, ba = a−1b
〉

; m = 1, 2, . . .

Definition 2. The dicyclic group, Q(4m) of order 4m, sometimes called generalized
quaternion. The group Q(8) is the quaternion group, and usually denoted Q.

Q(4m) =
〈

a, b : a2m = 1, b2 = am, ba = a−1b
〉

; m = 1, 2, . . .

Definition 3. The semi-dihedral group, SD(8m), of order 8m, sometimes called quasi-
dihedral or semi-hedral.

SD(8m) =
〈

a, b : a4m = 1, b2 = 1, ba = a2m−1b
〉

; m = 1, 2, 3, . . .

1.2 Generalized Bhaskar Rao designs

Definition 4. A generalized Bhaskar Rao design GBRD(v, b, r, k, λ; G) is a v × b array,
each entry of which is either 0 or an element of G such that:

1. each row has r group element entries and each column has k group element entries;

2. for each pair of distinct rows (x1, x2, . . . , xb) and (y1, y2, . . . , yb) the list

xi y
−1
i : i = 1, 2, . . . , b, xi 6= 0, yi 6= 0,

contains each group element exactly λ

|G|
times.

The parameters in a GBRD(v, b, r, k, λ; G) are not all independent of each other.
Clearly λ ≡ 0 (mod |G|), and replacing the group entries by 1 and leaving the others
0, results in an incidence matrix for a BIBD(v, b, r, k, λ), (or an all 1’s matrix if v = k).

It is well known that r = λ(v−1)
k−1

and b = λv(v−1)
k(k−1)

. We usually refer to a GBRD(v, k, λ; G),

or to a GBRD(v, k, t|G|; G).
Sometimes it is convenient to consider a more general form of a GBRD, where k is

replaced by a finite set K of positive integers.

Definition 5. A generalized Bhaskar Rao design GBRD(v, K, λ; G) is a rectangular array
with v rows, each entry of which is either 0 or an element of G and such that for each
column the number of group entries is an element of K and for each pair of distinct rows
(x1, x2, . . . , xb) and (y1, y2, . . . , yb), where b is the number of columns, the list

xi y
−1
i : i = 1, 2, . . . , b, xi 6= 0, yi 6= 0,

contains each group element exactly λ
|G|

times.
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Necessary conditions for the existence of a GBRD(v, 3, λ; G) are well known and given,
for example, in Abel et al. [2]:

Lemma 6. The following conditions are necessary for a GBRD(v, 3, λ; G):

(i) λ ≡ 0 (mod |G|);

(ii) λ(v − 1) ≡ 0 (mod 2);

(iii) λv(v − 1) ≡

{

0 (mod 6) if |G| is odd
0 (mod 24) if |G| is even;

(iv) If v = 3, and G has a non-trivial cyclic Sylow 2-subgroup, then λ ≡ 0 (mod 2|G|).

It is known that, for v = 3 and λ = |G|, the necessary conditions in Lemma 6 are
sufficient for the existence of a GBRD(v, 3, λ; G). This is a consequence of the recently
proved long standing Hall-Paige conjecture (Evans [10], Wilcox [24], and Wilcox, Evans
and Bray [6], New results). The Hall-Paige conjecture [15] concerns complete mappings
of finite groups, and states that ‘a finite group has a complete mapping if and only
if the Sylow 2-subgroup is trivial or non-cyclic’. For any group G, the existence of a
GBRD(v, 3, λ; G) for v = 3 is equivalent to the existence of a complete mapping of the
group. For more details about complete mappings, see Evans [11]. For more details of
the Hall-Paige conjecture and recent extension to complete mappings of loops (algebraic
structures similar to groups but not requiring the product to be associative) see Pula [20].

Abel et al. [2] show the necessary conditions in Lemma 6 are sufficient when v = 3 and
λ > |G| and that this follows as a consequence of the Hall-Paige conjecture. The necessary
conditions in Lemma 6 are known to be sufficient for the existence of a GBRD(v, 3, λ; G)
for many families of groups G. Abel et al. [2] conjecture that the necessary conditions in
Lemma 6 are always sufficient for the existence of a GBRD(v, 3, λ; G).

Conjecture 7. For v ≥ 3, the necessary conditions in Lemma 6 are sufficient for the
existence of a GBRD(v, 3, λ; G).

We view Conjecture 7 as a generalization of the Hall-Paige conjecture. It is known
that the necessary conditions are sufficient when the group is abelian, and the proof of
this developed over some time, involved many people and was completed by Ge et al. [12].
They have been shown to be sufficient for any odd order nilpotent group by Palmer [19],
for any dihedral group by Abel et al. [3], and for any sufficiently small group or any
dicyclic group by Abel et al. [2]. Most recently Abel et al. [1] have shown them to be
sufficient for pq groups and for groups of order ≤ 100 with the possible exception of some
non-abelian groups with order |G| ∈ {32, 36, 48, 54, 60, 64, 72, 96}. (The details of the
proofs given in [1] for |G| ∈ {56, 80} are corrected in this paper and given in Section 2.4.)
We summarise the evidence for Conjecture 7 in the following theorem:

Theorem 8. Let G be a finite group, and v ≥ 3, then in each of the following cases, the
necessary conditions in Lemma 6 are sufficient for the existence of a GBRD(v, 3, λ; G):
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(i) For v = 3;

(ii) For G abelian, or dihedral, or dicyclic;

(iii) For G nilpotent of odd order;

(iv) For G with |G| = pq for p, q primes;

(v) For G with |G| ≤ 100 with the possible exception of |G| ∈ { 32, 36, 48, 54, 60, 64,
72, 96}.

The early results on groups of small order, say ≤ 8, necessarily required producing
many explicit designs. Proving the existence of GBRDs over cyclic groups of order 2, 4
and 8 was a major challenge in dealing with cyclic groups in general (and ultimately all
abelian groups). The case of the cyclic group of order 2 was difficult, and dealt with by
Seberry [21]. The cyclic group of order 4 was dealt with partly by de Launey et al. [8].
The cyclic group of order 8 was considered by Seberry [22]. Some results for GBRDs over
cyclic groups of even order were given by Bowler et al. [5]. The completion of the result
for groups of order 4 and 8 had to wait until the proof for all abelian groups by Ge et
al. [12]. Our aim in this paper was to show that the necessary conditions in Lemma 6 are
sufficient for the existence of a GBRD(v, 3, λ; G) whenever G is a nilpotent group of even
order, and hence for all nilpotent groups. The main difficulty we faced was to show this
for arbitrary 2-groups. In proving our result we also show that the necessary conditions
in Lemma 6 are sufficient for any semi-dihedral group. We give explicit designs for v = 6
over semi-dihedral groups.

Our work makes extensive use of the known designs for small groups. In addition,
the resolution of the Hall-Paige conjecture not only gives the fact that the necessary
conditions in Lemma 6 are sufficient in the case where v takes the smallest possible value
(v = 3), but gives ground level results for using in normal subgroup constructions and
lifting results.

For a group G, we say Conjecture 7 holds for G if, for v ≥ 3, the necessary conditions
in Lemma 6 are sufficient for the existence of a GBRD(v, 3, λ; G).

1.3 Constructions and lifting lemmas

Definition 9. Let v and λ be positive integers, K be a set of positive integers and X
be a set of v elements. A pairwise balanced design, or PBD(v; K; λ), is a collection of
subsets of X, called blocks, for which each pair of distinct elements of X appears together
in exactly λ blocks and if a block contains exactly k elements of X then k belongs to K.
A balanced incomplete block design, BIBD(v, k, λ) is a PBD(v; {k}; λ).

From Abel et al. [4] we have the following lemmas:

Lemma 10. For v ≥ 3, v 6= 6, there exists a PBD(v; {3, 4, 5, 8}; 1).

Lemma 11. For v ≥ 3, v 6= 6, v ≡ 0, 1 (mod 3) there exists a PBD(v; {3, 4}; 1).
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We use construction theorems which are based on PBDs and subgroup structure.

Theorem 12. [9] If there exist a PBD(v; K; λ) and, for each h ∈ K there exists a
GBRD(h, k, µ; G), then a GBRD(v, k, λµ; G) exists.

Theorem 13. [18] Let N be a normal subgroup of a finite group G. Then, if both a
GBRD(v, h, λ; G/N) and a GBRD(h, k, µ; N) exist, a GBRD(v, k, λµ; G) also exists.

More generally we have:

Theorem 14. [7] Let N be a normal subgroup of a finite group G. Then, if there exists a
GBRD(v, K, λ; G/N), and for each h ∈ K there exists a GBRD(h, k, µ; N) exist, then
a GBRD(v, k, λµ; G) also exists.

We have the following lifting lemma:

Lemma 15. Let G be a group with a normal subgroup N. Suppose that

(i) N has trivial or non-cyclic Sylow 2-subgroup, i.e. a GBRD(3, 3, |N|; N) exists, and

(ii) if |G| ≡ 0 (mod 3) then |G/N| ≡ 0 (mod 3), and

(iii) if |G/N| ≡ 2 (mod 4) then |G| ≡ 2 (mod 4), and

(iv) if |G| ≡ 0 (mod 4) then |G/N| ≡ 0 (mod 4).

Then, if Conjecture 7 holds for the quotient G/N, it also holds for G.

Proof. Suppose G has a normal subgroup N satisfying the stated conditions. By (i), we
have, from the Hall Paige Theorem, that a GBRD(3, 3, |N|; N) exists. Conditions (ii),
(iii) and (iv) mean that, for v ≥ 4, the necessary conditions on v, t in Lemma 6 for the
existence of a GBRD(v, 3, t|G|; G) are the same as those for a GBRD(v, 3, t|G/N|; G/N).
A GBRD(v, 3, t|G/N|; G/N) and a GBRD(3, 3, |N|; N) yield a GBRD(v, 3, t|G|; G) by
Theorem 13. Therefore, if Conjecture 7 holds for G/N, it also holds for G.

Remark 16. (Correction to [1].) In [1], a lemma similar to Lemma 15 was given, but
condition (iv) was accidentally omitted. In fact conditions (ii), (iii) and (iv) when com-
bined reduce to one simpler condition: gcd(|G|, 12) = gcd(|G/N|, 12). The omission of
condition (iv) in [1] affected the proof that Conjecture 7 holds for groups of order 56 or
80. In Section 24 of this paper we address this by showing the more general result that
Conjecture 7 holds for any group of order 2np, where p ≥ 5 is prime and n is the smallest
positive integer such that p divides 2n − 1.

For 2-groups Lemma 15 simplifies to:

Lemma 17. Let G be a 2-group with a non-trivial, non-cyclic, normal subgroup N such
that |G/N| ≥ 4. Then, if Conjecture 7 holds for the quotient G/N, it also holds for G.
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2 Designs over 2-groups and other families of groups

Firstly we show Conjecture 7 holds for all semi-dihedral groups. Then, in our main result
we show that Conjecture 7 holds for all 2-groups. Finally we show that Conjecture 7 holds
for all nilpotent groups of even order, and hence for all nilpotent groups.

2.1 Semi-dihedral groups

Recall that for m = 1, 2, . . . the group SD(8m) = 〈a, b : a4m = b2 = 1, ab = ba2m−1〉.

Example 18. For m = 1, 2, . . . the following 8m sets (base blocks) can be used to produce
a GBRD(6, 3, 8m; SD(8m)).
For i = 0, 1, 2, . . . , 2m − 1: {(∞, 1), (0, ai), (1, a4m−i−1)},
{(∞, 1), (0, aib), (2, a4m−i−1b)}, {(0, 1), (2, a2i+2), (3, a2m−i−2b)}.
For i = 0, 2, . . . , 2m − 2: {(0, a2m), (1, a2i), (4, a2m−i−1b)}.
For i = 1, 3, . . . , 2m − 1: {(0, 1), (1, a2i), (4, a2m−i−1b)}.

We first construct a group divisible design (GDD): developing the first coordinates
(mod 5), and then multiplying the second coordinates on the right by all elements of
SD(8m) gives a (3, 1)-GDD of type (8m)6. The required GBRD(6, 3, 8m; SD(8m)) has
6 rows, which in this case are labelled as ∞, 0, 1, 2, 3, 4. A base block defines an initial
column in the GBRD as follows: if {(s1, t1), (s2, t2), (s3, t3)} is a base block, then for
i = 1, 2, 3, we place ti in row si of that initial column. The required GBRD has 40m
columns; each initial column generates 5 columns, which are obtained by developing the
1st components (or row indices) of the initial columns (mod 5).

Theorem 19. Let G = SD(8m) be the semi-dihedral group of order 8m. Then the neces-
sary conditions given in Lemma 6 are sufficient for the existence of a GBRD(v, 3, λ; G).

Proof. The necessary conditions in Lemma 6 reduce to saying that a GBRD(v, 3, 8mt; G)
exists only if v ≡ 0, 1 (mod 3) or mt ≡ 0 (mod 3). To prove these are sufficient, it is
sufficient to restrict our argument to the cases t = 1 and 3, since for other designs we can
take multiple copies of designs with t = 1 or 3.

For v = 3, the result follows from Theorem 8(i), and for v = 6, from Example 18.
For v = 4, we note that H = 〈a2, b〉 is a normal subgroup of G, H ∼= D(4m), and
G/H ∼= C(2). We have a GBRD(4, 3, 2; C(2)) and a GBRD(3, 3, 4m; H) by Theorem 8
since C(2) is abelian and H is dihedral. So the result follows from Theorem 13.

For v = 5 or 8, and |G| 6≡ 0 (mod 3), we need to prove the result for t = 3. Here we
first obtain a GBRD(4, 3, 3|G|; G) which was given in the previous paragraph. We can
now apply Theorem 12, since BIBD(v, 4, 3)s exist for v = 5, 8 (Hanani, [16]).

For v = 5 or 8, and |G| ≡ 0 (mod 3), we need to prove the result for t = 1. Here
N = 〈a3〉 is normal in G and N ∼= C(4m/3). Also, G/N ∼= D(6). A GBRD(v, 4, 6; D(6))
exists for v = 5, 8 (see Examples 4 and 5 in Abel et al. [3]). Also, a GBRD(4, 3, 4m/3; N)
exists by Theorem 8 since N is abelian. Hence Theorem 8 gives us a GBRD(v, 3, |G|; G).

This settles the existence problem for v ∈ {3, 4, 5, 6, 8}. For other v, if v ≡ 0, 1 (mod
3), a GBRD(4, 3, |G| = 8m; G) exists by Lemma 12, since a PBD(v; {3, 4}; 1) exists by
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Lemma 11. Similarly, if v ≡ 2 (mod 3), a PBD(v; {3, 4, 5, 8}; 1), exists by Lemma 10, and
Lemma 12 gives us a GBRD(v, 3, 3|G| = 24m; SD(8m)).

2.2 2-groups

For any group G, the Frattini subgroup Φ(G) is the intersection of its maximal subgroups.
The Frattini subgroup is always a proper, normal subgroup, although it is not always
non-trivial. When G is a p-group, the quotient G/Φ(G) is elementary abelian, so Φ(G)
is non-trivial unless G is an elementary abelian p-group.

Theorem 20. Any 2-group of order at least 16 which is not cyclic, dicyclic, dihedral or
semi-dihedral has a non-cyclic normal subgroup of index 4.

Proof. Let G be a 2-group and Φ(G) its Frattini subgroup. By the Burnside Basis Theo-
rem, (see, for example Hall [14], Theorem 12.2.1 or Huppert [17], Satz 3.15), the quotient
G/Φ(G) is an elementary abelian 2-group, G/Φ(G) ∼= (C(2))r, say, and a set of group
elements generate G precisely if their cosets (modulo Φ(G)) generate the quotient group
G/Φ(G). Since G/Φ(G) ∼= (C(2))r, any minimal generating set of G has r elements. In
particular r = 1 if and only if G is cyclic. Note that, because the Frattini subgroup is the
intersection of the maximal subgroups of G, there is a one-to-one correspondence between
the maximal subgroups of G and the maximal subgroups of G/Φ(G) (∼= (C(2))r). Hence,
G has 2r − 1 maximal subgroups.

Assume now that G is a non-cyclic 2-group of order 2n ≥ 16, and so G/Φ(G) ∼= (C(2))r,
for some 2 ≤ r ≤ n. Let x1, x2, . . . , xr form a minimal generating set of G. We consider
three cases (i) the Frattini subgroup is non-cyclic (ii) r ≥ 4 and finally the remaining
cases (iii) the Frattini subgroup is cyclic r ∈ {2, 3}.

Case (i). If Φ(G) is non-cyclic and r = 2, then Φ(G) is itself a non-cyclic normal
subgroup of index 4. If Φ(G) is non-cyclic and r > 2, then Φ(G) together with x3, . . . ,
xr, generates a non-cyclic normal subgroup N = 〈Φ(G), x3, . . . , xr〉 of G. The quotient
G/N has order 4 and is elementary abelian generated by the cosets x1N and x2N.

Case (ii). If r ≥ 4 then the group N = 〈Φ(G), x3, . . . , xr〉 is a normal subgroup of G

of index four, regardless of whether or not Φ(G) is cyclic. This subgroup is non-cyclic
because its quotient by its normal subgroup Φ(G) contains the cosets x3Φ(G) and x4Φ(G)
which generate a non-cyclic subgroup of G/Φ(G) isomorphic to C(2) × C(2).

Case (iii). Suppose that Φ(G) is cyclic and r = 3. Then G has 23 − 1 = 7 maximal
subgroups whose intersection Φ(G) is cyclic of order 2n−3. Since n ≥ 4, the cyclic 2-group
Φ(G) is non-trivial and so it has a unique subgroup K say, of index 2. Because Φ(G) is
normal in G, and K is characteristic in Φ(G), K is normal in G. The factor group G/K

is a 2-group of order 16 with 7 maximal subgroups. Consulting the tables of groups of
order 16 in Thomas and Wood [23] we find there are four possibilities for this quotient,
and each one has a non-cyclic normal subgroup N of index 4, with quotient isomorphic to
C(2) × C(2).

• 〈x : x4 = 1〉 × 〈y : y2 = 1〉 × 〈z : z2 = 1〉 = C(4) × C(2) × C(2), N = 〈x2, z〉.
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• 〈x, y : x4 = y2 = 1, xy = yx−1〉 × 〈z : z2 = 1〉 = D(8) × C(2), N = 〈x2, z〉.

• 〈x, y : x4 = 1, x2 = y2, xy = yx−1〉 × 〈z : z2 = 1〉 = Q × C(2), N = 〈x2, z〉.

• 〈x, y, z : x4 = y2 = z2 = 1, xy = yx, xz = zx3y, yz = zy〉 = (C(4) × C(2)) ⋊ C(2),
N = 〈x2, y〉.

In each case lifting N back to G gives a non-cyclic normal subgroup of G of index 4, with
quotient isomorphic to C(2) × C(2).

Suppose now that Φ(G) is cyclic and r = 2. In this case Φ(G) is cyclic of order
2n−2. An element of a cyclic 2-group is either a generator or lies in its unique cyclic
subgroup of index two. For 2-groups the Frattini subgroup is generated by the squares in
G, Φ(G) = 〈x2 : x ∈ G〉, (see Huppert [17], Satz 3.14). Hence there is an element x ∈ G

whose square is a generator of Φ(G), and is hence of order 2n−1. This element generates
a cyclic subgroup of G of index 2. The 2-groups with cyclic subgroup of index 2 are well
known, and are listed in Hall [14], Theorem 12.5.1. As G is non-cyclic and because we
are assuming n ≥ 4, G is one of the following:

(i) abelian of the form: 〈x, y : x2n−1

= 1, y2 = 1, xy = yx〉 = C(2n−1) × C(2);

(ii) modular of the form: 〈x, y : x2n−1

= 1, y2 = 1, yx = x1+2n−2

y〉;

(iii) dicyclic, dihedral or semi-dihedral.

In each of the modular and abelian cases the subgroup N = 〈x4, y〉 is a non-cyclic
normal subgroup of G of index 4. Note in the modular case this uses n ≥ 4, which implies
2n−2 is a multiple of 4. In each case G/N is isomorphic to C(4).

Therefore, any 2-group of order at least 16 which is not cyclic, dicyclic, dihedral or
semi-dihedral has a non-cyclic normal subgroup of index 4.

Theorem 21. Let G be a 2-group. Then the necessary conditions given in Lemma 6 are
sufficient for the existence of a GBRD(v, 3, λ; G).

Proof. Let G be a 2-group. Then if |G| ≤ 16 or if the group is abelian (for example cyclic),
or dihedral or dicyclic, we apply Theorem 8. If G is semi-dihedral we apply Theorem 19.
Otherwise, let G be the smallest 2-group of order at least 16 which is not cyclic, dicyclic,
dihedral or semi-dihedral, for which it is not determined that Conjecture 7 holds. From
Theorem 20, G has a non-cyclic normal subgroup N of index 4. Conjecture 7 holds for
G/N by assumption. Hence, by Lemma 17 we have that Conjecture 7 holds for G. In
each case we determine that the necessary conditions given in Lemma 6 are sufficient for
the existence of a GBRD(v, 3, λ; G).

2.3 Nilpotent groups

Recall that a nilpotent group G can be expressed as a direct product of the form G =
Gp1

× Gp2
× · · · × Gpr

, where p1, p2, . . . , pr are primes, and each Gpi
is a pi-group. We
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show that Conjecture 7 holds for nilpotent groups of even order. Since Conjecture 7 is
known to hold for nilpotent groups of odd order ([18]), we conclude that it holds for all
nilpotent groups.

Theorem 22. Let G be a nilpotent group of even order, which is not a 2-group. Then
Conjecture 7 holds for G.

Proof. We have G = G2 × G3 × H, where G2 is a non-trivial 2-group, G3 a 3-group, H is
the product of all the p-group factors of G for primes p 6= 2, 3 and G3 × H is non-trivial.
We consider the three cases (i) G3 is trivial, (ii) H is trivial and G3 is cyclic of order 3
and (iii) G3 is non-trivial and G3 × H is not cyclic of order 3.

Case (i). Suppose that G3 is trivial, so that G = G2 × H, for H non-trivial. Then
the conditions of Lemma 15 hold for N = H and Conjecture 7 holds for G/N = G2 by
Theorem 21. Hence Conjecture 7 holds for G.

Case (ii). Suppose that G = G2 ×G3, with G3 cyclic of order 3. If G2 is abelian, G is
abelian and Conjecture 7 holds for G by Theorem 8. Assume now that G2 is non-abelian.
In particular it is non-cyclic and of order divisible by 4. Then the necessary conditions
of Lemma 6 for the existence of a GBRD(v, 3, λ; G) reduce to v ≥ 3 and λ divisible by
|G|. Taking t copies of a GBRD(v, 3, |G|, G) gives a GBRD(v, 3, t|G|; G). Hence showing
Conjecture 7 holds for G reduces to showing a GBRD(v, 3, |G|; G) exists for all v ≥ 3.
By Lemma 10 and Theorem 12 it is sufficient to show that a GBRD(v, 3, |G|; G) exists
for v = 3, 4, 5, 6 and 8.

We make the observation that for any non-cyclic 2-group K a GBRD(v, 3, |K|; K) exists
for all v ≡ 0, 1 (mod 3) by Theorem 21.

Suppose v = 3, 4 or 6. Set N = G3
∼= C(3). Then a GBRD(3, 3, |N|; N) exists. The

quotient G/N ∼= G2. Hence a GBRD(v, 3, |G/N|; G/N) exists by the observation above.
Applying Theorem 13 shows a GBRD(v, 3, |G|; G) exists.

In the case v = 5, 8 set N = G2. From the observation above, we know that a
GBRD(4, 3, |N|; N) exists. The quotient G/N ∼= G3 is cyclic of order 3. So by Ge et
al [13] there exists a GBRD(v, 4, |G/N|; G/N) for all v ≥ 4 with v ≡ 0, 1 (mod 4); and
hence, in particular, for v = 5, 8. So for v = 5 or 8 an application of Theorem 13 shows a
GBRD(v, 3, |G|; G) exists.

Case (iii). G = G2 × G3 × H with G3 a non-trivial 3-group and G3 × H not cyclic
of order 3. Let M be a maximal subgroup of G3. Then M is normal in G3 and G3/M is
cyclic of order 3. Consequently N = M × H is normal in G and Conjecture 7 holds for
G/N ∼= G2 × G3/M, as proved above. The conditions of Lemma 15 hold for N = M × H.
Hence Conjecture 7 holds for G.

Combining Theorems 21 and 22, and the result for nilpotent groups of odd order
([18]), we have that Conjecture 7 holds for all nilpotent groups:

Theorem 23. Let G be a nilpotent group. Then the necessary conditions given in
Lemma 6 are sufficient for the existence of a GBRD(v, 3, λ; G).
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2.4 Groups of orders 56 and 80

In [1], a proof that Conjecture 7 holds for all groups with order 56 or 80 was given, but
this proof needs to be revised, since it made use of Lemma 15 with one necessary condition
missing (see Remark 16). Here we prove the more general result:

Theorem 24. Let G be a group of order 2np, where p ≥ 5 is prime and n is the smallest
positive integer such that p divides 2n−1. Then the necessary conditions given in Lemma 6
are sufficient for existence of a GBRD(v, 3, λ; G).

Proof. By the third Sylow theorem, the number of Sylow p-subgroups is congruent to 1
modulo p. The assumed conditions on n, p imply there are 1 or 2n such subgroups. If
there is only one such subgroup, then it is necessarily normal. In this case we can apply
Lemma 15 with N this subgroup. Suppose now that G has 2n Sylow p-subgroups. These
subgroups are each cyclic of order p, and so the intersection of any two is the identity.
Hence, as any element of order p generates one of these subgroups, there are 2n(p − 1)
elements of order p. The remaining 2n elements must make up a Sylow 2-subgroup N

of G. Since this Sylow 2-subgroup must be unique, N is therefore normal in G. The
action by conjugation of the elements of order p (on N) must be non-trivial (because if
any of the elements of order p had trivial action then we would have G ∼= N × C(p)
which has only one Sylow p-subgroup, in contradiction with the assumption that there
are 2n such subgroups). Hence N must have non-trivial automorphisms of odd order p.
In particular, because the automorphism group of the cyclic group of order 2n is of order
2n−1, the Sylow 2-subgroup group N of G is not cyclic. Thus the necessary conditions in
Lemma 6 reduce to saying a GBRD(v, 3, 2npt; G) can exist only if v ≡ 0 or 1 (mod 3) or
t ≡ 0 (mod 3). To prove these conditions are sufficient, we only need to deal with the
cases t = 1 and 3, since for other designs we can take multiple copies of designs with t = 1
or 3.

First we show the existence of a GBRD(v, 3, 2np; G) for v = 3, 4 and 6. Then by
Lemma 11 and Theorem 12, a GBRD(v, 3, 2np; G) exists for all v ≡ 0 or 1 (mod 3). Next,
we show the existence of a GBRD(v, 3, 3(2np); G) for v = 5 and 8. Then by Lemma 10
and Theorem 12, a GBRD(v, 3, 3(2np); G) exists for all v.

When v = 3, 4 or 6, then, unless p < v (i.e. p = 5 and v = 6) there exists a GBRD(v,
v, p; C(p)) (for example, take the first v rows of the multiplication table of the finite field
of order p). Also, since the normal Sylow 2-subgroup N is non-cyclic, a GBRD(v, 3, 2n; N)
exists by Theorem 21. Together with Theorem 13 this gives us a GBRD(v, 3, 2np; G).

When v = 6 and p = 5 we have n = 4 and 2np = 80. A GBRD(v, {3, 6}, 5; C(5)) is
given in the next paragraph, and a GBRD(k, 3, 16; N) exists for k = 3, 6 [2]. Together
with Theorem 14 this gives us a GBRD(v, 3, 80; G).

A GBRD(6, {3, 6}, 5; C(5)) can be obtained in a manner similar to the one in Exam-
ple 18, from five base blocks over (Z5 ∪ {∞}) × Z5: {∞0, 00, 10, 20, 30, 40}, {∞0, 03, 12},
{∞0, 01, 24}, {00, 13, 24}, {00, 12, 33}. The corresponding GBRD has six rows, labelled
as ∞, 0, 1, 2, 3, 4. Each base block defines an initial column in the GBRD as follows: if
{(s1, t1), (s2, t2), . . ., (sm, tm)} is a base block, then for i = 1, 2, . . . , m, we place ti in
row si of that initial column. The required GBRD has 21 columns; the initial column
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with six entries generates just one column, and the others generate five columns each, by
developing the first components (or row indices) of the initial columns modulo 5.

For v = 5, 8, a GBRD(v, 4, 3p; C(p)) exists. One can be obtained by Theorem 13,
using a BIBD(v, 4, 3) (which exists by Hanani [16]) and a GBRD(4, 4, p; C(p)). A
GBRD(4, 3, 2n; N) exists by Theorem 21 since N is a non-cyclic 2-group. Hence a
GBRD(v, 3, 3(2np); G) exists by Theorem 13.

2.5 Summary of new and old evidence for Conjecture 7

Theorem 25. Let G be a finite group and v ≥ 3. Then, in each of the following cases,
the necessary conditions for the existence of a GBRD(v, 3, λ; G) given in Lemma 6 are
sufficient:

(i) For v = 3;

(ii) For G nilpotent (and in particular for abelian groups, and p-groups);

(iii) For G dihedral, dicyclic or semi-dihedral;

(iv) For G with |G| = pq for p, q primes;

(v) For G with |G| ≤ 100 with the possible exception of |G| ∈ {36, 48, 54, 60, 72, 96}.
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