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Abstract

The inverse problem associated to the Davenport constant for some finite abelian
group is the problem of determining the structure of all minimal zero-sum sequences
of maximal length over this group, and more generally of long minimal zero-sum
sequences. Results on the maximal multiplicity of an element in a long minimal
zero-sum sequence for groups with large exponent are obtained. For groups of the
form C

r−1
2 ⊕ C2n the results are optimal up to an absolute constant. And, the

inverse problem, for sequences of maximal length, is solved completely for groups
of the form C2

2 ⊕ C2n.
Some applications of this latter result are presented. In particular, a character-

ization, via the system of sets of lengths, of the class group of rings of algebraic
integers is obtained for certain types of groups, including C2

2 ⊕ C2n and C3 ⊕ C3n;
and the Davenport constants of groups of the form C2

4 ⊕ C4n and C2
6 ⊕ C6n are

determined.

Keywords: Davenport constant, zero-sum sequence, zero-sumfree sequence, inverse prob-
lem, non-unique factorization, Krull monoid, class group

1 Introduction

Let G be an additive finite abelian group. The Davenport constant of G, denoted D(G),
can be defined as the maximal length of a minimal zero-sum sequence over G, that is the
largest ℓ such that there exists a sequence g1 . . . gℓ with gi ∈ G such that

∑ℓ
i=1 gi = 0 and
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∑
i∈I gi 6= 0 for each ∅ 6= I ( {1, . . . , ℓ}. Another common way to define this constant is

via zero-sum free sequences, i.e., one defines d(G) as the maximal length of a zero-sum
free sequence; clearly D(G) = d(G) + 1.

The problem of determining this constant was popularized by P. C. Baayen, H. Dav-
enport, and P. Erdős in the 1960s. Still its actual value is only known for a few types
of groups. If G ∼= ⊕r

i=1Cni
with cyclic group Cni

of order ni and ni | ni+1, then let
D

∗(G) = 1 +
∑r

i=1(ni − 1). It is well-known and not hard to see that D(G) ≥ D
∗(G).

Since the end of the 1960s it is known that in fact D(G) = D
∗(G) in case G is a p-group

or G has rank at most two (see [42, 43, 52]). Yet, already at that time it was noticed that
D(G) = D

∗(G) does not hold for all finite abelian groups. The first example asserting
inequality is due to P.C. Baayen (cf. [52]) and, now, it is known that for each r ≥ 4
infinitely many groups with rank r exist such that this equality does not hold (see [33],
and also see [19] for further examples).

There are presently two main additional classes of groups for which the equality
D(G) = D

∗(G) is conjectured to be true, namely groups of rank three and groups of
the form Cr

n (see, e.g., [23, Conjecture 3.5] and [1]; the problems are also mentioned in
[39, 4]). Both conjectures are only confirmed in special cases. The latter conjecture is
confirmed only if r = 3 and n = 2pk for prime p, if r = 3 and n = 2k3 (see [52, 53] as
a special case of results for groups of rank three), and if n is a prime power or r ≤ 2
by the above mentioned results. Since to summarize all results asserting equality for
groups of rank three in a brief and concise way seems impossible, we now only mention—
additional information on results towards this conjecture is recalled in Section 4 and see
[52, 53, 18, 11, 7, 5, 45]—that it is well-known to hold true for groups of the form C2

2 ⊕C2n

(see [52]), was only recently determined for groups of the form C2
3 ⊕ C3n (see [7]), and

is established in the present paper for C2
4 ⊕ C4n and C2

6 ⊕ C6n as an application of our
inverse result for C2

2 ⊕ C2n (cf. below).
For groups of rank greater than three there is not even a conjecture regarding the

precise value of D(G). The equality D(G) = D
∗(G) is known to hold for p-groups (as

mentioned above), for groups of the form C3
2 ⊕ C2n (see [3]), and groups that are in a

certain sense similar to groups of rank two, cf. (3.2). However, for G = Cr−1
2 ⊕ C2n with

r ≥ 5 and n odd it is known that D(G) > D
∗(G); we refer to [40] for lower bounds for

the gap between these two constants. And, we mention that, via a computer-aided yet
not purely computational argument (see [44]), it is known that D(G) = D

∗(G) + 1 for
Cr−1

2 ⊕ C6 where r ∈ {5, 6, 7}, for C4
2 ⊕ C10, and for C3

3 ⊕ C6; and D(G) = D
∗(G) + 2 for

C7
2 ⊕ C6.

In addition to the direct problem of determining the Davenport constant the associ-
ated inverse problem, i.e., the problem of determining the structure of minimal zero-sum
sequences over G of length D(G) (and more generally long minimal zero-sum sequences)—
essentially equivalently, the problem of determining the structure of maximal length (and
long) zero-sum free sequences—received considerable attention as well (see, e.g., [23] for
an overview). On the one hand, it is traditional to study inverse problem associated to
the various direct problems of Combinatorial Number Theory. On the other hand, in
certain applications knowledge on the inverse problem is crucial (cf. below).
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An answer to this inverse problem is well-known, and not hard to obtain, in case
G is cyclic; yet, the refined problem of determining the structure of minimal zero-sum
sequences over cyclic groups that are long, yet do not have maximal length, recently
received considerable attention see [47, 54, 41, 27]. Moreover, the structure of minimal
zero-sum sequence over elementary 2-groups (of arbitrary length) is well-known and easy
to establish.

Yet, for groups of rank two the inverse problem was solved only very recently (see
Section 3.2 for details, and [21] and [13] for earlier results for C2 ⊕ C2n and C3 ⊕ C3n,
respectively).

For groups of rank three or greater, except of course elementary 2-groups, so far no
results and not even conjectures are known. In this paper we solve this inverse problem
for groups of the form C2

2 ⊕ C2n, the first class of groups of rank three. Our actual
result is quite lengthy, thus we defer the precise statement to Section 3.5. Moreover,
our investigations of this problem are imbedded in more general investigations on the
maximal multiplicity of an element in long minimal zero-sum sequences, i.e., the height
of the sequence, over certain types of groups, expanding on investigations of this type
carried out in [19] and [5] (for details see the Section 3).

The investigations on this and other inverse zero-sum problems are in part motivated
by applications to Non-Unique Factorization Theory, which among others is concerned
with the various phenomena of non-uniqueness arising when considering factorizations of
algebraic integers, or more generally elements of Krull monoids, into irreducibles (see,
e.g., the monograph [31], the lecture notes [30], and the proceedings [10], for detailed
information on this subject; and see [25] for a recent application of the above mentioned
results on cyclic groups to Non-Unique-Factorization Theory). For an overview of other
applications of the Davenport constant and related problems see, e.g., [23, Section 1]. In
Section 5 we present an application of the above mentioned result to a central problem in
Non-Unique Factorization Theory, namely to the problem of characterizing the ideal class
group of the ring of integers of an algebraic number field by its system of sets of lengths
(see [31, Chapter 7]). We refer to Sections 2 and 5 for terminology and a more detailed
discussion of this problem. For the moment, we only point out why the inverse problem
associated to C2

2 ⊕ C2n is relevant to that problem. We need the solution of this inverse
problem to distinguish the system of sets of lengths of the ring of integers of an algebraic
number field with class group of the form C2

2 ⊕ C6n from that of one with class group of
the form C3 ⊕ C6n. The relevance of distinguishing precisely these two types of groups is
due to the fact that a priori the likelihood that the system of sets of lengths in this case
are not distinct was exceptionally high; a detailed justification for this assertion is given
in Section 5.

In addition, in Section 4, we discuss some other applications of our inverse result,
in particular (as already mentioned) we use it to determine the value of the Davenport
constant for two new types of groups (of rank three), and discuss our results in the context
of the problem of determining the order of elements in long minimal zero-sum sequences
and the cross number, i.e., a weighted length, of these sequences (see [19, 21, 35, 36] for
results on this problem).
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2 Preliminaries

We recall some terminology and basic facts. We follow [31, 23, 30] to which we refer for
further details.

We denote the non-negative and positive integers by N0 and N, respectively. By [a, b]
we always mean the interval of integers, that is the set {z ∈ Z : a ≤ z ≤ b}. We set
max ∅ = 0.

By Cn we denote a cyclic group of order n; by Cr
n we denote the direct sum of r

groups Cn. Let G be a finite abelian group; throughout we use additive notation for
finite abelian groups. For g ∈ G, the order of g is denoted by ord(g). For a subset
G0 ⊂ G, the subgroup generated by G0 is denote by 〈G0〉. A subset E ⊂ G \ {0} is
called independent if

∑
e∈E aee = 0, with ae ∈ Z, implies that aee = 0 for each e ∈ E. An

independent generating subset of G is called a basis of G. We point out that if G0 ⊂ G\{0}
and

∏
g∈G0

ord(g) = |〈G0〉|, then G0 is independent. There exist uniquely determined
1 < n1 | · · · | nr and prime powers qi 6= 1 such that G ∼= Cn1

⊕· · ·⊕Cnr
∼= Cq1

⊕· · ·⊕Cqr∗
.

Then exp(G) = nr, r(G) = r, and r
∗(G) = r∗ is called the exponent, rank, and total rank

of G, respectively; moreover, for a prime p the number of qis that are powers of this p is
called the p-rank of G, denoted rp(G). The group G is called a p-group if its exponent
is a prime power, and it is called an elementary group if its exponent is squarefree. For
subset A, B ⊂ G, we denote by A ± B = {a ± b : a ∈ A, b ∈ B} the sum-set and the
difference-set of A and B, respectively.

A sequence S over G is an element of the multiplicatively written free abelian monoid
over G, which is denoted by F(G), that is S =

∏
g∈G gvg with vg ∈ N0. Moreover, for

each sequence S there exist up to ordering uniquely determined g1, . . . , gℓ ∈ G such that
S =

∏ℓ
i=1 gi. The neutral element of F(G) is called the empty sequences, and denoted by

1. Let S =
∏

g∈G gvg ∈ F(G). A divisor T | S is called a subsequence of S; the subsequence

T is called proper if T 6= S. If T | S, then T−1S denotes the co-divisor of T in S, i.e.,
the unique sequence fulfilling T (T−1S) = S. Moreover, for sequences S1, S2 ∈ F(G), the
notation gcd(S1, S2) is used to denote the greatest common divisor of S1 and S2 in F(G),
which is well-defined, since F(G) is a free monoid. One calls vg(S) = vg the multiplicity
of g in S, |S| =

∑
g∈G vg(S) the length of S, k(S) =

∑
g∈G vg(S)/ ord(g) the cross number

of S, h(S) = max{vg(S) : g ∈ G} the height of S, and σ(S) =
∑

g∈G vg(S)g the sum of S.
The sequence S ∈ F(G) is called short if 1 ≤ |S| ≤ exp(G) and it is called squarefree if
vg(S) ≤ 1 for each g ∈ G. The set of subsums of S is Σ(S) = {σ(T ) : 1 6= T | S}, and the
support of S is supp(S) = {g ∈ G : vg(S) ≥ 1}. The sequence S is called zero-sumfree if

0 /∈ Σ(S). For S =
∏ℓ

i=1 gi, the notation −S is used to denote the sequence
∏ℓ

i=1(−gi),

and for f ∈ G, f + S denotes the sequence
∏ℓ

i=1(f + gi). One says that S is a zero-
sum sequence if σ(S) = 0, and one denotes the set of all zero-sum sequences over G by
B(G); the set B(G) is a submonoid of F(G). A non-empty zero-sum sequences S is called
a minimal zero-sum sequence if σ(T ) 6= 0 for each non-empty and proper subsequence
of S, and the set of all minimal zero-sum sequences is denoted by A(G). Clearly, each
map f : G → G′ between abelian groups G and G′ can be extended in a unique way
to a monoid homorphism of F(G) → F(G′), which we also denote by f ; if f is a group
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homomorphism, then f(B(G)) ⊂ B(G′).
We recall some definitions on factorizations over monoids. Let M be an atomic monoid,

i.e., M is a commutative cancelative semigroup with neutral element (i.e., an abelian
monoid) such that each non-invertible element a ∈ M is the product of finitely many
irreducible elements (atoms). If a = u1 . . . un with ui ∈ M irreducible, then n is called
the length of this factorization of a. Moreover, the set of lengths of a, denoted L(a), is
the set of all n such that a has a factorization into irreducibles of length n. For e ∈ M an
invertible element, one defines L(e) = {0}. The set L(M) = {L(a) : a ∈ M} is called the
system of sets of lengths of M . Note that B(G) is an atomic monoid and its irreducible
elements are the minimal zero-sum sequences, i.e., the elements of A(G). For convenience
of notation, we write L(G) instead of L(B(G)) and refer to it as the system of sets of
lengths of G. We exclusively use the term factorization to refer to a factorization into
irreducible elements (of some atomic monoid that is mentioned explicitly or clear from
context). In particular, if we say that for a zero-sum sequence B ∈ B(G) we consider
a factorization B =

∏ℓ
i=1 Ai we always mean a factorization into irreducible elements in

the monoid B(G), i.e., Ai ∈ A(G) for each i. Yet, if we consider, for some S ∈ F(G), a
product decomposition S =

∏ℓ
i=1 Si with sequences Si ∈ F(G) this is not a factorization

(except if |Si| = 1 for each i) and we thus refer to it as a decomposition.
Next, we recall some definitions and results on the Davenport constant and related

notions.
Let G be a finite abelian group. Let D(G) = max{|A| : A ∈ A(G)} denote the Dav-

enport constant and let K(G) = max{k(A) : A ∈ A(G)} denote the cross number of G.
Moreover, for k ∈ N, let Dk(G) = max{|B| : B ∈ B(G), max L(B) ≤ k} denote the gen-
eralized Davenport constants introduced in [38] in the context of Analytic Non-Unique
Factorization Theory; for the relevance in the present context, originally noticed in [14],
see (3.1). For an overview on results on this constant see [31] and for recent results [7]
and [17]. Observe that D1(G) = D(G). Additionally, let η(G) denote the smallest ℓ ∈ N
such that each S ∈ F(G) with |S| ≥ ℓ has a short zero-sum subsequence. Essentially by
definition, we have D(G) ≤ η(G). We recall that η(G) ≤ |G|, which is sharp for cyclic
groups and elementary 2-groups; see [28] for this bound, also see [30, 31] for proofs of this
and other results on η(G); and, e.g., [16, 15] for lower bounds.

It is well known that, with ni and qi as above,

D(G) ≥ D
∗(G) = 1 +

r∑

i=1

(ni − 1) and K(G) ≥
1

exp(G)
+

r∗∑

i=1

qi − 1

qi
. (2.1)

For G a p-group equality holds in both inequalities, and for r(G) ≤ 2 equality holds for
the Davenport constant. And, we recall the well-known upper bound K(G) ≤ 1/2+log |G|
(see [34]).

Moreover, we recall that for finite abelian groups G1 and G2, we have D(G1 ⊕ G2) ≥
D(G1) + D(G2) − 1, and if G1 ( G2 then D(G1) < D(G2). In particular, the support of
a minimal zero-sum sequence of lengths D(G) is a generating set of G. Additionally, we
recall the lower bound D(G) ≥ 4 r

∗(G) − 3 r(G) + 1, which is relevant in Section 5 (see
[17]).
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We recall some results on Dk(G). Setting

D
′
0(G) = max{D(G) − exp(G), η(G) − 2 exp(G)}

and letting G1 denote a group such that G ∼= G1 ⊕ Cexp(G), we have

k exp(G) + (D(G1) − 1) ≤ Dk(G) ≤ k exp(G) + D
′
0(G) (2.2)

for each k ∈ N. Moreover, there exists some D0(G) such that for all sufficiently large k,
depending on G, Dk(G) = k exp(G) + D0(G). Clearly, we have D0(G) ≤ D

′
0(G). Also,

note that by the bounds recalled above D
′
0(G) ≤ |G| − exp(G). For groups of rank at

most two and in closely related situations both inequalities in (2.2) are in fact equalities
(see [38, 31]), yet in general neither one is an equality (see, e.g., [17] and cf. below). In
particular, in general the precise value of Dk(G) and D0(G) are not known, not even for
p-groups; see [7] for recent precise results for C3

3 .
In case G is an elementary 2-group it is known for all k that Dk(G) ≤ k exp(G)+D0(G).

Moreover, it is known that D0(C
r
2) = 2r/3+O(2r/2), where explicit bounds for the implied

constant are known and one thus can infer that D0(C
r
2) < 2r−1 for each r ∈ N, which

is more convenient though less precise for our applications. Additionally, we recall that
Dk(C

3
2) = 2k + 3 for each k ≥ 2 (see [14]); for similar results for r ∈ {4, 5} and the upper

bound see [17].
Finally, we point out that by the definition of Dk(G), we know, for each k ∈ N, that

if |A| > Dk(G), then max L(A) > k. In particular, we get that

if
|A| − D

′
0(G)

exp(G)
> k , then max L(A) > k . (2.3)

In case we know that Dk(G) ≤ k exp(G) + D0(G), in particular for elementary 2-groups,
we can replace D

′
0(G) by D0(G) in this inequality.

3 Structure of long minimal zero-sum sequences

We start by giving an overview of the results to be established in this section. To put them
into context and since it is relevant for the subsequent discussion, we recall some known
results; including a brief, and thus rather ahistorical, discussion of the direct problem.

As mentioned in Section 1, the problem of determining the Davenport constant for
p-groups was solved at the end of the 1960s. Yet, since that time the method used to
prove this result was neither generalized to more general types of groups nor modified
to yield an answer to the inverse problem. In fact, now for p-groups other proofs and
refinements of that proof are known (see, e.g., [1, 31, 24]), but the same limitations seem
to apply.

Thus, to obtain information on the Davenport constant for other types of groups
one tries to leverage the information available for p-groups (and cyclic groups), via an
‘inductive’ argument, reducing the problem of determining D(G), or the associated inverse
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problem, to a problem over a subgroup H of G, a problem over the factor group G/H ,
and the problem of recombining the information, i.e., on tries to combine knowledge on
groups G1 and G2 to gain information on a group G that is an extension of G1 and G2.
This is one of the most frequently applied and classical techniques in the investigation of
the Davenport constant and the associated inverse problems (see [46, 43, 52] for classical
contributions, in particular, for groups of rank two, and [31] for an overview). In fact,
essentially all results on the exact value of the Davenport constant for non-p-groups—
cyclic groups and isolated examples obtained by purely computational means seem to be
the only exceptions—and various bounds were obtained via some form of this method
(see [23] and [31] for an overview).

To discuss the inductive method in more detail, we fix some notation. Let G be a finite
abelian group, let H ⊂ G be a subgroup, and let ϕ : G → G/H denote the canonical map.
In applications frequently the factor group G/H is ‘fixed’ and only H ‘varies.’ Say, for
some group K investigations are carried out for all the groups Gn that are extensions—to
be precise, typically only extensions fulfilling some additional condition are considered,
see the discussion below—of K by groups of the same type but with a varying parameter
n, e.g., cyclic groups of order n or groups of the form C2

n (cf. the types of groups mentioned
in in Sections 1, 3.4, and 4). In view of this, the present setup, which makes the ‘fixed’
group G/H depend on the two ‘varying’ groups G and H , is somewhat counter-intuitive.
Yet, to use this setup, rather than the dual one, has several technical advantages that (it
is hoped) outweigh this. Thus, we are mainly interested in the situation that |H| is large
relative to |G/H|; in fact, as detailed below, we are mainly concerned with the situation
that even the exponent of H is large relative to |G/H|.

We recall the following key-formula (see [14]), which encodes several classical applica-
tions of inductive arguments (cf. below and see Step 1 of the Proof of Theorem 3.1 for a
related reasoning),

D(G) ≤ DD(H)(G/H). (3.1)

The relevance of this formula is at least twofold. On the one hand, for certain types
of groups G and a suitably chosen proper subgroup H the inequality in (3.1) is in fact
an equality. And, the subproblems of determining the Davenport constant of H and the
generalized Davenport constants of G/H can be solved; e.g., by iteratively applying this
formula to eventually attain a situation where all groups are p-groups or cyclic. To assert
this equality, one combines the formula with the well-known lower bound for D(G) to
obtain the chain of inequalities D

∗(G) ≤ D(G) ≤ DD(H)(G/H). In this way, the problem
of determining the Davenport constant of groups of rank at most two, can be reduced to
a problem on elementary p-groups of rank at most three; groups of rank three are used,
to determine the generalized Davenport constants via an imbedding argument. Indeed,
this is the original—and still the only known—argument, slightly rephrased, to determine
the Davenport constant for groups of rank two. A similar approach still works in related
situations. In particular, it can be used to show that

D(G′ ⊕ Cn) = D
∗(G′ ⊕ Cn) (3.2)
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where G′ is a p-group with D(G′) ≤ 2 exp(G′) − 1 and n is co-prime to exp(G′) (see [52],
and [11] for a generalization).

On the other hand, this formula is useful to decide which choice for the subgroup H is
‘suitable’ and to highlight limitations of this form—strictly limiting to the consideration
of direct problems—of the inductive approach. We recall, cf. (2.2), that DD(H)(G/H) ≥
exp(G/H)(D(H)−1)+D

∗(G/H). So, at least exp(G/H)(D∗(H)−1)+D
∗(G/H) ≤ D

∗(G)
should hold. Recalling that we are mainly interested in the case that (the exponent of)
H is large relative to G/H , we see that in our context we effectively have to restrict
to considering subgroups H such that exp(G) = exp(H) exp(G/H), since otherwise the
upper bound in (3.1) can be much too large. Conversely, if exp(G) = exp(H) exp(G/H)
and H is cyclic, then we see that exp(G/H)(D∗(H)−1)+D

∗(G/H) = D
∗(G) and thus any

error in the estimate (3.1) is only due to the inaccuracy of the lower bound (2.2) and thus
can be bounded in terms of G/H only, i.e., in our context is relatively small. However,
as discussed, for groups of rank greater than two the lower bound in (2.2) is often not
accurate. For example, for the group G = C2

2 ⊕ C2p for some odd prime p, we get by the
result on Dk(C

3
2) recalled in Section 2 (also, note that all other choices of subgroups will

result in much worse estimates)

2p + 2 = D
∗(G) ≤ D(G) ≤ DD(Cp)(C

3
2) = 2p + 3.

Thus, D(C2
2 ⊕ C2p) cannot be determined by (3.1) alone.

However, it is known that a refined inductive argument allows to prove that D(C2
2 ⊕

C2n) = 2n + 2 for each n ∈ N (cf. Section 1). Yet, some information on the inverse
problems associated to the subproblems in C3

2 and Cn is required; for example, knowing
ν(Cn) (so that Proposition 4.2, a result given in [52, 53], is applicable) and having some
information on the inverse problem associated to the generalized Davenport constant for
C3

2 (to prove this proposition) allows to prove this.
More recently, results were obtained that solve the inverse problem associated to the

Davenport constant via inductive arguments, or at least give conditional or partial answers
to this problem. The first results of this form are due to W.D. Gao and A. Geroldinger
(see [21, 22]), where this problem is solved for C2 ⊕ C2n and C2

2n, in the latter case
assuming n has Property B, i.e., a solution to the inverse problem for C2

n (see Section
3.2 for the definition). In Section 3.2 we also recall more recent results obtained via the
inductive method, fully reducing the inverse problem for groups of rank two to the case
of elementary p-groups of rank two, which then was solved by C. Reiher [45].

The purpose of our investigations on the inverse problem is twofold. On the one hand,
we obtain a full solution to the inverse problem for groups of the form C2

2 ⊕ C2n for
each n ∈ N. The motivation for and relevance of these investigations already has been
discussed in Section 1; additionally we recall that, for this class of groups, in contrast
to groups of rank at most two, it is necessary to operate below the upper bound that
can be inferred from (3.1). On the other hand, we imbed these investigations into a
more general investigation of one main aspect of the structure of long minimal zero-sum
sequences, namely their height, over certain types of groups. In Section 4 we briefly
discuss implications of our results for the two other main aspects, namely the cardinality
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of the support and the order of elements in the sequence (see [23]). We recall that to
impose some condition on the relative size of the exponent is essentially inevitable when
considering this question; for example, for G an elementary p-group it is known that if
the rank is large relative to the exponent (yet, not imposing any absolute upper bound
on the exponent), then there exist minimal zero-sum sequence of maximal length that are
squarefree, i.e., have height 1 (see [19] for this and more general results of this type).

Investigations of this type were started in [19]. And, in the recent decidability result
for the Davenport constant of groups of the form Cr−1

m ⊕ Cmn with gcd(m, n) = 1 (see
[5]) this question was investigated as well, since it was relevant for that argument. First,
we consider this problem in a very general setting, expanding on known results of this
form. We highlight which parameters are relevant and discuss in which ways this result
can be improved in specific situations. Second, we restrict to the case that G has a large
exponent (in a relative sense), mainly focusing on the case that G has a cyclic subgroup
H such that |H| is large relative to |G/H|, implementing some of the improvements only
sketched for the general case. Third, we turn to a more restricted class of groups, namely
groups of the form Cr−1

2 ⊕ C2n. In this case, we establish bounds for the height of long
minimal zero-sum sequences that are optimal up to an absolute constant; inspecting our
proof, yields 7 as the value for this constant (and this could be slightly improved). One
reason for focusing on this particular class of groups is the fact that, for reasons explained
above, we want a precise understanding of the inverse problem associated to C2

2 ⊕ C2n.
However, this is not the only reason. This type of groups is an interesting extremal case.
We apply the inductive method with H cyclic and G/H an elementary 2-group. On the
one hand, this combines, when considering the relative size of exponent versus rank, the
two most extreme cases; and, from a theoretical point of view, the case that G/H is an
elementary 2-group can thus be considered as a worst-case scenario. On the other hand,
from a practical point of view, certain of the arising subproblems are easier to address or
better understood for elementary 2-groups than, say, for arbitrary elementary p-groups.
Finally, we apply the thus gained insight with some ad hoc arguments to obtain a complete
solution of the inverse problem for C2

2 ⊕ C2n (for sequences of maximal length).

3.1 General groups

We start the investigations by considering the problem of establishing lower bounds for the
height in the general situation. Our result, Theorem 3.1—to be precise, refinements of it—
turns out to be fairly accurate in certain cases. Yet, as discussed above, due to the nature
of the problem, the result has to be essentially empty if we do not impose restrictions on
the group G, the subgroup H , and the length of the sequence A; the result depends on the
length of A via the size of the elements of L(ϕ(A)), cf. (2.3). Additionally, our arguments
in the general case are not optimized (see below for a discussion of refinements).

To formulate our results we introduce some notions. Let G be a finite abelian group.
For ℓ ∈ [1, D(G)], let h(G, ℓ) = min{h(A) : A ∈ A(G), |A| ≥ ℓ} denote the minimal height
of a minimal zero-sum sequences of lengths at least ℓ over G; though not explicitly named,
this quantity has been investigated frequently (see below). For k ∈ Z, let suppk(S) =
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{g ∈ G : vg(S) ≥ k} denote the support of level k; for k = 1, this yields the usual
definition of the support of a sequence, and for k ≤ 0 we have suppk(S) = G. For
ℓ ∈ [1, D(G)] and δ ∈ N0, let ci(G, ℓ, δ) = max{| supp

h(A)−δ(A)| : A ∈ A(G), |A| ≥ ℓ}
denote the maximal cardinality of the set of −δ-important elements for minimal zero-sum
sequences of length at least ℓ; this terminology is inspired by [5] where elements occurring
with high multiplicity are called important, also cf. [26, Section 3] for the relevance of
elements appearing with high multiplicity in this context. In Section 3.2, we point out
information that is available on these quantities via known results, illustrating that this
result is actually applicable (in suitable situations).

Theorem 3.1. Let G be a finite abelian group and let {0} 6= H ( G be a subgroup, and
ϕ : G → G/H the canonical map. Let A ∈ A(G) and k ∈ L(ϕ(A)). With δ0 = 1 if 2 ∤ |H|
and δ0 = 2 if 2 | |H|, we have

h(A) ≥
h(H, k) − D(G/H)|G/H|

(2 ci(H, k, δ0) − 1)|G/H|
.

Since similar general results are already known (see [19, 5]), we point out the main
novelty of our result. We take the situation that there can be more than one important
element in long minimal zero-sum sequences over H into account, via the parameter
ci(H, k, δ0). This additional generality is useful, since it allows to apply the result for non-
cyclic H and additionally makes it applicable in the situation that the subgroup H is cyclic
yet the sequence A is not long enough to guarantee the existence of some k ∈ L(ϕ(A))
for which ci(H, k, δ0) = 1 (see Section 3.2 for details). In other aspects our result, as
formulated, is weaker than the other general results, yet after its proof we discuss that
these weaknesses can be overcome with some modifications (yet, of course, not achieving
the precision of certain non-general results, such as [26, 51], where various facts specific
to the situation at hand are taken into account); we do not take these modifications into
account in the result, since we believe that to introduce even more parameters is not
desirable. Yet, we take them into account in our more specialized investigations in the
subsequent sections.

We write the proof of Theorem 3.1 in a structured way, since we frequently refer to
this proof in the proofs of more specific result, to avoid redoing identical arguments.

Proof of Theorem 3.1.

Step 1, Generating minimal zero-sum sequences over H:

Since k ∈ L(ϕ(A)), there exist F1, . . . , Fk ∈ F(G) with A = F1 . . . Fk and ϕ(F1) . . . ϕ(Fk)
is a factorization of ϕ(A); in particular, we have σ(Fi) ∈ H for each i ∈ [1, k]. We note
that C =

∏k
i=1 σ(Fi) ∈ A(H), since

∑
i∈J σ(Fi) = 0 for some J ⊂ [1, k] is equivalent to

σ(
∏

i∈J Fi) = 0.

Step 2, Choosing a minimal zero-sum sequence over H:

Let
∏k

i=1 σ(Fi) =
∏s

i=1 hvi

i with pairwise distinct elements hi such that v1 ≥ · · · ≥ vs > 0,
and let t ∈ [1, s] be maximal such that vi = v1 for each i ∈ [1, t]. We assume that the Fi

are chosen in such a way that the sequence, in the traditional sense, (v1, . . . , vs, 0, . . . ) is
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minimal, in the lexicographic order, among all these sequences defined via decompositions
A = F ′

1 . . . F ′
k such that ϕ(F ′

1) . . . ϕ(F ′
k) is a factorization of ϕ(A); in particular, v1 =

h(
∏k

i=1 σ(Fi)) is minimal and moreover t is minimal among all sequences that yield this
minimal v1.

Step 3, Identifying a ‘large fibre’:

Since C ∈ A(H) and since v1 = h(C), we have v1 ≥ h(H, k). Moreover, for δ ∈ {1, 2} let
tδ ∈ [1, s] be maximal such that vi ≥ v1−δ for each i ∈ [1, tδ]; note that tδ ∈ [1, ci(H, k, δ)].

Let I ⊂ [1, k] such that
∏

i∈I σ(Fi) = hv1

1 . Let g ∈ G/H such that vg(ϕ(
∏

i∈I Fi)) =
h(ϕ(

∏
i∈I Fi)). Clearly, h(ϕ(

∏
i∈I Fi)) ≥ |

∏
i∈I Fi|/|G/H|.

Step 4, Investigating the ‘large fibre’:

Let g1 |
∏

i∈I Fi, say g1 | Fk1
, with ϕ(g1) = g.

Let k2 ∈ I \ {k1} such that there exists some g2 | Fk2
with ϕ(g2) = g. We note that

since |Fk1
| ≤ D(G/H) and vg(ϕ(

∏
i∈I Fi)) ≥ |

∏
i∈I Fi|/|G/H| ≥ v1/|G/H|, our claim is

trivially true if such a k2 does not exist.
Let F ′

ki
= g−1

i gjFki
for {i, j} = {1, 2} and let F ′

i = Fi for i ∈ [1, k] \ {k1, k2}. We note
that σ(F ′

k1
) = h1 − (g1 − g2) and that σ(F ′

k2
) = h1 + (g1 − g2); since g1 − g2 ∈ H , both

sums are elements of H .
We consider D =

∏k
i=1 σ(F ′

i ) ∈ A(H). We have D = Ch−2
1 σ(F ′

k1
)σ(F ′

k2
). By our

constraints on h(C) and t, it follows that at least one of the following two statements has
to hold (for clarity, we disregard some slight improvements achievable by distinguishing
more cases).

• σ(F ′
ki

) ∈ {h1, . . . , ht1} for some i ∈ {1, 2}.

• σ(F ′
k1

) = σ(F ′
k2

) ∈ {ht1+1, . . . , ht2}.

We note that the second statement can only hold if g1−g2 has order 2, i.e., only if 2 | |H|.
Let H0 = {h1, . . . , htδ0

}. We get that σ(F ′
k1

) = h1 − (g1 − g2) ∈ H0 or σ(F ′
k2

) =
h1 + (g1 − g2) ∈ H0. Thus, (g2 − g1) ∈ (−h1 + H0) ∪ (h1 − H0) = H ′

0. We have
|H ′

0| ≤ 2|H0| − 1 = 2tδ0 − 1.
Thus, it follows that

ϕ−1(g) ∩ supp(
∏

i∈I\{k1}

Fi) ⊂ g1 + H ′
0. (3.3)

Thus, there exists some g′ ∈ G with ϕ(g′) = g such that

vg′(
∏

i∈I\{k1}

Fi) ≥
vg(ϕ(

∏
i∈I\{k1}

Fi))

|H ′
0|

≥
(|

∏
i∈I Fi|/|G/H|)− D(G/H)

2tδ0 − 1

≥
v1 − D(G/H)|G/H|

|G/H|(2tδ0 − 1)
.

Recalling that v1 ≥ h(H, k) and tδ0 ≤ ci(H, k, δ0), the claim follows (obviously, we can
ignore the scenario that the numerator is negative).
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Next, we discuss how this result can be expanded and improved (if more assumptions
are imposed).

Remark 3.2. In a more restricted context one can assert that the lengths of most of the
sequences Fi are equal to exp(G/H) (see Lemma 3.7). Thus, the estimate |

∏
i∈I Fi| ≥ v1

can be improved, almost by a factor of exp(G/H).

In the important special case ci(H, k, δ0) = 1 the following improvement is possible.

Remark 3.3. If |H0| = 1, i.e., H ′
0 = {0}, then we can repeat the argument of Step 4 with

k2 (instead of k1) as ‘distinguished’ index, to get that also ϕ−1(g) ∩ supp(Fk1
) = {g1};

note that in this case we know already g2 = g1. Thus, in this case we get h(H, k)
instead of h(H, k) − D(G/H)|G/H| in the numerator of our lower bound for h(A). Yet,
note that then we have to impose some (in our context) mild additional assumption to
guarantee the existence of two distinct k1, k2 ∈ I with g ∈ supp(Fki

), e.g., assuming that
h(H, k) > D(G/H)|G/H| guarantees this.

In Theorem 3.13 we see, on the one hand, that some condition such as g ∈ supp(Fki
)

for distinct k1, k2 is essential to guarantee that elements with the same image under ϕ are
actually equal or closely related; and on the other hand, that the actual condition can be
weakened in that context.

Moreover, not only information on the height of the sequence can be obtained in this
way.

Remark 3.4. Inspecting the proof of Theorem 3.1 the following assertions are clear.

1. The assertion made in (3.3) holds for each element g ∈ G/H . And, in the situation
of Remark 3.3, for each g ∈ G/H with vg(ϕ(

∏
i∈I Fi)) > D(G/H). Thus, we could

gain information on all elements of the ‘large fibre’ with at most D(G/H)|G/H|
exceptions, i.e., a number that just depends on G/H and thus in our context is
small.

2. If there is more than one ‘large fibre,’ i.e., t > 1, then we can apply the argument
to each of these fibres (yet, note that H ′

0 depends on the fibre).

Thus, via this method more detailed insight, beyond the height, into the structure of
the sequences could be obtained. Indeed, one can expand on the second assertion by noting
that the argument can even be expanded to the product of all ‘large fibres’; yet, instead
of the set H ′

0 we need to consider the set H0 − H0, again ignoring slight improvements.
Thus, using |H0−H0| ≤ |H0|(|H0|−1)+1, we see that depending on the relative size of t
and tδ0 , this can yield a better or a worse result. And, in case one has detailed knowledge
on the structure of long minimal zero-sum sequences over H , it is possible to extend these
considerations to fibres corresponding to elements with high yet not maximal multiplicity
in C (cf. the proof of Theorem 3.6). Finally, we add that apparently the structure of the
set H0 is relevant too, e.g., since with such knowledge better bounds for |H0 −H0| might
be obtained, or additional restrictions inferred. However, examples show that without
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imposing additional restrictions, the structure of H0 can be drastically different; namely,
all elements of H0 can be independent but they can also form an ‘interval’ (see Section
3.2), which are both rather extreme examples regarding |H0 − H0|, yet at opposite ends
of the spectrum. Thus, we do not pursue these ideas any further in this general setting;
yet, this is considered in our investigations for cyclic H .

Remark 3.5. Somewhat oversimplifying, for certain types of groups G/H the size of
max L(ϕ(A)) (relative to |A|) is ‘large’ if supp(ϕ(A)) is ‘large’ and conversely. In situations
where this is the case one can get improved results via taking this correlation into account,
since then one can argue that max L(ϕ(A)) is not as small as possible (among all sequences
B ∈ B(G/H) of length |A|) or supp(ϕ(A)) is not as large as possible (among all sequences
B′ ∈ B(G/H) of length |A|), and each of these has a positive effect on the estimates for
the height.

We refer to [22, Theorem 7.1] for a result of this form for C2
m and to [51] for an

application of it in this context, and to [26, Section 4]. Yet, elementary 2-groups do not
have this property and only a minimal improvement could be achieved in this way. Thus,
in this case we give a different type of argument that in combination with the above
reasoning still allows to assert that for sufficiently long A the support of ϕ(A) is not too
large (see Section 3.4).

3.2 On h(H, k) and ci(H, k, δ)

Let H be a finite abelian group, k ∈ [1, D(H)], and δ ∈ N0. Apparently, the two parame-
ters h(H, k) and ci(H, k, δ) are crucial for the quality of the estimate in Theorem 3.1. We
summarize some results on these invariants.

It is clear that h(H, k) ≤ exp(H) and if equality holds then k = exp(H). Thus,
equality holds if and only H is cyclic and k = |H|, exp(H) = 2 and k = 2, or exp(H) = 1
and k = 1. Moreover, for δ < h(H, k), we have ci(H, k, δ) ≤ (D(H) − δ)/(h(H, k) − δ).

For cyclic groups the structure of long minimal zero-sum sequences is well-understood.
A zero-sum sequence B over Cn is said to have index 1 if there exists some generating
element e ∈ Cn and b1, . . . b|B| ∈ [1, n]

with

|B|∑

i=1

bi = n such that B =

|B|∏

i=1

(bie). (3.4)

Each zero-sum sequence of index 1 is a minimal zero-sum sequences, yet the converse is in
general not true. However, all long minimal zero-sum sequences have index 1 and recently
in [47] and [54] (improving on various earlier results, originating in a result of [8], and
see [30] for an overview; and cf. Section 1 for references to further results) the precise
threshold-value was determined. Namely, it is known that if A is a minimal zero-sum
sequence over Cn and |A| ≥ ⌊n/2⌋+ 2, then A has index 1, and this bound on the length
is best possible (except for n ∈ [1, 7] \ {6}, since in these cases all minimal zero-sum
sequences have index 1). From this result one can infer (see the above mentioned papers
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for details) that for k ≥ (n+3)/2 we have h(Cn, k) ≥ (3k−n)/3 and ci(Cn, k, 2) ≤ 2, and
for k ≥ (2n + 3)/3 we have h(Cn, k) = 2k − n and ci(Cn, k, 2) = 1. Moreover, for each
A ∈ A(Cn) with |A| ≥ (n + 3)/2 we have that supp

h(A)−2 ⊂ {e, 2e} for some generating
element e ∈ Cn, with the single exception n = 6 and A = e3(3e).

Over non-cyclic groups much less is known on the structure of minimal zero-sum
sequences and thus on h(H, k) and ci(H, k, δ); yet, partial results document that these
invariants remain relevant beyond the case of cyclic groups. We discuss the present state
of knowledge for groups of rank two. We recall that n ∈ N is said to have Property
B if h(C2

n, D(C2
n)) = n − 1. If n has Property B, then a short argument yields a full

characterization of all minimal zero-sum sequences of maximal length over C2
n. Recently,

it was proved that indeed each n ∈ N has Property B (see [45], and also [26]). And, by [51]
it thus follows, for m, n ∈ N \ {1}, that h(Cm ⊕Cmn, D(Cm ⊕Cmn)) = max{m− 1, n+1}.
Also, note that if n ≥ 5, then ci(C2

n, D(C2
n), 2) = 2; that 2 is an upper bound follows by

the general inequality given above and recall that for independent e1, e2 of order n the
sequence en−1

1 en−1
2 (e1 + e2) is a minimal zero-sum sequence.

Moreover, it is known by [6] that there exists some positive constant δ such that for
each (sufficiently large) prime p we have h(C2

p , D(C2
p )) ≥ δp; indeed, it is even known that

for each ε > 0 there exists some δε > 0 such that h(C2
p , k) ≥ δεp for k ≥ (1 + ε)p for all

sufficiently large primes p. We point out that for our applications knowledge on h(H, k)
for k (slightly) below D(H), such as provided by that result is of particular relevance. The
class of groups for which, using the notation of Theorem 3.1, there exists some k ∈ L(ϕ(A))
such that k is close to D(H) (in a relative sense) is much larger than the class of groups for
which such a k with k = D(H) exists (cf. the discussion at the beginning of this section).
Extrapolating from the cyclic case, one can hope that h(C2

n, D(C2
n)−ℓ) = n−1−2ℓ for each

ℓ ≤ cn for some positive constant c; at least, it seems quite likely that h(C2
n, D(C2

n) − ℓ)
is still close to n − 1 for sufficiently small ℓ ∈ N.

Additional information on h(H, k) for k close to D(H) for groups with large exponent
is available via results in [19].

Finally, note that the structure of minimal zero-sum sequences over elementary 2-
groups is completely understood, namely A is a minimal zero-sum sequence if and only if
A = (e1 + · · ·+ es)

∏s
i=1 ei for independent elements ei. So, we have h(Cr

2 , D(Cr
2)) = 1 for

r ≥ 2. Hence, we typically cannot (in a meaningful way) apply Theorem 3.1 (or related
results) with H an elementary 2-group. Moreover, note that replacing h(·) and ci(·) by
different parameters describing the structure of minimal zero-sum sequence will not change
this. The actual problem is the fact that long minimal zero-sum sequences over elementary
2-groups (and more generally groups with large rank) can be much less rigid than long
minimal zero-sum sequences over groups with large exponent. For example, consider a
zero-sum free sequence S of length D(H)− 2; if H is cyclic, then S can be extended to a
minimal zero-sum sequence in at most two ways, whereas if H is an elementary 2-group
of rank r ≥ 2, then this can be done in 1 + 2r−2 ways. Our parameters are merely a way
to quantify this phenomenon.
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3.3 Groups with large exponent

In this section we obtain refined results on the height of long minimal zero-sum sequences
over groups with ‘large exponent’. We mainly focus on the case that G has a cyclic
subgroup H such that |H| is large relative to |G/H|, since in this case precise information
on the structure of minimal zero-sum sequences over H is available. Additionally, we
consider the case that G has a large subgroup of the form C2

p for prime p.

Theorem 3.6. Let G be a finite abelian group, {0} 6= H ( G be a cyclic subgroup such
that exp(G) = exp(H) exp(G/H).

1. For each ℓ ∈ [1, D(G)] with

ℓ >
exp(G/H)

exp(G/H) + 1
exp(G) + D

′
0(G/H) +

(|G/H| + 1) D(G/H)

exp(G/H) + 1
,

we have

h(G, ℓ) >
exp(G)

|G/H|
−

(exp(G/H) + 1)

|G/H|
(exp(G) − ℓ) − (exp(G/H) + 1).

2. Suppose that |H| ≥ 12. For each ℓ ∈ [1, D(G)] with

ℓ >
exp(G)

2
+ D

′
0(G/H) + exp(G/H) D(G/H)|G/H|,

we have

h(G, ℓ) ≥
2 exp(G)

3 exp(G/H)|G/H|
−

exp(G) − ℓ

exp(G/H)|G/H|
−

2

exp(G/H)
.

Note that the trivial bound D(G) ≥ exp(G) and the fact that D
′
0(G/H) < η(G/H) ≤

|G/H| (see Section 2) readily implies that ℓ fulfilling the condition actually exist if exp(G)
is ‘large’ relative to |G| (and H is chosen in a suitable way), yet this is not the case without
such a condition. The condition |H| ≥ 12 is a purely technical condition to avoid corner-
cases in the argument; in view of the above assertion, imposing it is almost no loss.

The two statements of the result address orthogonal issues. The aim of the first
statement is to establish a good lower bound (see Example 3.8 for some details on the
quality of this bound) on the height of fairly long minimal zero-sum sequences over G;
however, note that even this statement is valid for sequences of length slightly less than
the exponent of G, as usual assuming that the exponent is large. Whereas the aim of
the second statement is to establish some bound for considerably shorter sequences. To
establish the former statement, we use Lemma 3.7, implementing Remark 3.2 (note that
in the lemma we do not require that H is cyclic); to establish the latter one, we basically
use Theorem 3.1 in combination with the results on cyclic groups recalled in Section 3.2,
and in particular use knowledge on the structure of the set H0 to improve the result,
cf. the discussion after Remark 3.4.
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Lemma 3.7. Let G be a finite abelian group an H ⊂ G a subgroup. Let A ∈ A(G) and
A = F1 . . . Fk such that ϕ(F1) . . . ϕ(Fk) is a factorization of ϕ(A). Let I>, I<, and I=

denote the subsets of [1, k] such that for i in the respective subset we have |Fi| is greater
than, less than, and equal to, resp., the exponent of G/H.

1. Then max L(
∏

i∈I>∪I=
ϕ(Fi)) + |I<| ≤ D(H). In particular, we have that |I<| ≤

(D(H) exp(G/H) + D
′
0(G/H)) − |A|.

2. If k = max L(ϕ(A)), then |
∏

i∈I>
ϕ(Fi)| ≤ D|I>|(G/H); in particular, we have that

|I>| ≤ D
′
0(G/H).

In this lemma, we can replace D
′
0(G/H) by D0(G/H) for the same groups for which

we can do so in (2.3).

Proof. We recall that
∏k

i=1 σ(Fi) ∈ A(H).

1. Let ℓ ∈ [0, k] such that, say, I< = [ℓ + 1, k]. Let B =
∏ℓ

i=1 Fi and let B =
F ′

1 . . . F ′
ℓ′ such that ϕ(F ′

1) . . . ϕ(F ′
ℓ′) is a factorization of ϕ(B) and ℓ′ = max L(ϕ(B)).

We note that
∏ℓ′

i=1 σ(F ′
i )

∏k
j=ℓ+1 σ(Fi) is a minimal zero-sum sequence over H . Thus,

ℓ′ +(k− ℓ) ≤ D(H), establishing the claim. It remains to assert the additional statement.
Since max L(ϕ(B)) ≤ D(H) − |I<|, it follows by (2.3) that

|ϕ(B)| − D
′
0(G/H)

exp(G/H)
≤ D(H) − |I<|.

Noting that |ϕ(B)| ≥ |A| − (exp(G/H)− 1)|I<| and combining the inequalities, the claim
follows.

2. If k = max L(ϕ(A)), then max L(
∏

i∈I>
ϕ(Fi)) = |I>|, and the claim follows by

definition of D|I>|(G/H). The additional claim follows by using the upper bound (2.2) for
D|I>|(G/H) and noting that |

∏
i∈I>

ϕ(Fi)| ≥ (exp(G/H) + 1)|I>|.

Of course, this lemma is only relevant if (D(H) exp(G/H) + D
′
0(G/H))− |A| is small.

Yet, this is the case, in particular, if H is a large cyclic subgroup with exp(G) =
exp(H) exp(G/H) and |A| is not too much smaller than D(G) (cf. (3.1) and the sub-
sequent discussion).

Proof of Theorem 3.6. Let ϕ : G → G/H denote the canonical map. Let ℓ ∈ [1, D(G)]
fulfilling the respective condition on its size and let A ∈ A(G) with |A| ≥ ℓ. Let k =
max L(ϕ(A)). We note that k ≥ (|A| − D

′
0(G/H))/ exp(G/H) (see (2.2)).

1. We note that by our assumption on |A| we have k ≥ (2|H|+3)/3 and thus h(H, k) =
2k−|H| and ci(H, k, 2) = 1 (see Section 3.2). First, we use the exact same argument as in
Steps 1–3 in the proof of Theorem 3.1; we continue using the notation of that proof below.
Yet, in Step 4 we estimate |

∏
i∈I Fi| in another way. Namely, we note that by Lemma 3.7

at most (D(H) exp(G/H)+D
′
0(G/H))−|A| = (exp(G)+D

′
0(G/H))−|A| of the sequences

Fi do not have length at least exp(G/H). Thus, |
∏

i∈I Fi| ≥ exp(G/H)|I|− (exp(G/H)−
1)(exp(G) + D

′
0(G/H) − |A|). Using the fact that |I| ≥ h(H, k) and the assertions made

above, we get |
∏

i∈I Fi| ≥ (exp(G/H) + 1)(|A| − D
′
0(G/H)) − exp(G/H) exp(G).
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By the assumption on |A|, we get |
∏

i∈I Fi|/|G/H| > D(G/H). Thus, as in Step 4 of
the proof of Theorem 3.1 and taking Remark 3.3 into account we get

h(A) ≥
|
∏

i∈I Fi|

|G/H|

≥
(exp(G/H) + 1)(|A| − D

′
0(G/H)) − exp(G/H) exp(G)

|G/H|

=
exp(G)

|G/H|
+

(exp(G/H) + 1)(|A| − exp(G) − D
′
0(G/H))

|G/H|
.

Recalling that D
′
0(G/H) < |G/H|, the claim follows.

2. Again, we proceed as in the proof of Theorem 3.1 and use the same notation.
We note that by our assumption on |A| we have k ≥ (|H| + 3)/2 and thus h(H, k) ≥
(3k−|H|)/3 and ci(H, k, 2) ≤ 2 (see Section 3.2). We get |

∏
i∈I Fi| ≥ |I| ≥ (3k−|H|)/3 >

|G/H|D(G/H), the last inequality by our assumption on |A|. We distinguish two case.
Suppose tδ = 1. Then it follows that

h(A) ≥ |
∏

i∈I

Fi|/|G/H| ≥ (3k − |H|)/(3|G/H|)

≥
2 exp(G)

3 exp(G/H)|G/H|
+

|A| − exp(G) − D
′
0(G/H)

exp(G/H)|G/H|
.

Suppose tδ = 2. As discussed in Section 3.2 we know that {h1, h2} = {e, 2e} for some
generating element e ∈ H . Let j ∈ {1, 2} such that hj = e and J ⊂ [1, k] such that∏

i∈J σ(Fi) = h
vj

j . We know that vj ≥ h(H, k)− δ. By our assumption on |A| and arguing
as above we get that |J | > |G/H|D(G/H).

We argue analogously to the beginning of Step 4 in the proof of Theorem 3.1 where
h

vj

j has the role of the ‘large fiber’. Yet, note that possibly hj is not the element with
maximal multiplicity in

∏
i∈I σ(Fi) However, since by the results mentioned in Section

3.2 we know that the multiplicity of the element with the third highest multiplicity in
this sequence is less than vj − 2, we can still apply this argument (cf. the discussion after
Remark 3.4).

We define F ′
k1

and F ′
k2

analogously as in that proof. Yet, here we can infer that
σ(F ′

k1
) = σ(F ′

k2
) = e has to hold, since otherwise, by the minimality assumption on the

vi and in view of the above remark on the third highest multiplicity, we get that, say,
σ(F ′

k1
) = 2e and thus σ(F ′

k2
) = 0, which is absurd as A is a minimal zero-sum sequences.

Thus, we get

h(A) ≥

∏
i∈J Fi

|G/H|
≥

|J |

|G/H|
≥

3k − |H| − 3δ

3|G/H|

≥
2 exp(G)

3 exp(G/H)|G/H|
+

|A| − exp(G) − D
′
0(G/H) − 2 exp(G/H)

exp(G/H)|G/H|
.

Noting in each case that D
′
0(G/H) + exp(G/H) ≤ |G/H|, the claim follows.
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To discuss the quality of our result, we point out the following examples.

Example 3.8. Let G = G′ ⊕ 〈f〉 with ord(f) = exp(G), and let ℓ ∈ [exp(G), D∗(G)].
We observe that there exist sequences S1, S2 ∈ F(G′) with |Si| = exp(G), h(Si) ≤ 1 +

max{⌊ exp(G)
|G′|

⌋, 1}, and ord(σ(S1)) = exp(G′) and σ(S2) = 0. In case ℓ > exp(G), let

T ∈ F(G′) be a zero-sum free sequence with |T | = ℓ − exp(G) and σ(T ) = σ(S), which
exists due to the condition on the order of σ(S). Then, T (f + S1) and (f + S2) are
minimal zero-sum sequence over G with length ℓ and exp(G), respectively, and height at

most ⌊ exp(G)
|G′|

⌋ + 1.

Thus, we see that the bound established in Theorem 3.6, for sequence of length in
[exp(G), D∗(G)], is off by approximately a factor of exp(G/H) (assuming that exp(G) is
large). In Section 3.4, we improve this bound for groups of the form Cr−1

2 ⊕ C2n.
Now, we consider a different type of group. Here, it is crucial that we can deal with

the situation that minimal zero-sum sequences over the subgroup H can contain more
than one important element.

Theorem 3.9. Let n1, n2 ∈ N with n1 | n2 and let p be a prime. Let G = G′⊕Cn1p⊕Cn2p

with exp(G′) | n1 and let K = G′ ⊕ Cn1
⊕ Cn2

. For each positive ε there exist positive δ′,
δ′′ (depending only on ε) such that if p is sufficiently large (depending on ε and K), then
for each ℓ ∈ [1, D(G)] with ℓ ≥ (1 + ε) exp(G) + D

′
0(K) we have

h(G, ℓ) ≥
δ′ exp(G)

exp(K)|K|
− δ′′ D(K).

Note that since D(G) ≥ (n1 + n2)p − 1 elements ℓ fulfilling our conditions actually
exist for ε < n1/n2 (and sufficiently large p).

Proof. Let H be a subgroup of G isomorphic to C2
p such that G/H ∼= K and let ϕ : G →

G/H denote the canonical map. Let ε > 0 and let ℓ ∈ [1, D(G)] fulfilling the assumption
on it size. Let A ∈ A(G) with |A| ≥ ℓ and let k = max L(ϕ(A)).

By (2.3), we know that k ≥ (|A| − D
′
0(K))/ exp(K) ≥ (1 + ε)p. We apply Theorem

3.1, to get that (we assume p > 2)

h(A) ≥
h(C2

p , k) − D(K)|K|

(2 ci(C2
p , k, 1) − 1)|K|

.

As recalled in Section 3.2, by [6], there exists some δ (depending on ε only) such that if p
is sufficiently large, then h(H, k) ≥ δp. Moreover, we get that ci(C2

p , k, 1) ≤ (2p−1)/(δp−
1) ≤ c/δ for any c > 2 and sufficiently large p. So, we have (assuming p is sufficiently
large that the numerator is positive)

h(A) ≥
δp − D(K)|K|

(2c/δ − 1)|K|
=

(δp − D(K)|K|)δ/(2c)

|K|
=

δ2p/(2c)

|K|
− δ D(K)/(2c).

Setting δ′ = δ2/(2c) and δ′′ = δ/(2c), the claim follows.
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From the proof it readily follows that we can choose for δ′ any value that is less than
δ2/4 where δ has to fulfil h(C2

p , k) ≥ δp for k ≥ (1 + ε)p, and likewise for δ′′ any value
less than δ/4. Presently, h(C2

p , k) ≥ δp is only known to hold for very small δ even for
k = D(C2

p ) − 1, and thus our result is presently only interesting from a qualitative point
of view; thus, we directly applied Theorem 3.1 and, e.g., disregarded Lemma 3.7. Yet, as
discussed in Section 3.2 it is fairly likely that for k close to D(C2

p) the value of h(C2
p , k) is

actually close to p− 1, i.e., δ is close to 1. Recall that for n1 = n2 and, say, |A| = D
∗(G),

the difference D(C2
p ) − max L(ϕ(A)) is bounded above by a value independent of p.

3.4 Groups of the form Cr−1
2 ⊕ C2n

We improve the estimate for h(G, k) obtained in Theorem 3.13 for G of the form Cr−1
2 ⊕C2n

with r, n ∈ N. We see in Corollary 3.12 that for k ∈ [exp(G), D∗(G)] our result is optimal
up to an absolute constant.

Theorem 3.10. Let r, n ∈ N with n ≥ 8 and G = Cr−1
2 ⊕ C2n. For each ℓ ∈ [1, D(G)]

with ℓ ≥ 2 exp(G)/3 + 2 + D0(C
r
2), we have

h(G, ℓ) >
exp(G)

2r−1
−

exp(G) − ℓ

2r−3
− 6.

Again, the result is only relevant if n is large relative to r, and it is thus essentially no
loss, yet helpful in the proof, to impose the condition n ≥ 8. The key to this improvement
is to apply the following observation. Additionally, we can perform certain estimates in a
more precise way, since in this case more is known on Dk(G/H) than in the general case.

Lemma 3.11. Let r, n ∈ N, G = Cr−1
2 ⊕C2n, and let H ⊂ G be a cyclic subgroup of order

n such that G/H ∼= Cr
2 . Let T ∈ F(G) such that there exists some e ∈ H with 2g = e for

each g | T . If F | T such that σ(F ) ∈ H, then,

1. in case n is even, |F | is even and σ(F ) ∈ { |F |
2

e, |F |+n
2

e}.

2. in case n is odd, σ(F ) = |F |
2

e if |F | is even, and σ(F ) = |F |+n
2

e if |F | is odd.

Proof. Let F | T such that σ(F ) ∈ H . We consider σ(F 2). We note, since 2g = e for
each g | T , that σ(F 2) = |F |e. Thus, 2σ(F ) = |F |e, and the claim follows.

Clearly, analogues of this lemma hold for more general classes of groups. Yet, their
application to our problem would be less direct, and we thus restrict to considering this
special case.

Proof of Theorem 3.10. Let H ⊂ G be a cyclic subgroup of order n such that G/H ∼= Cr
2 ,

and let ϕ : G → G/H denote the canonical map. Let ℓ ∈ [1, D(G)] fulfilling the condition
on the size, and let A ∈ A(G) with |A| ≥ ℓ. Let k = max L(ϕ(A)). We note that
k ≥ (|A| −D0(C

r
2))/2 (as discussed in Section 2, we can use here and below D0(·) instead

of D
′
0(·), since G/H is an elementary 2-group). In particular, k ≥ (2n + 3)/3. Thus,
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v1 ≥ 2k − n and ci(H, k, 2) = 1. Again, we proceed as in the proof of Theorem 3.1 and
use the same notation. We note that by Lemma 3.7, with I<, I>, and I= as defined
there, we get that |I<| ≤ 2n + D0(C

r
2) − |A| and |I>| ≤ D0(C

r
2). Thus, all except at

most 2n + 2 D0(C
r
2) − |A| of the sequences Fi have length 2, i.e., ϕ(Fi) = f 2 for some

f ∈ G/H \ {0}. Let I ′ = I ∩ I=, i.e., the maximal subset of I such that |Fi| = 2 for each
i ∈ I ′. We note that |I ′| ≥ 2|A| − 3n − 3 D0(C

r
2). We assert that ϕ(supp(

∏
i∈I′ Fi)) is

sumfree, i.e., the equation x + y = z has no solution in that set. Assume to the contrary,
there exist f1, f2, f3 such that f1 + f2 = f3. Since 0 /∈ ϕ(supp(

∏
i∈I′ Fi)), it follows that

f1, f2, f3 are pairwise distinct. Let j1, j2, j3 ∈ I ′ such that ϕ(Fji
) = f 2

i for i ∈ [1, 3]. We
apply Lemma 3.11 with f1f2f3 |

∏
i∈I′ Fi. It follows that n is odd and σ(f1f2f3) = n+3

2
h1.

Yet, this is impossible since (n+3
2

h1)
2(

∏
i∈[1,k]\{j1,j2,j3}

σ(Fi)) has length at least (n + 3)/2,

recall n ≥ 9, but does not have index 1 (cf. Section 3.2); this is obvious with respect to
the generating element h1, yet is also true with respect to each other generating element.

Thus ϕ(supp(
∏

i∈I′ Fi)) is sumfree. Since the maximal cardinality of a sumfree subset
of Cr

2 is |Cr
2 |/2, we get that there exists some g ∈ G/H such that vg(ϕ(

∏
i∈I′ Fi)) ≥

|
∏

i∈I′ Fi|/(|G/H|/2). Hence, as in Step 4 of the proof of Theorem 3.1, and cf. Remark
3.3 we get (now, at first, we consider again the full ‘large fibre’),

h(A) ≥ vg(ϕ(
∏

i∈I

Fi)) ≥
|
∏

i∈I′ Fi|

|G/H|/2
=

2|I ′|

|G/H|/2

≥
4(2|A| − 3n − 3 D0(C

r
2))

|G/H|

=
exp(G)

2r−1
+

|A| − exp(G)

2r−3
−

12 D0(C
r
2)

2r
.

Recalling that D0(C
r
2) < 2r−1 (see Section 2), and since |A| ≥ ℓ, the claim follows.

We now assert that Theorem 3.10 is quite precise.

Corollary 3.12. We have

h(Cr−1
2 ⊕ C2n, k) =

n

2r−2
+ O(1)

for n, r ∈ N and k ∈ [2n, 2n + r − 1].

Proof. We may assume n ≥ 8. On the one hand, by Example 3.8 we know that h(Cr−1
2 ⊕

C2n, k) ≤ max{⌊ n
2r−2 ⌋ + 1, 2} for k ∈ [2n, 2n + r − 1]. On the other hand, by Theorem

3.10 we know that if 2n ≥ 2
3
2n + 2 + D0(C

r
2), then h(Cr−1

2 ⊕ C2n, k) > 2n
2r−1 − 6 for

k ∈ [2n, 2n + r − 1]. Yet, if 2n < 2
3
2n + 2 + D0(C

r
2), then 2n

3
< D0(C

r
2) < 2r−1, implying

that max{⌊ n
2r−2 ⌋+1, 2} ≤ 3, which in combination with the trivial lower bound h(Cr−1

2 ⊕
C2n, k) ≥ 1 implies the claim.

Indeed, inspecting the proof and using the trivial lower bound of 1 for the height for
n ≤ 7, we see that 0 ≤ max{⌊ n

2r−2 ⌋ + 1, 2} − h(Cr−1
2 ⊕ C2n, k) ≤ 7. Recalling for n ≤ 7

the results of Section 3.2 for r ≤ 2, this bound can be improved to 6 and using that
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12D0(Cr
2
)

2r = 4 + o(1) (instead of using the estimate 6), a further slight improvement for
large r would be possible; the latter is the case for Theorem 3.10 as well.

We end by pointing out two related facts. By (3.2) we know that for each r there exist
infinitely many n such that D(Cr−1

2 ⊕C2n) = D
∗(Cr−1

2 ⊕C2n), namely all n divisible by a
sufficiently high power of 2. For these n, our result provides a quite satisfactory answer,
since it addresses the structure of all sufficiently long minimal zero-sum sequences. Yet,
for example, if r ≥ 5 and n is odd, then D(Cr−1

2 ⊕ C2n) > D
∗(Cr−1

2 ⊕ C2n) (see Section
1) and thus though Theorem 3.10 also yields a lower bound on the height of sequences of
length greater than D

∗(Cr−1
2 ⊕C2n) we cannot apply Example 3.8 to get an upper bound

for the height of these sequences. Indeed, it might well be the case that the structure of
these exceptionally long sequences is more restricted and thus they have a larger height.
The author considers the question whether this is the case or not to be an interesting one,
which however will not be pursued here. Yet, he hopes (and believes) that some insight
on it can be obtained, based on the thus presented methods and the very recent results
of [17] that are in part motivated by this problem.

3.5 Groups of the form C2
2 ⊕ C2n

Using the methods and results outlined in the preceding sections and some ad hoc argu-
ments, we derive an explicit description of the structure of minimal zero-sum sequences
of maximal length over C2

2 ⊕ C2n. As mentioned in Section 1 D(C2
2 ⊕ C2n) = 2n + 2 is

well-known; yet, since it causes essentially no additional effort, we formulate our proof in
such a way that it does not make use of this fact, and thus contains a proof of this result
as well.

Theorem 3.13. Let n ∈ N and G = C2
2 ⊕ C2n. Then A ∈ F(G) is a minimal zero-

sum sequence of length D(G) if and only if there exists a basis {f1, f2, f3} of G, where
ord(f1) = ord(f2) = 2 and ord(f3) = 2n, such that A is equal to one of the following
sequences:

1. f v3

3 (f3+f2)
v2(f3+f1)

v1(−f3+f2+f1) with vi ∈ N odd v3 ≥ v2 ≥ v1 and v3+v2+v1 =
2n + 1.

2. f v3

3 (f3 +f2)
v2(af3 +f1)(−af3 +f2 +f1) with v2, v3 ∈ N odd v3 ≥ v2 and v2 +v3 = 2n

and a ∈ [2, n − 1].

3. f 2n−1
3 (af3 + f2)(bf3 + f1)(cf3 + f2 + f1) with a + b + c = 2n + 1 where a ≤ b ≤ c,

and a, b ∈ [2, n − 1], c ∈ [2, 2n − 3] \ {n, n + 1}.

4. f 2n−1−2v
3 (f3+f2)

2vf2(af3+f1)((1−a)f3+f2+f1) with v ∈ [0, n−1] and a ∈ [2, n−1].

5. f 2n−2
3 (af3 + f2)((1 − a)f3 + f2)(bf3 + f1)((1 − b)f3 + f1) with a, b ∈ [2, n − 1] and

a ≥ b.

6.
∏2n

i=1(f3 + di)f2f1 where S =
∏2n

i=1 di ∈ F(〈f1, f2〉) with σ(S) = f1 + f2.
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Introducing more redundancy in the classification of the sequences, we could relax the
conditions on the parameters a, b and v, vi in the above description; however, the parity
of the vi is crucial. Yet, besides avoiding redundancy, to have these restrictive conditions
is convenient when applying this result (see Section 4). We point out that there is still
some redundancy in this classification, e.g., since we do not restrict the sequences S in
6., which however could be avoided easily at the expense of an even longer classification.
Moreover, the case n = 1 is included for the sake of completeness only; it is of course
well-known.

Proof of Theorem 3.13. For n = 1 the claim is well-known and simple (cf. the discussion
at the end of Section 3.2). We assume n ≥ 2. It is clear that all the listed sequences
have length 2n + 2 and have sum 0. First, we show that they are indeed minimal zero-
sum sequences. We only address the case that the sequence is of the form given in 1.
and 2. as example, the other cases are fairly analogous; and for 6. also see Example
3.8. For i ∈ [1, 3], let πi : G → 〈fi〉 denote the projection with respect to the basis
{f1, f2, f3}. Let A be of the form given in 1., and let 1 6= U | A a zero-sum sequence. If
(−f3 + f2 + f1) ∤ U , then 2 | vf3+fi

(U) for i ∈ {1, 2}, since otherwise σ(πi(U)) 6= 0. Yet,
this implies vf3+f1

(U) + vf3+f2
(U) + vf3

(U) < 2n, and thus σ(π3(U)) 6= 0, a contradiction.
Thus, suppose (−f3 + f2 + f1) | U . Then, then 2 ∤ vf3+fi

(U) for i ∈ {1, 2}. Thus,
σ(π3(U)) = 0, implies vf3+f1

(U) + vf3+f2
(U) + vf3

(U) = 2n + 1, i.e., U = A.
Let A be of the form given in 2., and let 1 6= U | A a zero-sum sequence. First, suppose

(af3 + f1)(−af3 + f2 + f1) | U . Then (f3 + f2) | U , since otherwise σ(π2(U)) 6= 0. Thus
vf3+f2

(U) + vf3
(U) = 2n, i.e., U = A. Second, suppose (af3 + f1)(−af3 + f2 + f1) ∤ U . If

(af3 + f1) | U or (−af3 + f2 + f1) | U , then (af3 + f1)(−af3 + f2 + f1) | U , since otherwise
σ(π1(U)) 6= 0. So, we have U = fw3

3 (f3 + f2)
w2. We note that 2 | w2. Yet, this implies

vf3+f2
(U) + vf3

(U) < 2n, a contradiction.
Thus, to complete the proof our result it remains to show that each minimal zero-sum

sequences of maximal lengths over G is indeed of the form given in 1. to 6., in particular
we have to show that its length is 2n + 2.

Let H be a subgroup of G isomorphic to Cn such that G/H ∼= C3
2 and let ϕ : G → G/H

denote canonical map. Let A ∈ A(G) with |A| = D(G). By (2.1), or the above argument,
we have |A| ≥ 2n + 2. Conversely, by (3.1) and the result on Dk(C

3
2) recalled in Section

2, we have |A| ≤ 2n + 3.
We start by investigating the structure of B = ϕ(A). By (2.3) and D0(C

3
2) = 3

we get that max L(B) = n. Let B = S1 . . . SkT1 . . . Tℓ be a factorization, where the Si

denote the short minimal zero-sum sequence and the, possibly empty, zero-sum sequence
T = T1 . . . Tℓ is not divisible by a short zero-sum sequence. We have that T is squarefree
and 0 ∤ T . Note that since |T | ≤ 7, we get k + ℓ = n. Moreover, let A = F1 . . . FkR1 . . . Rℓ

such that ϕ(Fi) = Si and ϕ(Rj) = Tj ; furthermore set F = F1 . . . Fk and R = R1 . . . Rℓ.
Since n ≥ k ≥ (|B|−|T |)/2, we have |T | 6= 0, and thus in fact n−1 ≥ k ≥ (|B|−|T |)/2.

This implies that |T | ≥ 4 and so |T | ∈ {4, 7}, since there are no squarefree zero-sum
sequences of length 5 or 6 over C3

2 that do not contain 0. Additionally, note that if
|A| = 2n + 3, then |T | = 7.
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We assert that 0 ∤ B, i.e., |Si| = 2 for each i, and that |A| = 2n+2, i.e., D(G) = 2n+2.
Suppose that 0 | B. By Lemma 3.7 we get that |A| = 2n + 2 and v0(B) = 1. Moreover,
we have n − 2 ≥ k − 1 ≥ (|B| − 1 − |T |)/2 and thus |T | = 7.

Thus, if 0 | B or |A| = 2n + 3, then |T | = 7. We assume that |T | = 7, i.e., supp(T ) =
G/H \ {0}.

We observe that σ(F1) . . . σ(Fn−2) σ(R1) σ(R2) = gn for some g ∈ H with H = 〈g〉
(see Section 3.2). We use the following notation. Let R =

∏
∅6=I⊂{1,2,3} gI where ϕ(gI) =∑

i∈I ei and {e1, e2, e3} is a basis of G/H ; yet, we write gi instead of g{i} for i ∈ {1, 2, 3}.
In the same way we see that if R = R′

1R
′
2 with non-empty R′

i such that σ(R′
i) ∈ H , i.e.,

σ(ϕ(R′
i)) = 0, then σ(R′

i) = g. Consequently, g{1,2,3} +
∑3

i=1 gi = g{i,j} + gk + g{1,2,3} for
{i, j, k} = {1, 2, 3}. Thus, g{i,j} = gi+gj . Moreover, gi+gj+g{i,j} = g and thus 2g{i,j} = g.
Yet, g{1,2} + g{1,3} + g{2,3} = g as well. This implies that 3g = 2g, a contradiction.

Consequently, we have |A| = 2n + 2 and 0 ∤ B. Moreover, |T | = 4 and T is a minimal
zero-sum sequence; in particular, k = n−1 and ℓ = 1. Note that for each T ′ | T of length
3 the set supp(T ′) is a basis of G/H .

Again, we have σ(F1) . . . σ(Fn−1) σ(R) = gn for some generating element g of H . For
convenience of notation we set Fn = R.

Next, we show that if ϕ(h) = ϕ(h′) for hh′ | A then h = h′. First, suppose h and h′

occur in distinct subsequences, i.e., h | Fi and h′ | Fj for i 6= j. In this case the assertion
follows as in Step 4 of the proof of Theorem 3.1.

Now, suppose hh′ | Fi for some i. We note that i 6= n, say i = n − 1. There exists
some U | Fn such that σ(ϕ(U)) = −ϕ(h). Let U ′ = U−1Fn. Then σ(ϕ(U ′)) = σ(ϕ(U)).
Thus, we consider F ′

n−1 = hU and F ′
n = h′U ′ as well as F ′′

n−1 = h′U and F ′′
n = hU ′. As

above, we get σ(F ′
n−1) = σ(F ′

n) = g and σ(F ′′
n−1) = σ(F ′′

n ) = g. Thus, σ(F ′
n) = σ(F ′′

n ) and
the claim follows.

We point out two consequences of the above reasoning.

C1 The elements in supp(R) occur with odd multiplicity in A and the multiplicities of
all other elements are even. Thus, the decomposition A = FR is unique. Moreover,
the decomposition F = F1 . . . Fn−1 is unique (up to ordering) as well.

C2 For each h ∈ supp(F ) we have ord(2h) = n and, since ϕ(h) 6= 0, the order of h is
even. Thus ord(h) = 2n. Moreover, there exists some generating element g ∈ H
such that we have, for each i, σ(Fi) = g and σ(R) = g.

In a similar way we establish the following additional facts, which we use frequently
in the remainder of the proof.

F1 If ϕ(h0) = ϕ(h1) + ϕ(h2) with h0 | F and h1h2 | R, then h0 = h1 + h2.

F2 supp(ϕ(F )) is sumfree, i.e., the equation x + y = z has no solution in supp(ϕ(F )).

F3 For each h ∈ supp(F )∩ supp(R) we have h = σ(h−1R) and moreover for each R′ | R
with |R′| = 3 and h | R′ we have G = 〈supp(R′)〉.
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Ad F1. Suppose ϕ(h0) = ϕ(h1) + ϕ(h2) with h0 | F and h1h2 | R, say h0 | Fn−1,
i.e., h2

0 = Fn−1. Let h3h4 = (h1h2)
−1R. We note that ϕ(h1) + ϕ(h2) = ϕ(h3) + ϕ(h4).

We set F ′
n−1 = h0h1h2 and F ′

n = h0h3h4. Then σ(F1) . . . σ(Fn−2) σ(F ′
n−1) σ(F ′

n) = gn. In
particular, σ(F ′

n) = σ(R) and thus h0 = h1 + h2.
Ad F2. Compare Lemma 3.11.
Ad F3. Suppose h ∈ supp(F ). Then h2 | F and we thus have 2h = g = σ(R), implying

the first part of the claim. Now, let h | R′ | R where |R′| = 3, and let h′ | R such that
R = R′h′. We have h′ = σ(R) − σ(R′) = 2h − σ(R′) ∈ 〈supp(R′)〉. Thus, supp(R) ⊂
〈supp(R′)〉. Moreover, each non-zero element of G/H is the sum of two distinct elements of
supp(ϕ(R)), implying by F1, that supp(F ) ⊂ supp(R)+supp(R) ⊂ 〈supp(R′)〉. Recalling
that supp(A) is a generating set of G (see Section 2), the claim follows.

Having established these facts we start the detailed investigation of the sequence A.
We distinguish several case according to the number of elements in supp(F ) ∩ supp(R).
Let N = | supp(F ) ∩ supp(R)|. Note that in case n = 2 we have | supp(F )| = 1 and thus
N ≤ 1.

Suppose N = 4. By this assumption we have R2 | F . By C2, on the one hand σ(R2) =
σ(Fi1)+σ(Fi2)+σ(Fi3)+σ(Fi4) = |R|g = 4g, yet on the other hand σ(R2) = 2 σ(R) = 2g,
a contradiction. (Also, compare Lemma 3.11.)

Suppose N = 3. Let g1g2g3 = gcd(F, R) such that vg3
(A) ≥ vg2

(A) ≥ vg1
(A) and

g{1,2,3} = gcd(F, R)−1R. Moreover, by F2 (and F1) and since by assumption g{1,2,3} ∤ F ,
we know that supp(F ) = {g1, g2, g3}. We set f3 = g3 and f2 = g2 − g3 , f1 = g1 − g3.
Since 2gi = g for each i ∈ {1, 2, 3}, we have ord(f1) = ord(f2) = 2. Moreover, by F2
ord(f3) = 2n and by F3 it follows that {f1, f2, f3} is a generating set of G and, due to
the orders of the elements (see the remark in Section 2), a basis. Recalling that by F3 we
have g{1,2,3} = g3 − g2 − g1, we get

A = f v3

3 (f3 + f2)
v2(f3 + f1)

v1(−f3 + f2 + f1),

where v3 ≥ v2 ≥ v1 by assumption and each vi is odd by C1. Thus, A is of the form given
in 1.

Suppose N = 2. Let g2g3 = gcd(F, R) and g1g{1,2,3} = gcd(F, R)−1R. If there exists
some g′ ∈ supp(F ) \ {g2, g3}, then, by F2, ϕ(g′) 6= ϕ(g2) + ϕ(g3). Thus, ϕ(g′) = ϕ(gi) +
ϕ(gJ) with i ∈ {2, 3} and J ∈ {1, {1, 2, 3}}. Without restriction we assume that, in case
supp(F ) \ {g2, g3} 6= ∅, this set contains an element g{1,3} with ϕ(g{1,3}) = ϕ(g1) + ϕ(g3).
By F1 we have g{1,3} = g1 + g3.

Similarly as above, we set f3 = g3 and f2 = g2 − g3. Since 2g3 = 2g2, we have
ord(f2) = 2, and again g{1,2,3} = g3 − g2 − g1. There exists some a ∈ [0, n − 1] such that
the order of g1 − af3 = f1 is two (note that it cannot be one). Again, the set {f1, f2, f3}
is a generating set for G and thus a basis.

If | supp(F )| = 2, then

A = f v3

3 (f3 + f2)
v2(af3 + f1)(−af3 + f2 + f1)

where again vi ≥ 3 is odd. Possibly changing the basis, we obtain v3 ≥ v2. We note that
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in case a = 0 or a = 1 the sequence is of the form given in 6. and 1., resp., and otherwise
it is of the form given in 2.

Now, suppose | supp(F )| = 3. By assumption, the third element in supp(F ) is g{1,3} =
g1 + g3. Moreover since 2g{1,3} = 2g3, it follows that 2g1 = 0 and thus a = 0. Therefore,

A = f v3

3 (f3 + f2)
v2(f3 + f1)

v1f1(f2 + f1)

where v2, v3 ≥ 3 odd, and v1 ≥ 2 even. Thus, the sequence is, after change of basis, of
the form given in 6.

Finally, if | supp(F )| = 4, then again by assumption g{1,3} ∈ supp(F ) and as above we
get that the fourth element in supp(F ) is equal to g1 + g2, that is

A = f v3

3 (f3 + f2)
v2(f3 + f1)

v1(f3 + f2 + f1)
v4f1(f2 + f1)

v2, v3 ≥ 3 odd, and v1, v4 ≥ 2 even. Thus again the sequence is, after change of basis, of
the form given in 6.

Suppose N = 1. Let g3 = gcd(F, R). We know that each element of supp(F ) \ {g3} is
the sum of two distinct elements of supp(R), in fact it is the sum of g3 and some other
element. If | supp(F )| ≥ 2, then let g2 | g−1

3 R such that g{2,3} = g2 + g3 ∈ supp(F ) and if
| supp(F )| = 3, then let additionally g1 | (g2g3)

−1R such that g{1,3} = g1 + g3 ∈ supp(F ).
Note that by F2 we have | supp(F )| ≤ 3. We denote the remaining element(s) in supp(R)
by g1, g2, g{1,2,3}; g1, g{1,2,3}; or g{1,2,3}, respectively.

Let f3 = g3. As above there exist a, b ∈ [0, n − 1] such that the order of g2 − af3 = f2

and of g1 − bf3 = f1 are two. The set {f1, f2, f3} is a basis of G. Again, by F3 we have
g3 = g1 + g2 + g{1,2,3}. Thus, if | supp(F )| = 1, then

A = f 2n−1
3 (af3 + f2)(bf3 + f1)(cf3 + f2 + f1)

where c ∈ [0, 2n − 1] and (a + b + c)f3 = f3. Possibly changing the basis, we obtain
a ≤ b ≤ c. To show that the sequence is of the form 3., it remains to discuss some special
cases. If a = b = 0, then the sequence is of the form given in 6. If a = 0 and b ≥ 2
(note that a = 0 and b = 1 is impossible), it is of the form 4. If a = b = 1, then it is
of the form 1. If a = 1 and b ≥ 2, then it is if the form 2. It remains to consider the
case a ≥ 2; note that this implies a + b + c = 2n + 1. If c = n or c = n + 1, then we
get that the sequence is of the form given in 4. and 2., resp., with respect to the basis
{f ′

1 = f2, f
′
2 = nf3 + f2 + f1, f2, f

′
3 = f3}.

Suppose that | supp(F )| ≥ 2. Since 2g{3,2} = 2g3, we have ord(g2) = 2, that is a = 0.
If | supp(F )| = 2, we thus have

A = f 2n−1−2v
3 (f3 + f2)

2vf2(bf3 + f1)(cf3 + f2 + f1)

with (b + c)f3 = f3. If b ∈ {0, 1}, the sequence is if the form 6., and otherwise it is of the
form 4.

Now, suppose | supp(F )| = 3. Then, additionally, by the same argument ord(g1) = 2,
that is b = 0. Thus,

A = f 2n−1−2v−2w
3 (f3 + f2)

2v(f3 + f1)
2wf2f1(f3 + f2 + f1)
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and the sequence is of the form given in 6.
Suppose N = 0. Let g3 | R. By assumption and F1, we know that each element of

supp(F ) is the sum of g3 and some other element in supp(R). Moreover, we know that
| supp(F )| ≤ 2. Thus, let g2 | g−1

3 R such that g{2,3} = g2 + g3 ∈ supp(F ) and, in case
| supp(F )| = 2 let g1 ∈ supp(R) \ {g2, g3} such that g1 + g3 ∈ supp(F ). We denote the
remaining element(s) of supp(R) by g1, g{1,2,3}, or g{1,2,3}, respectively.

Let f3 = g{2,3} and f1, f2 ∈ G such that {f1, f2, f3} is a basis of G. For I ∈
{1, 2, 3, {1, 2, 3}}, let gI = aIf3 + bIf2 + cIf1 with aI ∈ [0, 2n − 1] and bI , cI ∈ {0, 1}.
Since by F2 g{2,3} = g2 + g3 = g1 + g{1,2,3}, it follows that a2 + a3 ≡ 1 (mod 2n), b2 = b3,
and c2 = c3; as well as a1 +a{1,2,3} ≡ 1 (mod 2n), b1 = b{1,2,3}, and c1 = c{1,2,3}. Moreover,
{g1, g2, g3} is a generating set of G.

Since neither g2 nor g3 is an element of H , it follows that (b3, c3) 6= (0, 0). By change
of basis, we may assume b3 = 1 and c3 = 0. Since {g1, g2, g3} is a generating set of G, it
follows that c1 6= 0, and by change of basis, we may assume that b1 = 0.

If supp(F ) = {g{2,3}}, then

A = f 2n−2
3 (a3f3 + f2)((1 − a3)f3 + f2)(a1f3 + f1)((1 − a1)f3 + f1).

Possibly changing the basis, we obtain a1, a3 ∈ [0, n − 1] and a3 ≥ a1. If a3 ∈ {0, 1} the
sequence is of the form 6., if a3 ≥ 2 and a1 ∈ {0, 1} it is of the form 4., and otherwise it
is of the form 5.

Now, suppose | supp(F )| = 2. By assumption this means g{1,3} = g1 + g3 ∈ supp(F ).
Let g{1,3} = a{1,3}f3 + b{1,3}f2 + c{1,3}f1 with a{1,3} ∈ [0, 2n − 1] and b{1,3}, c{1,3} ∈ {0, 1}.
We have 2g{1,3} = 2g{2,3} and g{1,3} = g1 + g3 = g2 + g{1,2,3}. Thus a{1,3} ∈ {1, 1 + n} and
b{1,3} = c{1,3} = 1.

We observe that σ(g{1,3}g1g2) ∈ 〈f3〉. Let k ∈ N such that 2k = vf3
(A). We observe

that Σ(g−2
{1,3}F )∩〈f3〉 = {if3 +j(2f3) : (i, j) ∈ [0, 2k]× [0, n−2−k]\{(0, 0)}} = {jf3 : j ∈

[1, 2n − 4]}. Since −σ(g{1,3}g1g2) /∈ Σ(g−2
{1,3}F ) ∪ {0}, it follows that σ(g{1,3}g1g2) ∈

{f3, 2f3, 3f3}. Using g{1,3} = g1 + g3 and a2f3 = (1− a3)f3, it follows that σ(g{1,3}g1g2) =
(1+2a1)f3. Consequently, a1 ∈ {0, 1, n, 1+n}. Moreover, if a1 ∈ {δ, δ +n} for δ ∈ {0, 1},
then, since a{1,3} ∈ {1, 1 + n}, we have a3 ∈ {1 − δ, 1 − δ + n}. Let a1 = δ + εn and a3 =
1− δ + ε′n with ε, ε′ ∈ {0, 1}. Changing the basis to {f ′

1 = f1 + εnf3, f
′
2 = f2 + ε′nf3, f3}

and recalling that g{1,3} = g1 + g3, we have

A = f 2v
3 (f3 + f ′

2 + f ′
1)

2n−2−2v(f3 + f ′
2)f

′
2(f3 + f ′

1)f
′
1

and the sequence is of the form 6.

The examples of minimal zero-sum sequences over C2
2 ⊕ C2n can readily be ‘extrap-

olated’ to Cr−1
2 ⊕ C2n for each r ≥ 4 to yield numerous examples of minimal zero-sum

sequences of length D
∗(Cr−1

2 ⊕C2n), which is known to equal D(Cr−1
2 ⊕C2n) for suitable n.

In Section 4, we give an example how potentially interesting examples can be constructed
in this way. This extrapolation also yields an informal ‘lower bound’ on the length a
characterization at the level of detail of Theorem 3.13, even for fairly small r > 3, has
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to have. And, this ‘lower bound’ is definitely not sharp, since for each r ≥ 5 the char-
acterization of minimal zero-sum sequences of maximal length cannot be so uniform in
n anymore, as it is known that their lengths, as a function of n, also depends on the
2-valuation of n and not just the size of n. Thus, in the author’s opinion, results giving
only a somewhat rougher classification than Theorem 3.13 seem the more feasible and
relevant way to expand on this result. Indeed, a main reason for giving a description at
this level of detail for C2

2 ⊕C2n at all is an immediate application where these details are
helpful; simplifications of Theorem 3.13 would almost directly cause complications in the
proof of Lemma 4.7.

4 Applications of Theorem 3.13

In this section we discuss applications of Theorem 3.13. First, we show that this result in
combination with classical results essentially directly yields the exact value of D(C2

4 ⊕C4n)
and D(C2

6⊕C6n) for each n ∈ N. Second, we discuss implications of this result to questions,
other than the height, on the structure of long minimal zero-sum sequences over groups
of the form Cr−1

2 ⊕ C2n. Finally, we prove a result on the system of set of lengths of
C2

2 ⊕ C2n; this result is very technical, yet crucial in Section 5, indeed to get this result
was a main motivation for proving Theorem 3.13.

4.1 The Davenport constant for some groups of rank three

As mentioned in Section 1 it is conjectured that D(G) = D
∗(G) for groups of rank three.

However, this conjecture is wide open and so far was only confirmed for several special
types of groups (see below for an overview); we contribute two new special types of groups
(to be precise, the first assertion is new for odd n ≥ 5 and the second one is new except
for n a multiple of 64, a multiple of 81, a power of 2, or a power of 3; cf. below).

Theorem 4.1. Let n ∈ N.

1. D(C2
4 ⊕ C4n) = D

∗(C2
4 ⊕ C4n).

2. D(C2
6 ⊕ C6n) = D

∗(C2
6 ⊕ C6n).

Our proof combines a classical method with Theorem 3.13. We recall this method and
related notions.

Let G be a finite abelian group. Let ν(G) denote the smallest ℓ ∈ N such that for
each zero-sum free S ∈ F(G) with |S| ≥ ℓ we have G \ (Σ(S) ∪ {0}) ⊂ a + N for some
subgroup N ( G and some a ∈ G \ N .

The group G is said to have Property Q if ν(G) = D
∗(G) − 2 and for each zero-sum

free S ∈ F(G) with |S| ≥ ν(G) we have G \ (Σ(S) ∪ {0}) ⊂ a + N for some subgroup
N ( G of index two and some a ∈ G \ N .

It is known that
D(G) − 2 ≤ ν(G) ≤ D(G) − 1 (4.1)
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and conjectured that equality always holds at the lower bound, except for the trivial group
(see [18]). This conjecture is known to hold true for p-groups and cyclic groups (see [52]).
Moreover, it is known to hold for groups of rank two (see [52, 18, 45]). Clearly, Property
Q can only hold for groups of even order. It is known that it holds for 2-groups, cyclic
groups of even order, and for groups of rank two whose 2-rank is two (cf. [53, 45]).

Yet, the only non-p-group of rank greater than two for which this conjecture was
confirmed is the group C2

2 ⊕ C6 (see [53]). As a direct consequence of Theorem 3.13,
we can confirm this conjecture for C2

2 ⊕ C2n for each n ∈ N and assert that they have
Property Q (see Lemma 4.3).

The relevance of these notions is due to the following result established by P. C. Baayen,
J. H. van Lint, and P. van Emde Boas, D. Kruyswijk, respectively (see [52, 53]).

Proposition 4.2. Let G = ⊕3
i=1Cni

with n1 | n2 | n3.

1. If ν(G) = D
∗(G) − 2, then D(⊕3

i=1C2ni
) = D

∗(⊕3
i=1C2ni

).

2. If G has Property Q, then D(⊕3
i=1C3ni

) = D
∗(⊕3

i=1C3ni
).

Note that the condition ν(G) = D
∗(G) − 2, and thus also Property Q, implies that

D(G) = D
∗(G).

A considerable part of all known results on the equality D(G) = D
∗(G) for groups of

rank three is obtained via combining this result with the results on ν(·) and Property Q

recalled above. In addition to the groups for which the equality D(G) = D
∗(G) can be

established in this way, the equality is known for the following groups:

• p-groups (by the general result on p-groups).

• groups of rank three of the form G′⊕Cn with G′ a p-group with D(G′) ≤ 2 exp(G′)−1
and n co-prime to exp(G) (see (3.2) and the discussion there) and if G ∼= Cn1

⊕Cn2
⊕

Cn3m with n1 | n2 | n3 and m ∈ N and it is known that D(⊕3
i=1Cni

) = D
∗(⊕3

i=1Cni
)

and (n1n
2
2 − 2n2 − n1 − 2) ≤ n3 (see [11]).

• C2
3 ⊕ C3n and C3 ⊕ C2

3n, the latter assuming 3 ∤ n (see [7, 5, 45]).

For specific n these results allow to determine C2
4 ⊕ C4n and C2

6 ⊕ C6n (cf. the n we
mentioned above), yet not for general n. Thus, we prove the following result for C2

2 ⊕C2n.

Lemma 4.3. Let n ∈ N. Then ν(C2
2 ⊕ C2n) = D

∗(C2
2 ⊕ C2n) − 2 and more precisely

C2
2 ⊕ C2n has Property Q.

Proof. By (4.1), it suffices to show the following. If S ∈ F(C2
2 ⊕C2n) with |S| ≥ D

∗(C2
2 ⊕

C2n)−2, then there exists a subgroup N ⊂ C2
2 ⊕C2n of index 2 and some y /∈ N such that

C2
2⊕C2n\(Σ(S)∪{0}) ⊂ y+N . We assume that Σ(S) 6= C2

2⊕C2n\{0}, since otherwise the
claim is trivial. Thus, there exists some g ∈ C2

2 ⊕ C2n such that gS is zero-sum free, and
hence (−σ(gS))gS is a minimal zero-sum sequence. Since D(C2

2 ⊕C2n) ≥ |(−σ(gS))gS| =
2 + |S| ≥ D

∗(C2
2 ⊕ C2n) = D(C2

2 ⊕ C2n). We get that S is a subsequence of length
D(C2

2 ⊕C2n)−2 of a minimal zero-sum sequence of length D(C2
2 ⊕C2n). By Theorem 3.13
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we know the structure of all these minimal zero-sum sequences explicitly. Thus, we merely
have to check, via determining their set of subsums, that all these sequences actually fulfil
these conditions.

We distinguish cases according to the type of minimal zero-sum sequences and then
subcases according to the type of the two missing elements. Additionally, we note that,
say, for w3, w2 ∈ N we have Σ(fw3

3 (f3 + f2)
2w2) ⊃ {f3, 2f3, 3f3, . . . , (2w2 + w3)f3}. Thus,

the set of subsums of the subsequence of elements occurring with high multiplicity depends
only in a mild way on the actual multiplicities of the elements and this set of subsums
contains almost the entire subgroup 〈f3〉 (or some other cyclic subgroup of order 2n). The
remaining details of the argument are a completely routine but long computation. Thus,
we omit them.

Now, Theorem 4.1 follows directly.

Proof of Theorem 4.1. Clear, by Proposition 4.2 and Lemma 4.3.

4.2 Some further implications of Theorem 3.13

We discuss implications of Theorem 3.13 regarding typical questions on the structure of
minimal zero-sum sequences (see [23]). We exclude the case n = 1 from our considerations,
since this case is well-known and to include it would require to treat it separately.

We start with a result on the support and the maximal multiplicity of an element in
minimal zero-sum sequences of maximal lengths.

Corollary 4.4. Let n ≥ 2. Let A ∈ A(C2
2 ⊕ C2n) with |A| = D(C2

2 ⊕ C2n).

1. | supp(A)| ∈ [4, 6]. This is optimal for n ≥ 3, yet for n = 2 we have | supp(A)| ≤ 5.

2. There exists some g ∈ supp(A) such that vg(A) > 2n/4, and this bound is best
possible.

Proof. We use the notation introduced in Theorem 3.13.
1. If A is of the form as given by 1.–5. of Theorem 3.13 it is clear that 4 ≤ | supp(A)| ≤ 5.
Suppose A is of the form 6. Since σ(S) 6= 0 it follows that | supp(S)| > 1, and clearly
| supp(S)| ≤ 4, thus 4 ≤ | supp(A)| ≤ 6. Moreover, note that in case n = 2 we have
| supp(S)| ≤ 3. To see that the result is optimal, it suffices to consider the sequences
02n−1(f1 + f2), 02n−2f1f2, and 02n−4f1f2(f1 + f2)

2, which, for n ≥ 3, shows that the
support of the sequences of the form 6. indeed can be any of 4, 5, or 6; where as for n = 2
we get 4 and 5.
2. Let g ∈ supp(A) such that w = vg(A) is maximal. Inspecting the classification in
Theorem 3.13, we see that w is at least as large as claimed in the case 1.–5. and for
6. we directly get w ≥ n/2. Yet, we note that in case n is even, the only sequence
S ∈ F(〈f1, f2〉) compatible with w = n/2 is (0f1f2(f1 + f2))

n/2, which has sum 0. Thus,
in 6. actually w > n/2 holds. The optimality is clear by Example 3.8.
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W. Gao and A. Geroldinger [19, 21] started to investigate the order of elements
in minimal zero-sum sequences of maximal lengths; recently these investigations have
been expanded by B. Girard [35, 36]. We explore how our result relates to results
and conjectures obtained in the context of these investigations. For A ∈ A(G) let
SA =

∏
g∈supp(A), ord(g)=exp(G) gvg(A) the subsequences of elements of order equal to the

exponent.

Corollary 4.5. Let n ≥ 2, and let A ∈ A(C2
2 ⊕ C2n) with |A| = D(C2

2 ⊕ C2n).

1. |SA| ≥ 2n − 2, in particular there exists some g ∈ supp(A) with ord(g) = exp(G).

2. k(A) ≤ 2.

Proof. We use the notation introduced in Theorem 3.13.
1. Clear, by Theorem 3.13.
2. For A of the form 1., 2., and 6. in Theorem 3.13 this is clear. In case A is of the form
3. we note that the order of each of the elements af3 + f2, bf3 + f1, and cf3 + f2 + f1 is
a multiple of 2, and by the conditions on a, b, c none of these orders is equal to 2, thus
k((af3 +f2)(bf3 +f1)(cf3 +f2 +f1)) ≤ 3/4, and the claim follows. In case A is of the form
4. or 5., it suffices to show that k((af3 + f2)((1− a)f3 + f2)) ≤ 1/2 for each a ∈ [2, n− 1].
Again, we have that the order of af3 + f2 and of (1− a)f3 + f2 is a multiple of 2 but not
equal to 2, and the claim follows.

The first statement of this corollary, for this type of groups, confirms [19, Conjecture
6.1], stating that each minimal zero-sum sequence of maximal length contains some el-
ement of order exp(G); additionally, we note that our lower bound 2n − 2, for certain
n, cannot be improved (also cf. Corollary 4.6). The second statement confirms, for this
types of groups, [35, Conjecture 1.2], stating that if S ∈ F(⊕r

i=1Cni
), where ni | ni+1,

and S is zero-sumfree with |S| ≥
∑r

i=1(ni − 1), then k(S) ≤
∑r

i=1(ni − 1)/ni; note that
2 = (2n−1)/(2n)+1/2+1/2+1/(2n), and that we consider a minimal zero-sum sequence
of length 1 +

∑r
i=1(ni − 1), which explains the additional 1/(2n).

We end with a result, obtained via extrapolating an example of a minimal zero-sum
sequences found in Theorem 3.13, that gives an example of a group for which minimal
zero-sum sequence of maximal length can contain relatively few elements of order equal
to the exponent.

Corollary 4.6. For each N ∈ N there exists a finite abelian group G with exp(G) ≥ N
that has the following property. There exists some A ∈ A(G) with |A| = D(G) such that
|SA| ≤ 2 exp(G)/3 + 1.

Proof. Let N ∈ N and suppose N ≥ 3. Let n = 2ℓ−13 with ℓ ≥ log2 N . Let r = 2ℓ and
G = Cr−1

2 ⊕C2n = ⊕r
i=1〈fi〉 with ord(fr) = 2n and ord(fi) = 2 for i ∈ [1, r− 1]. By (3.2),

note that G ∼= G′ ⊕ C3 with G′ = C2ℓ−1
2 ⊕ C2ℓ , we know that D(G) = D

∗(G). Let, cf. the
sequence of type 5. in Theorem 3.13,

A = f 2n−(r−1)
r

r−1∏

i=1

(4fr + fi)(−3fr + fi).
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Then A ∈ A(G) with |A| = D(G) and SA = f
2n−(r−1)
r . Thus |SA| = 2ℓ3−r+1 = 2ℓ+1+1 =

2 exp(G)/3 + 1.

This result is in sharp contrast with a recent result of B. Girard [36], asserting that
for G a p-group and A ∈ A(G) with |A| = D(G) one has |SA| ≥ exp(G). A construction
of exceptionally long minimal zero-sum sequences (of lengths greater than D

∗(G)) over
Cr−1

2 ⊕ C12 containing few elements of maximal order was recently given by S. Griffiths
[37].

Moreover, note that if we impose the condition that |A| = D
∗(G) instead of |A| =

D(G), then SA can be empty, since in the above construction no condition on r needs to
be imposed—we do not need to apply (3.2)—and we thus can choose r to equal 2n + 1.
These observations reinforce the believe that to confirm [19, Conjecture 6.1], mentioned
above, in general is difficult, as such an argument, at least implicitly, has to contain fairly
detailed information on the phenomenon D(G) > D

∗(G); and this not only for groups
of the form Cr−1

2 ⊕ C2n as the above construction can be generalized, e.g., consider the

sequence f
pn−(r−1)
r

∏r−1
i=1 (p2fr + fi)

p−1((1 − (p − 1)p2)fr + fi) over Cr−1
p ⊕ Cpn = ⊕r

i=1〈fi〉
where p(1 − (p − 1)p2) | n.

4.3 A result on L(C2
2 ⊕ C2n)

Intensely using Theorem 3.13, we prove the following result, which is crucial in Section 5.

Lemma 4.7. Let n ∈ N. Then {2, 3, 2n, 2n + 1, 2n + 2} /∈ L(C2
2 ⊕ C2n).

We recall two technical results used in its proof (for the first see [29] or [50, Lemma
9.4], for the second see [31, Lemma 6.4.5]).

Lemma 4.8. Let B ∈ B(G). If {2, D(G)} ⊂ L(B) then B = (−A)A with A ∈ A(G) and
|A| = D(G). Moreover, if additionally D(G)− 1 ∈ L(B), then there exists (possibly equal)
g, h ∈ G with gh(g + h) | A.

Lemma 4.9. Let A ∈ A(G) with |A| ≥ 2. Let W ∈ A(G) such that W | (−A)A. Then
|A| − |W | + 2 ∈ L((−A)A).

Proof of Lemma 4.7. Assume to the contrary that there exists some B ∈ B(C2
2 ⊕ C2n)

with L(B) = {2, 3, 2n, 2n+1, 2n+2}. Since D(C2
2 ⊕C2n) = 2n+2 and {2, 2n+2} ⊂ L(B)

it follows by Lemma 4.8 that B = (−A)A with A ∈ A(C2
2 ⊕ C2n) and |A| = 2n + 2.

By Theorem 3.13 we have precise information on the structure of A; we use the notation
introduced there. Additionally, we observe that, since 2n + 1 ∈ L(B) and by Lemma 4.8,
there exist g, h ∈ C2

2 ⊕ C2n such that gh(g + h) | A. Thus we may assume that n ≥ 2,
since for n = 1 we have σ(gh(g + h)) = 0, a contradiction.

First, we assert that A is not of the form given 1., 2., and 3. of Theorem 3.13, by
showing that A does not have a subsequence of the form gh(g + h). For 1. this is clear.
For 2. we note that (f3 + f2)+ (af3 + f1) = −af3 + f2 + f1 is equivalent to (2a−1)f3 = 0,
which is impossible; the other cases are analogous. The reasoning for 3. is analogous to
the one for 2.

the electronic journal of combinatorics 18 (2011), #P33 31



Now, suppose A is of the form given in 4. Let W = f2((1 − a)f3 + f2 + f1)(−(af3 +
f1))f

v
3 (f3 +f2)

w where v+w = 2a−1 and 2 | w. Then W ∈ A(C2
2 ⊕C2n) and W | (−A)A.

We have |W | = 2a+2 and thus by Lemma 4.9 |A|−|W |+2 = 2n+2−(2a+2)+2 ∈ L(B).
So, we have 2(n−a+1) ∈ {2, 3, 2n, 2n+1, 2n+2} and consequently n−a+1 ∈ {1, n, n+1}.
Yet, this means that a ∈ {n, 1, 0}, a contradiction, since a ∈ [2, n − 1].

Next, suppose A is of the form given in 5. We proceed similarly as above. Let
W = ((1 − a)f3 + f2)(−(af3 + f2))f

2a−1
3 . We have W ∈ A(C2

2 ⊕ C2n), W | (−A)A, and
|W | = 2a+1. Consequently, 2n+3−2a ∈ L(B), implying that a ∈ {1, n}, a contradiction.

Finally, suppose A is of the form given in 6. We show that 3 /∈ L(B). Assume to
the contrary B = A1A2A3 with Ai ∈ A(C2

2 ⊕ C2n). Let π : C2
2 ⊕ C2n → 〈f3〉 denote the

canonical projection with respect to the basis {f1, f2, f3}.
First, we assert that Ai /∈ {f 2

1 , f 2
2} for each i. Assume to the contrary that, say,

A1 = f 2
1 . We note that Ai 6= f 2

2 for i ∈ {2, 3}, since otherwise the remaining minimal
zero-sum sequence would have length 4n > 2n + 2, a contradiction. Thus, f2 | A2 and
f2 | A3. We note that vf3

(π(Ai)) 6= n for i ∈ {2, 3}. Thus vf3
(π(Ai)) = v−f3

(π(Ai)) and the
length of Ai is odd for i ∈ {2, 3}. Consequently |A2| = |A3| = 2n + 1. Let g1g2h1h2 | A3

such that π(gi) = f3 and π(hi) = −f3. Then (gi + hi) ∈ 〈{f1, f2}〉, and the sequence
(g1 + h1)(g2 + h2)f2 has a zero-sum subsequence, which yields a zero-sum subsequence
of A3. Since A3 is a minimal zero-sum subsequence, it follows that A3 = g1g2h1h2f2,
implying n = 2. Clearly supp(A2) cannot contain two elements that are inverse to each
other. Thus, it follows that (g1 − f3)(g2 − f3)(h1 + f3)(h2 + f3) = S, with S as defined in
Theorem 3.13, and thus σ(S) = f2, a contradiction to σ(S) = f1 + f2.

So, we may assume that f1 | A1, f2 | A2, and f1f2 | A3. We note that, for each
i ∈ {1, 2, 3}, Ai /∈ {−A, A}, thus vf3

(π(Ai)) = v−f3
(π(Ai)) > 0. Similarly as above,

let gh | A3 such that π(g) = f3 and π(h) = −f3. It follows that (g + h)f1f2 has a
zero-sum subsequence, which by the minimality of A3 implies that A1 = ghf1f2. Since
|A1|+ |A2| = 4n and the lengths of A1 and A2 is odd, we may assume that |A2| ≥ 2n+ 1.
Again, let g1g2h1h2 | A2 such that π(gi) = f3 and π(hi) = −f3. As above, it follows that
A2 = g1g2h1h2f2, yielding a contradiction.

5 Characterization of class groups

As mentioned in Section 1 we apply Theorem 3.13 to the problem of characterizing the
class group of a Krull monoid with finite class group where each class contains a prime
divisor via the system of sets of lengths, for specific types of groups. We imbed these
investigation into a more general analysis of this problem for groups of large exponent.
In this more general case, we do not obtain a full answer, yet we can show that at least
the exponent of the group is determined by the system of sets of length.

We refer to, e.g., [31, 30] for detailed information on Krull monoids (as well as other
notions briefly discussed below) and we recall that the multiplicative monoid of the ring of
algebraic integers of a number field (and its ideal class group) are the classical example of
a Krull monoid with the above properties; for further examples see, e.g., [31], in particular
Example 2.3.2, Sections 2.10 and 2.11, also cf. Example 7.4.2.
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It is well-known that for M a Krull monoid with class group G where each class
contains a prime divisor, one has L(M) = L(B(G)). A first version of this result is
due to W. Narkiewicz and the latter developments mainly due to A. Geroldinger and
F. Halter-Koch (see, e.g., [31, Chapter 3] for this and related results). Thus, the problem
of characterizing the class group of M via the system of sets of lengths is reduced to the
problem of characterizing G via L(B(G)). Recall that we write L(G) instead of L(B(G))
and refer to it as the system of sets of lengths of G.

The problem for which types of finite abelian groups the system of sets determines
the group, i.e., for which G the fact that L(G) = L(G′) implies that G ∼= G′, was
originally considered by A. Geroldinger [29]. Various of the investigations on sets of
lengths undertaken since that time are motivate by the aim of making progress on this
problem (see, e.g., [31, Chapters 6 and 7]). For detailed information on the general
problem of giving arithmetical definitions of class groups (not necessarily restricted to
sets of lengths only), a problem raised by W. Narkiewicz, we refer to [31, Chapter 7]. For
recent related investigations see, e.g., [2, 12].

In [29] a characterization via the system of sets of lengths was obtained in case the
group is a cyclic group, an elementary 2-group, or of the form C2⊕C2n, and its Davenport
constant is at least 4; and additionally in case the Davenport constant of the class group
is at most 7. For further results on this problem see [50, 49], where this problem is solved
for groups of the form C2

n and in case the Davenport constant is at most 10. For the
four groups whose Davenport constant is less than 4, the situation is slightly different.
Namely, it is only possible to determine from the system of sets of lengths whether the
group is isomorphic to one of the groups C1 and C2, and whether it is isomorphic to one
of the groups C2

2 and C3; the first is essentially due to L. Carlitz [9] the latter due to
A. Geroldinger [29]. Presently, these two pairs of groups are the only known examples
for the phenomenon that non-isomorphic groups yield the same system of sets of lengths,
and it is thus an open problem whether all other types of groups are characterized by the
system of sets of length or whether there are more ‘exceptions’.

Here, we obtain such a characterization via the system of sets of lengths for several
other types of groups (see Theorems 5.3 and 5.6). As indicated in Section 1 the author
believes that the most relevant aspect of these results is the fact that C2

2⊕C6n and C3⊕C6n

can be distinguished by the system of sets of length. In this case the ‘large’ group C6n

is only slightly ‘perturbed’ in two distinct ways in such a way that both ‘perturbations’
have the same effect on those invariants that were used in essentially all characterization
results established so far, namely the Davenport constant and the large elements of the
set ∆1(G); additionally, note that in this case the ‘perturbations’ C2

2 and C3 even have
the same system of sets of lengths. No other result of this form was known so far; note
that for C2n

∼= C1 ⊕ C2n and C2 ⊕ C2n the Davenport constants are different and C2
n can

be treated as one ‘large’ group that remains ‘unperturbed’. Thus, to address this problem
for C2

2 ⊕ C6n and C3 ⊕ C6n for n ∈ N seems of particular relevance in this context.
The proofs of such characterization results are often informally split into two steps.

First, via general considerations, it is asserted that only a few groups can have the same
system of sets of lengths as the (type of) group under consideration. Second, via more
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explicit arguments, one distinguishes these few remaining groups.
For our investigations we need some additional notation and results. We recall them

very briefly, for details see, e.g., [31, Section 7.3] and [50].
Let G be a finite abelian group. It is well-know that the Davenport constant of G,

for |G| ≥ 2, is determined by L(G); recall that D(G) = max{max L : L ∈ L(G), 2 ∈ L}
(see [29, Lemma 7]). The set ∆1(G), introduced in [29], is the set of all d ∈ N such that
L(G) contains arbitrarily long almost arithmetical progressions with difference d; almost
arithmetical progression informally means an arithmetical progression where a globally
bounded number of elements at the beginning and the end of the arithmetical progressions
may be missing. Thus, obviously ∆1(G) is determined by L(G).

In particular, we have that if G and G′ are finite abelian groups with at least two
elements such that L(G) = L(G′), then

D(G) = D(G′) and ∆1(G) = ∆1(G
′). (5.1)

The relevance of the set ∆1(G) in this context is due to the fact that via the Structure
Theorem for Sets of Lengths (see, e.g., [31, Chapter 4]) this set ∆1(G) is known to be
closely linked to a set ∆∗(G)—we omit the definition—which can be investigated more
directly than ∆1(G) itself. Namely, ∆∗(G) ⊂ ∆1(G) and ∆1(G) consist of divisors of
elements of ∆∗(G); thus, all elements of ∆1(G) that are greater than half of the maximum
of this set are directly determined by ∆∗(G), yet not all its elements (see [20]).

We recall some results on ∆1(G) that we need in our investigations (all these results
are actually result on ∆∗(G), suitably transcribed).

It is well-known that ∆1(G) 6= ∅ if and only if |G| ≥ 3; specifically, if |G| ≥ 3, then
1 ∈ ∆1(G) (see [29]). Moreover, it is known that [1, r(G)−1] ⊂ ∆1(G), exp(G)−2 ∈ ∆1(G)
if exp(G) ≥ 3, and max ∆1(G) ≤ D(G) − 2 except for the trivial group (see, e.g., [31]).
Thus, if G is cyclic with |G| ≥ 3, then max ∆1(G) = exp(G)− 2, and more generally it is
known (see [20]) that if |G| ≤ exp(G)2 and exp(G) ≥ 3, then max ∆1(G) = exp(G) − 2
(for more precise results on ∆1(Cn) cf. [32] and for recent results related to the latter
assertion cf. [49]).

Furthermore, we have

max ∆1(G) = max{exp(G) − 2, m(G)} (5.2)

where m(G) is a certain constant that fulfills m(G) ≤ max{r∗(G)−1, K(G)−1}. And, if G
is a p-group, then m(G) = r(G)−1, in particular max ∆1(G) = max{exp(G)−2, r(G)−1};
additionally, if r(G) ≥ exp(G) − 1, then ∆1(G) = [1, r(G) − 1] (see [49]).

Additionally, we recall that if G does not have a subgroup isomorphic to C2
exp(G) and

exp(G) ≥ 5, then (cf. [49, Theorem 3.2])

max(∆1(G) \ {exp(G) − 2}) = max{⌊
exp(G)

2
⌋ − 1, m(G)}. (5.3)

Using the fact that L(G) = L(G′) implies that D(G) = D(G′), excluding the triv-
ial group, and the fact that only finitely many (up to isomorphy) groups can have the
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same Davenport constant, some restriction on the groups that possibly can have the same
system of sets of lengths can readily and generally be inferred. However, except when
limiting to the consideration of groups with a very small Davenport constant this re-
striction alone is in general too weak, to allow to address all groups fulfilling it via more
explicit considerations. And, an analogous statement holds true replacing D(G) = D(G′)
by max ∆1(G) = max ∆1(G

′).
Yet, combining information on D(G) and max ∆1(G), in certain cases, considerably

more restrictive conditions can be inferred.

Proposition 5.1. Let G 6= {0} be a finite abelian group. Let d = max ∆1(G) and
R = D(G) − d. At least one of the following statements holds.

1. There exists a finite abelian group G1 with D(G1) ≤ R − 1 and exp(G1) | (d + 2)
such that G ∼= G1 ⊕ Cd+2.

2. r(G) ≥ min{8d − 6R + 13, d − R/3 + 5/3} and exp(G) < d + 2.

Proof. By (5.2) we have d = max{exp(G) − 2, m(G)}.
First, suppose that d = exp(G)− 2. Then, there exists a finite abelian group G1 with

exp(G1) | (d + 2) such that G ∼= G1 ⊕ Cd+2. Since d + R = D(G) ≥ (d + 2) + D(G1) − 1,
the first statement holds true.

Second, suppose that d 6= exp(G) − 2. Then d = m(G) and m(G) > exp(G) − 2, in
particular exp(G) < d + 2. Then, by the remark after (5.2), we have d ≤ K(G) − 1 or
d ≤ r

∗(G) − 1.
Suppose the former holds true. We get R−1 ≥ D(G)−K(G). Let A =

∏ℓ
i=1 gi ∈ A(G)

with k(A) = k(G) and assume that 0 ∤ A. It follows that

R − 1 ≥ |A| − k(A) =

ℓ∑

i=1

ord(gi) − 1

ord(gi)
.

Suppose that ℓ2 of the gis have order 2. Then, we get R − 1 ≥ ℓ2/2 + 2(ℓ − ℓ2)/3,
and using the fact that ℓ ≥ 2 k(A) and the assumption d ≤ K(G) − 1, this yields that
ℓ2 ≥ 8d− 6R + 14. We observe that r(G) ≥ r2(G) ≥ ℓ2 − 1. Now, suppose d ≤ r

∗(G)− 1.
Recalling that D(G) ≥ 4 r

∗(G) − 3 r(G) + 1 (see Section 2) and since d = D(G) − R, it
follows that r(G) ≥ d−R/3 + 5/3. Thus, r(G) ≥ min{8d− 6R + 13, d−R/3 + 5/3}.

Note that, except for the trivial group, since max ∆1(G) ≤ D(G) − 2 we have R ≥ 2.
In Proposition 5.5 we expand on this result for R = 4; the case R = 2 and R = 3 are not
considered in detail, since they correspond to the problem of characterizing cyclic groups,
elementary 2-groups, and groups of the form C2 ⊕ C2n, which is well-known. However,
note that the characterization of C2

n does not directly correspond to the case R = n + 1,
though closely related arguments are used.

Next, we apply Proposition 5.1 to groups with a relatively large exponent.

Proposition 5.2. Let G be a finite abelian group with exp(G) = n ≥ 4, say G ∼= G1⊕Cn.
Let G′ be a finite abelian group with L(G′) = L(G). Suppose at least one of the following
conditions holds.
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1. The rank of G is at most two.

2. D(G) ≤ 7n/4 − (3 log2 n + 18)/4.

Then, exp(G) = exp(G′) and more precisely G′ ∼= G′
1 ⊕Cn with exp(G′

1) | n and D(G′
1) ≤

D(G) − (n − 1).

The first condition is almost, yet not entirely, a special case of the second one.

Proof. 1. Suppose the first condition holds. Let m ∈ N such that G ∼= Cm ⊕ Cn.
If m = n or n = 4, the claim follows by [49] and [29], respectively; indeed, in this case

we have G ∼= G′ (cf. the discussion at the beginning of this section). Thus, we assume
that m 6= n and that n ≥ 5.

Since G is a group of rank at most two, we know that D(G) = D
∗(G) = n + m − 1,

max ∆1(G) = n − 2, and ⌊n/2⌋ /∈ ∆1(G) (see (5.3)). Since L(G) = L(G′) and by (5.1),
we know that ∆1(G) = ∆1(G

′) and that D(G) = D(G′).
We apply Proposition 5.1 to G′. We need to assert that the first statement holds.

Assume to the contrary that r(G′) ≥ min{8(n− 2)− 6R+ 13, (n− 2)−R/3 + 5/3} where
R = m +1. Noting that m ≤ n/2, it follows that r(G′) ≥ ⌊n/2⌋+ 1. By (5.1) we get that
⌊n/2⌋ ∈ ∆1(G

′), a contradiction.
2. Suppose the second condition holds. The argument is similar. We start by bounding
m(G). As recalled above, we know that m(G) ≤ max{K(G) − 1, r∗(G) − 1}. We recall
the upper bounds K(G) ≤ 1/2 + log |G| (see Section 2) and r

∗(G) ≤ log2 |G|. For G1
∼=

⊕s
i=1Cmi

with mi | mi+1 we have D(G) − n ≥ D(G1) − 1 ≥
∑s

i=1(mi − 1). Since m − 1 ≥
log2 m ≥ log m for each m ∈ N, we get that m(G) ≤ max{log n+(D(G)−n)−1/2, log2 n+
(D(G) − n) − 1} = log2 n + D(G) − n + 1. In particular, by our assumption on D(G), we
have m(G) ≤ n − 4. Again, by the condition on D(G), we know that G has no subgroup
isomorphic to C2

n, and thus by (5.2) and (5.2) we have that max ∆1(G) = n − 2 and
max(∆1(G) \ {n − 2}) = max{m(G), ⌊n/2⌋ − 1}. We set R = D(G) − (n − 2).

Again, we have ∆1(G) = ∆1(G
′) and that D(G) = D(G′), and we apply Proposition 5.1

to G′. It suffices to show that the second statement cannot hold. Assume to the contrary
that the second statement holds, i.e., r(G′) ≥ min{8(n−2)−6R+13, (n−2)−R/3+5/3} =
(n − 2) − R/3 + 5/3. Again, we show that in this case ∆1(G

′) contains some element
not contained in ∆1(G), yielding a contradiction and thus establishing our result. Since
[1, r(G′) − 1] ⊂ ∆1(G

′), it suffices to show that r(G′) − 1 ≥ max{m(G) + 1, ⌊n/2⌋}; recall
that max{m(G) + 1, ⌊n/2⌋} < n − 2 and the result on ∆1(G) established above. By the
above upper bound on m(G), the lower bound on r(G′), and the condition on R implied
by the assumption on D(G′) = D(G), this inequality holds.

Now, we formulate the first of our characterization results.

Theorem 5.3. Let G and G′ be be finite abelian groups such that L(G) = L(G′).

1. If G ∼= C2
2 ⊕ C2n for some n ∈ N, then G ∼= G′.

2. If G ∼= C3 ⊕ C3m for some m ∈ N, then G ∼= G′.
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3. If G ∼= Cr−1
2 ⊕ C4 for some r ∈ N, then G ∼= G′.

Applying Proposition 5.1, we see in Proposition 5.5 that the groups appearing in this
result are precisely the groups with D(G) = max ∆1(G)+ 4. This can be seen as the ‘first
step’, in the informal sense mentioned above. Yet, additional arguments are required to
distinguish these three types of groups. To distinguish Cr−1

2 ⊕ C4 from the two other
groups Proposition 5.2 is almost sufficient, yet it is not applicable for C2

2 ⊕ C2n for some
small n. Thus, we use a result on the ∆1-sets instead (see below), which we need anyway
for proving Proposition 5.5. Yet, to distinguish C2

2 ⊕ C2n and C3 ⊕ C3m requires more
detailed knowledge on the system of sets of lengths (available via Lemma 4.7).

Lemma 5.4. Let m, n, r ∈ N.

1. If n ≥ 3, then max ∆1(C
2
2 ⊕ C2n) = 2n − 2 and 2n − 3 /∈ ∆1(C

2
2 ⊕ C2n).

2. max ∆1(C3 ⊕ C3m) = 3m − 2 and 3m − 3 /∈ ∆1(C3 ⊕ C3m).

3. max ∆1(C
r−1
2 ⊕ C4) = max{2, r − 1}, indeed ∆1(C

r−1
2 ⊕ C4) = [1, max{2, r − 1}].

Proof. 1. For n = 3 this is proved in [50, Propostion 9.1]. For n ≥ 4, using the inequalities
r
∗(C2

2 ⊕ C2n) ≤ 3 + log n and K(C2
2 ⊕ C2n) ≤ 1/2 + log(8n) (see Section 2), we get that

m(C2
2 ⊕C2n) < 2n− 3. Thus, the result on max ∆1(C

2
2 ⊕C2n) follows by (5.2). The other

claim follows by (5.3).
2. For m = 1, this follows by the results on ∆1 for p-groups recalled above; note that
0 /∈ ∆1(C

2
3) by definition. For m ≥ 2, see [48, Corollary 6.4]; or, for m ≥ 3, this can be

obtained similarly to 1.
3. This follows by the results on ∆1 for p-groups and the fact 1 ∈ ∆1(C

r−1
2 ⊕C4) recalled

above; also see [29].

Proposition 5.5. Let G be a finite abelian group. Let d ∈ N. The following statements
are equivalent.

1. max ∆1(G) = d and D(G) = d + 4.

2. G is isomorphic to C2
2 ⊕Cd+2 with 2 | d, C3 ⊕Cd+2 with 3 | (d+2), or Cd

2 ⊕C4 with
d ≥ 2.

Proof. First, assume that G is of the form given in 2. We observe that D(G) = d+4 (cf. the
remark after (2.1) and, e.g., Theorem 3.13). By Lemma 5.4 it follows that max ∆1(G) = d.
Thus, 2. implies 1.

Second, assume max ∆1(G) = d and D(G) = d + 4. First, we observe that if d = 1,
then by the results recalled at the beginning of this section we have exp(G) ≤ 3 and
r(G) ≤ 2, and by assumption we have D(G) = 5, implying that G ∼= C2

3 . Thus, we assume
d ≥ 2. Since for n, r ∈ N we have max ∆1(Cn) = max{0, n − 2} and max ∆1(C

r
2) = r − 1

whereas D(Cn) = n and D(Cr
2) = r + 1, we get that G is neither cyclic nor an elementary

2-group.
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We apply Proposition 5.1. First, suppose that exp(G) = d + 2. Then G ∼= G1 ⊕ Cd+2

with exp(G1) | (d + 2) and D(G1) ≤ 3. Thus, G1 is isomorphic to C1, C2, C2
2 , or C3. Yet,

if G1 is isomorphic to C1 or C2, then, by the remark after (2.1), D(G) is equal to exp(G)
or exp(G) + 1, resp., a contradiction. So, G is isomorphic to C2

2 ⊕ Cd+2 with 2 | d or
C3 ⊕ Cd+2 with 3 | (d + 2).

Second, suppose that exp(G) < d+2. Then, we get r(G) ≥ d+1/3, and since r(G)−1 ≤
d we have r(G) = d+1. Since as recalled in Section 2, we have D(G) ≥ 4 r

∗(G)−3 r(G)+1,
it follows that r

∗(G) = r(G), i.e., G is a p-group. Since D(G) = r(G) + 3, we get by (2.1)
that G ∼= Cd

2 ⊕ C4; recall that max ∆1(C
2
3 ) = 1 and that G is neither cyclic nor an

elementary 2-group.

Now, we proof Theorem 5.3. In view of the preparatory results, it remains to distin-
guish the systems of sets of lengths of the three types of groups we want to characterize,
i.e., the ‘second step’ of our argument. We recall that, since up to Davenport constant
10 the problem of characterization via the system of sets of lengths is solved (cf. above),
we can assume that the Davenport constant of each involved group is at least 8; to make
the stronger assumption that it is 11 is not helpful. In this proof we see the crucial role
of Lemma 4.7.

Proof of Theorem 5.3. As noted above we may assume D(G) ≥ 8, i.e., n ≥ 3, m ≥
2, and r ≥ 5, respectively. By Proposition 5.5 we have, in each of the three cases,
D(G) = max ∆1(G) + 4. We set d = max ∆1(G) and note that d ≥ 4. Thus, by (5.1)
D(G′) = max ∆1(G

′) + 4. Again, by Proposition 5.5 G′ is isomorphic to C2
2 ⊕ Cd+2 with

2 | d, C3⊕Cd+2 with 3 | (d+2), or Cd
2 ⊕C4. By Lemma 5.4 we get that ∆1(C

d
2 ⊕C4) is an

interval, whereas the ∆1-sets for the two other groups are not intervals. Thus, L(Cd
2 ⊕C4)

is distinct from the sets of lengths of the two other types of groups and it remains to show
that L(C3 ⊕ Cd+2) 6= L(C2

2 ⊕ Cd+2) for 6 | (d + 2). We recall that by [31, Lemma 6.6.4]
we have {2, 3, 3ℓ, 3ℓ + 1, 3ℓ + 2} ∈ L(C3 ⊕ C3ℓ) for each ℓ ∈ N; one considers L((−A)A)
where A = e3ℓ−1

2 e2
1(e1 + e2) and C3 ⊕ C3ℓ = 〈e1〉 ⊕ 〈e2〉 and the orders of e1 and e2 are 3

and 3ℓ, respectively. Thus {2, 3, 6k, 6k + 1, 6k + 2} ∈ L(C3 ⊕ C6k) for each k ∈ N. Yet,
by Lemma 4.7 with n = 3k we get that {2, 3, 6k, 6k + 1, 6k + 2} /∈ L(C2

2 ⊕ C6k) for each
k ∈ N, and the claim follows.

We end with an additional characterization result and some discussion. Proposition 5.2
shows that for a group G with a relatively large exponent (in the sense of that proposition)
if G′ is a finite abelian group with L(G) = L(G′), then exp(G) = exp(G′). Moreover,
we know that D(G) = D(G′). In the result below, we illustrate that in certain cases this
information is sufficient to fully characterize the group via its system of sets of lengths.

Theorem 5.6. Let p be a prime and r ∈ N.

1. Let n ∈ N \ {1} such that d ∤ n for each d ∈ [2, p]. If L(Cp ⊕Cpn) = L(G) for some
finite abelian group G, then G ∼= Cp ⊕ Cpn.
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2. There exists some Np,r ∈ N such that for each n ∈ N \ {1} with d ∤ n for each
d ∈ [2, Np,r] we have the following. If L(Cr−1

p ⊕Cpn) = L(G) for some finite abelian
group G, then G ∼= Cr−1

p ⊕ Cpn.

Proof. 1. Suppose that L(Cp⊕Cpn) = L(G). By Proposition 5.2 we get that G ∼= G1⊕Cpn

with exp(G1) | pn and D(G1) ≤ p. Since exp(G1) = 1 is easily seen to be impossible,
e.g., compare the Davenport constants, and clearly exp(G1) ≤ D(G1), we get by our
assumption on n that exp(G1) = p, and thus G1

∼= Cp establishing the claim.
2. We set Np,r = 2pr, which is not optimized. We know that max ∆1(G) = np − 2, e.g.,
observe that |G| ≤ (np)2. Suppose that L(Cr−1

p ⊕Cpn) = L(G). We observe that by (3.1)
and (2.2) D(Cr−1

p ⊕Cpn) ≤ DD(Cn)(C
r
p) ≤ np+D

′
0(C

r
p); and we recall D

′
0(C

r
p) ≤ η(Cr

p) ≤ pr

(see Section 2). By Proposition 5.2, note that by our assumption on n and the above bound
for the Davenport constant it is applicable, we get that G ∼= G1 ⊕ Cpn with exp(G1) | pn
and D(G1) ≤ D

′
0(C

r
p). As in 1. we see that exp(G1) = p. Thus G ∼= Cs−1

p ⊕ Cpn for some
s ∈ N \ {1}. Yet, as recalled in Section 2 D(Cs−1

p ⊕ Cpn) = D(Cr−1
p ⊕ Cpn) only if r = s,

the claim follows.

We note that the only problem impeding a full generalization of the characterization
result to all groups with large exponent (including groups of rank two), is the problem of
distinguishing (or asserting the equality) of the system of sets of lengths of groups G1⊕Cn

and G2 ⊕Cn where exp(Gi) | n and the Davenport constants are equal. Yet, to overcome
this problem in general might be difficult; in particular, in the case that G1 and G2 are
too large (in an absolute sense) to allow an explicit approach, as carried out in the present
paper for C2

2 and C3, yet are too small relative to n to have a significant effect on the
system of sets of lengths.
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