On optimal linear codes over \mathbb{F}_8

Rie Kanazawa and Tatsuya Maruta^{*}

Department of Mathematics and Information Sciences Osaka Prefecture University, Sakai, Osaka 599-8531, Japan maruta@mi.s.osakafu-u.ac.jp

Submitted: Aug 20, 2010; Accepted: Jan 29, 2011; Published: Feb 14, 2011 Mathematics Subject Classification: 94B05, 94B27, 51E20, 05B25

Abstract

Let $n_q(k, d)$ be the smallest integer n for which there exists an $[n, k, d]_q$ code for given q, k, d. It is known that $n_8(4, d) = \sum_{i=0}^3 \lfloor d/8^i \rfloor$ for all $d \ge 833$. As a continuation of Jones et al. [Electronic J. Combinatorics 13 (2006), #R43], we determine $n_8(4, d)$ for 117 values of d with $113 \le d \le 832$ and give upper and lower bounds on $n_8(4, d)$ for other d using geometric methods and some extension theorems for linear codes.

1 Introduction

We denote by \mathbb{F}_q^n the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. A *q-ary* linear code \mathcal{C} of length *n* and dimension *k* (an $[n, k]_q$ code) is a *k*-dimensional subspace of \mathbb{F}_q^n . The Hamming distance $d(\boldsymbol{x}, \boldsymbol{y})$ between two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_q^n$ is the number of nonzero coordinate positions in $\boldsymbol{x} - \boldsymbol{y}$. The minimum distance of a linear code \mathcal{C} is defined by $d(\mathcal{C}) = \min\{d(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{y}\}$ which is equal to the minimum weight of \mathcal{C} defined by $wt(\mathcal{C}) = \min\{wt(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{C}, \boldsymbol{x} \neq \boldsymbol{0}\}$, where **0** is the all-0-vector and $wt(\boldsymbol{x}) = d(\boldsymbol{x}, \boldsymbol{0})$ is the weight of \boldsymbol{x} . A *q*-ary linear code of length *n*, dimension *k* and minimum distance *d* is referred to as an $[n, k, d]_q$ code. The weight distribution of \mathcal{C} is the list of numbers A_i which is the number of codewords of \mathcal{C} with weight *i*. The weight distribution (w.d. for brevity) with $(A_0, A_d, \ldots) = (1, \alpha, \ldots)$ is also expressed as $0^1 d^{\alpha} \cdots$. A $k \times n$ matrix having as rows the vectors of a basis of \mathcal{C} is called a generator matrix of \mathcal{C} .

^{*}This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 20540129.

A fundamental problem in coding theory is to find $n_q(k, d)$, the minimum length n for which an $[n, k, d]_q$ code exists ([5]). An $[n, k, d]_q$ code is called *optimal* if $n = n_q(k, d)$. The Griesmer bound (see [11]) gives a lower bound on $n_q(k, d)$:

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. An $[n, k, d]_q$ code C is called *Griesmer* if it attains the Griesmer bound, i.e. $n = g_q(k, d)$. The values of $n_8(k, d)$ are determined for all d only for $k \leq 3$, see [19]. See [3] and [13] for the known results on optimal $[n, 4, d]_8$ codes for $d \leq 112$. It is known from Theorem 2.12 of [5] that $n_8(4, d) = g_8(4, d)$ for all $d \geq 833$. So, we concentrate on finding optimal linear codes over \mathbb{F}_8 of dimension 4 with minimum distance $113 \leq d \leq 832$. Our results are summarized to the following theorem, see also Table 3.

Theorem 1.1. (1) $n_8(4, d) = g_8(4, d)$ for $d \in \{257, 258, 265-272, 385-392, 441-568, 577-580, 705-728, 769-784\}.$

(2) $n_8(4, d) = g_8(4, d) + 1$ for $d \in \{113-120, 286-288, 377, 378, 399, 400, 407, 408, 414-440, 702-704, 750-752, 757-768, 813-816, 820-832\}.$

(3) $n_8(4, d) \leq g_8(4, d) + 1$ for $d \in \{129-132, 193, 259-264, 273-285, 321-328, 393-398, 401-406, 409-413, 569-576, 581-632, 641-701, 729-749, 753-756, 785-812, 817-819\}.$

(4) $g_8(4, d) + 1 \le n_8(4, d) \le g_8(4, d) + 2$ for $d \in \{121-128, 177, 185-192, 225-227, 233-236, 241-246, 249-256, 289-316, 337-376, 379-384, 639, 640\}.$

(5) $n_8(4,d) \le g_8(4,d) + 2$ for $d \in \{133-176, 194-206, 209-220, 329-336, 633-638\}$. (6) $g_8(4,d) + 1 \le n_8(4,d) \le g_8(4,d) + 3$ for $d \in \{178-184, 221-224, 228-232, 237-240, 247, 248, 317-320\}$.

(7) $n_8(4, d) \le g_8(4, d) + 3$ for d = 207, 208.

We also give a new construction of a $[g_q(4, d), 4, d]_q$ code for $d = 2q^3 - 5q^2 + 3q, q \ge 5$ (Proposition 3.6) and prove $n_q(4, d) \ge g_q(4, d) + 1$ for $q^3/2 - q^2 - q + 1 \le d \le q^3/2 - q^2$ for even $q \ge 4$ (Theorem 5.23).

2 Preliminary results

In this section, we give the geometric method and some known results which will be used in the later sections. We denote by PG(r, q) the projective geometry of dimension r over \mathbb{F}_q . A *j*-flat is a projective subspace of dimension j in PG(r, q). 0-flats, 1-flats, 2-flats, (r-2)-flats and (r-1)-flats are called *points*, *lines*, *planes*, *secundums* and *hyperplanes*, respectively. We denote by \mathcal{F}_j the set of *j*-flats of PG(r, q) and denote by θ_j the number of points in a *j*-flat, i.e. $\theta_j = (q^{j+1} - 1)/(q - 1)$. We set $\theta_j = 0$ for j < 0. Let \mathcal{C} be an $[n, k, d]_q$ code which does not have any coordinate position in which all the codewords have a zero entry. We always consider such codes throughout this paper. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \text{PG}(k-1,q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An *i*-point is a point of Σ which has multiplicity i in \mathcal{C} . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{C} and let C_i be the set of *i*-points in Σ , $0 \leq i \leq \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, as

$$m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where |T| denotes the number of points in a set T in Σ . When the code is *projective*, i.e. when $\gamma_0 = 1$, the multiset \mathcal{C} forms an *n*-set in Σ and the above $m_{\mathcal{C}}(S)$ is equal to $|\mathcal{C} \cap S|$. A line l with $t = m_{\mathcal{C}}(l)$ is called a *t*-line. A *t*-plane and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that

$$n = m_{\mathcal{C}}(\Sigma),$$

$$n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}.$$

Conversely such a partition $\Sigma = \bigcup_{i=0}^{\infty} C_i$ as above gives an $[n, k, d]_q$ code in the natural manner. For an *m*-flat Π in Σ we define

$$\gamma_j(\Pi) = \max\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le m.$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. It holds that $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$.

Lemma 2.1. For two distinct t-flats δ_1 and δ_2 in a fixed (t+1)-flat Δ in Σ , $1 \le t \le k-2$, it holds that $m_{\mathcal{C}}(\delta_1) + m_{\mathcal{C}}(\delta_2) \ge m_{\mathcal{C}}(\Delta) - (q-1)\gamma_t + q \cdot m_{\mathcal{C}}(\delta_1 \cap \delta_2)$.

Proof. Considering the *t*-flats in Δ through $\delta_1 \cap \delta_2$, we have

$$m_{\mathcal{C}}(\Delta) \le m_{\mathcal{C}}(\delta_1) + m_{\mathcal{C}}(\delta_2) - m_{\mathcal{C}}(\delta_1 \cap \delta_2) + (\gamma_t - m_{\mathcal{C}}(\delta_1 \cap \delta_2))(q-1). \quad \Box$$

Setting t = k - 2, $a = m_{\mathcal{C}}(\delta_1)$, $b = m_{\mathcal{C}}(\delta_2)$, $c = m_{\mathcal{C}}(\delta_1 \cap \delta_2)$ in Lemma 2.1, we get

$$a+b \ge (q-1)d - (q-2)n + qc.$$
 (2.1)

When \mathcal{C} is Griesmer, γ_j 's are uniquely determined as follows.

Lemma 2.2 ([18]). For a Griesmer $[n, k, d]_q$ code, it holds for $0 \le j \le k - 1$ that

$$\gamma_j = \sum_{u=0}^j \left\lceil \frac{d}{q^{k-1-u}} \right\rceil.$$

By Lemma 2.2, every Griesmer $[n, k, d]_q$ code is projective if $d \leq q^{k-1}$. Denote by a_i the number of hyperplanes Π of Σ with $m_{\mathcal{C}}(\Pi) = i$ and by λ_s the number of s-points in Σ . When $\gamma_0 = 2$, we have $\lambda_0 + \lambda_1 + \lambda_2 = \theta_{k-1}$ and $\lambda_1 + 2\lambda_2 = n$, hence

$$\lambda_2 = \lambda_0 + n - \theta_{k-1}. \tag{2.2}$$

The electronic journal of combinatorics ${\bf 18}~(2011),~\#{\rm P34}$

The list of a_i 's is called the *spectrum* of C. Note that $a_i = A_{n-i}/(q-1)$. We usually use τ_j 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of C. Simple counting arguments yield the following three equalities.

$$\sum_{i=0}^{n-d} a_i = \theta_{k-1}.$$
 (2.3)

$$\sum_{i=1}^{n-d} ia_i = n\theta_{k-2}.$$
 (2.4)

$$\sum_{i=2}^{n-d} i(i-1)a_i = n(n-1)\theta_{k-3} + q^{k-2} \sum_{s=2}^{\gamma_0} s(s-1)\lambda_s.$$
(2.5)

(2.3) and (2.4) yield the following:

$$\sum_{i=0}^{n-d-1} (n-d-i)a_i = nq^{k-1} - d\theta_{k-1}.$$
(2.6)

Furthermore, when $\gamma_0 \leq 2$, we get the following from (2.3)-(2.5):

$$\sum_{i=0}^{n-d-2} \binom{n-d-i}{2} a_i = \binom{n-d}{2} \theta_{k-1} - n(n-d-1)\theta_{k-2} + \binom{n}{2} \theta_{k-3} + q^{k-2}\lambda_2.$$
(2.7)

Lemma 2.3 ([22]). Let Π be an *i*-hyperplane through a *t*-secundum δ . Then (1) $t \leq \gamma_{k-2} - n - i/q = (i + q\gamma_{k-2} - n)/q$. (2) $a_i = 0$ if an $[i, k-1, d_0]_q$ code with $d_0 \geq i - \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor$ does not exist, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x. (3) $\gamma_{k-3}(\Pi) = \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor$ if an $[i, k-1, d_1]_q$ code with $d_1 \geq i - \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor + 1$ does not exist.

(4) Let c_j be the number of *j*-hyperplanes through δ other than Π . Then the following equality holds:

$$\sum_{j} (\gamma_{k-2} - j)c_j = i + q\gamma_{k-2} - n - qt.$$
(2.8)

(5) For a γ_{k-2} -hyperplane Π_0 with spectrum $(\tau_0, \cdots, \tau_{\gamma_{k-3}}), \tau_t > 0$ holds if $i + q\gamma_{k-2} - n - qt < q$.

The code obtained by deleting the same coordinate from each codeword of C is called a *punctured code* of C. If there exists an $[n + 1, k, d + 1]_q$ code C' which gives C as a punctured code, C is called *extendable* and C' is an *extension* of C. We use the following extension theorems in Sections 4 and 5. **Theorem 2.4** ([6], [7]). Let C be an $[n, k, d]_q$ code with gcd(d, q) = 1, $k \ge 3$. Then C is extendable if $A_i = 0$ for all $i \ne 0$, $d \pmod{q}$.

Theorem 2.5 ([24]). Let C be an $[n, k, d]_q$ code with $q \ge 5$, $d \equiv -2 \pmod{q}$, $k \ge 3$. Then C is extendable if $A_i = 0$ for all $i \not\equiv 0, -1, -2 \pmod{q}$.

Theorem 2.6 ([21]). Let C be an $[n, k, d]_q$ code with gcd(d, q) = 1 and assume that $\sum_{i \not\equiv n, n-d \pmod{q}} a_i < q^{k-2}$. Then $\sum_{i \not\equiv n, n-d \pmod{q}} a_i = 0$ and C is extendable.

An $[n, k, d]_q$ code is called *m*-divisible if all codewords have weights divisible by an integer m > 1. The following theorem gives a restriction on the weights of a Griesmer $[n, k, d]_8$ code with $d \equiv 0 \pmod{8}$.

Lemma 2.7 ([23]). Let C be a Griesmer $[n, k, d]_8$ code. If 8 divides d, then C is 2-divisible.

In the remainder of this section, we give some known results on $n_q(4, d)$.

Theorem 2.8 ([17]). $n_q(4, d) = g_q(4, d)$ for all q for $q^3 - 2q^2 + 1 \le d \le q^3 - 2q^2 + q$ and for $q^3 - q^2 - q + 1 \le d \le q^3 + q^2 - q$.

Theorem 2.9 ([17],[20]). For $q \ge 4$, $n_q(4,d) = g_q(4,d) + 1$ for $q^3 - q^2 - 2q + 1 \le d \le q^3 - q^2 - q$ and for $2q^3 - 3q^2 - q + 1 \le d \le 2q^3 - 3q^2$.

Theorem 2.10 ([17]). $n_q(4, d) \ge g_q(4, d) + 1$ for (1) $2q^2 - 2q + 1 \le d \le 2q^2$ for $q \ge 4$, (2) $(\nu - 1)q^2 - 3q + 1 \le d \le (\nu - 1)q^2$ for $4 \le \nu < q$ with ν not dividing q, (3) $2q^3 - rq^2 - q + 1 \le d \le 2q^3 - rq^2$ for q > r, r = 3, 4 and for $q > 2(r - 1), r \ge 5$.

Corollary 2.11. (1) $n_8(4, d) = g_8(4, d)$ for $d \in \{385-392, 441-568\}$, (2) $n_8(4, d) = g_8(4, d) + 1$ for $d \in \{433-440, 825-832\}$, (3) $n_8(4, d) \ge g_8(4, d) + 1$ for $d \in \{113-128, 233-256, 297-320, 361-384, 761-768\}$.

Theorem 2.12 ([20]). There exist no $[n, 4, n + s - q^2]_q$ codes for $q^3 - s\theta_1 - q + 1 \le n \le q^3 - s\theta_1$ for $s = 2, q \ge 4$ and for $s = 3, q \ge 7, q \ne 9$.

Corollary 2.13. $n_8(4, d) \ge g_8(4, d) + 1$ for $417 \le d \le 432$.

3 Upper bounds on $n_8(4, d)$

Recall that the existence of an $[n, k, d]_q$ code implies the existence of an $[n - 1, k, d - 1]_q$ code. So, from (1) and (2) of Corollary 2.11, it suffices to prove the following proposition in order to give the upper bounds on $n_8(4, d)$ in Theorem 1.1.

Proposition 3.1. (1) There exist $[g_8(4, d) + 2, 4, d]_8$ codes for $d \in \{128, 136, 144, 152, 160, 168, 176, 177, 192, 200, 206, 216, 220, 227, 236, 246, 296, 304, 312, 316, 336, 344, 352, 360, 368, 640\}.$

(2) There exist $[g_8(4, d) + 1, 4, d]_8$ codes for $d \in \{120, 132, 193, 280, 288, 328, 378, 400, 408, 416, 424, 432, 576, 584, 592, 600, 608, 616, 624, 632, 648, 656, 664, 672, 680, 688, 696, 704, 736, 744, 752, 760, 768, 792, 800, 808, 816, 824\}.$

(3) There exist $[g_8(4, d), 4, d]_8$ codes for $d \in \{258, 272, 580, 712, 720, 728, 776, 784\}$.

As a method to construct good codes, we first introduce the projective dual.

Lemma 3.2 ([15]). (1) There exists a $[39, 4, 32]_8$ code with w.d. $0^{1}32^{1911}36^{2184}$. (2) There exists a $[121, 4, 104]_8$ code with w.d. $0^{1}104^{3136}112^{945}120^{14}$.

Lemma 3.3 ([22]). Let C be an *m*-divisible $[n, k, d]_q$ code with $q = p^h$, p prime, whose spectrum is

$$(a_{n-d-(w-1)m}, a_{n-d-(w-2)m}, \cdots, a_{n-d-m}, a_{n-d}) = (\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_1, \alpha_0),$$

where $m = p^r$ for some $1 \leq r < h(k-2)$ satisfying $\lambda_0 > 0$. Then there exists a tdivisible $[n^*, k, d^*]_q$ code \mathcal{C}^* with $t = p^{h(k-2)-r}$, $n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}$, $d^* = n^* - nt + \frac{d}{m}\theta_{k-2} = ((n-d)q - n)t$ whose spectrum is

$$(a_{n^*-d^*-\gamma_0 t}, a_{n^*-d^*-(\gamma_0-1)t}, \cdots, a_{n^*-d^*-t}, a_{n^*-d^*}) = (\lambda_{\gamma_0}, \lambda_{\gamma_0-1}, \cdots, \lambda_1, \lambda_0).$$

 \mathcal{C}^* is called the *projective dual* of \mathcal{C} . Applying Lemma 3.3 to the codes in Lemma 3.2, we obtain the following codes.

Corollary 3.4. (1) There exists a $[312, 4, 272]_8$ code with w.d. $0^1 272^{3822} 288^{273}$. (2) There exists a $[139, 4, 120]_8$ code with w.d. $0^1 120^{3297} 128^{749} 136^{49}$.

An f-set F in PG(r,q) with $m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\}$ is called an $\{f, m; r, q\}$ minihyper. When an $[n, k, d]_q$ code is projective (i.e. $\gamma_0 = 1$), the set of 0-points C_0 forms a $\{\theta_{k-1} - n, \theta_{k-2} - (n-d); k-1, q\}$ -minihyper, and vice versa, see [4].

Lemma 3.5. (1) There exists a $[\theta_3 - x\theta_1, 4, q^3 - xq]_q$ code for $0 \le x \le q^2 - 1$. (2) There exists a $[2q^3 - x\theta_1, 4, 2q^3 - 2q^2 - xq]_q$ code for $0 \le x \le q^2$. *Proof.* (1) Take x skew lines of PG(3, q) as the corresponding minihyper.

(2) Let δ_1 and δ_2 be planes meeting in a line l in $\operatorname{PG}(3, q)$ and take skew x lines l_1, \dots, l_x not intersecting l. Deleting δ_1 , δ_2 and the skew x lines from two copies of $\operatorname{PG}(3, q)$, that is, setting $C_0 = (\delta_1 \cap \delta_2) \cup (\bigcup_{i=1}^2 \bigcup_{1 \leq j \leq x} (\delta_i \cap l_j)), C_1 = (\delta_1 \cup \delta_2 \cup l_1 \cup \cdots \cup l_x) \setminus C_0$ and $C_2 = \operatorname{PG}(3, q) \setminus (C_0 \cup C_1)$, we get the partition of $\operatorname{PG}(3, q)$ giving a generator matrix of the desired code.

We get $[g_8(4, d) + 2, 4, d]_8$ codes for d = 336, 344, 352, 360, 368 and $[g_8(4, d) + 1, 4, d]_8$ codes for d = 400, 408, 416, 424, 432 from (1) of Lemma 3.5. We also get $[g_8(4, d) + 1, 4, d]_8$ codes d = 808, 816, 824 from (2) of Lemma 3.5.

A $(q^2 + 2q + 1)$ -set \mathcal{H} in PG(3, q) which is projectively equivalent to the set

$$\{\mathbf{P}(x_0, x_1, x_2, x_3) \in \mathrm{PG}(3, q) \mid x_0 x_1 + x_2 x_3 = 0\}$$

is called a *hyperbolic quadric* in PG(3, q), see [9]. \mathcal{H} contains a set of q+1 skew lines called a *regulus*. \mathcal{H} consists of $(q+1)^2$ points, which are all the points on a pair of reguli. Using this property, we give a new construction of a non-projective Griesmer code as follows, which yields a [833, 4, 728]₈ code.

\mathcal{C}_1	\mathcal{C}_2	\mathcal{C}	Lemma
$[139, 4, 120]_8$	$[10, 3, 8]_8$	$[149, 4, 128]_8$	3.7
$[139, 4, 120]_8$	$[15, 3, 12]_8$	$[154, 4, 132]_8$	3.7
$[94, 4, 80]_8$	$[65, 4, 56]_8$	$[159, 4, 136]_8$	3.8
$[103, 4, 88]_8$	$[65, 4, 56]_8$	$[168, 4, 144]_8$	3.8
$[112, 4, 96]_8$	$[65, 4, 56]_8$	$[177, 4, 152]_8$	3.8
$[121, 4, 104]_8$	$[65, 4, 56]_8$	$[186, 4, 160]_8$	3.8
$[130, 4, 112]_8$	$[65, 4, 56]_8$	$[195, 4, 168]_8$	3.8
$[139, 4, 120]_8$	$[65, 4, 56]_8$	$[204, 4, 176]_8$	3.8
$[312, 4, 272]_8$	$[65, 4, 56]_8$	$[377, 4, 328]_8$	3.8
$[650, 4, 568]_8$	$[10, 3, 8]_8$	$[660, 4, 576]_8$	3.7
$[585, 4, 512]_8$	$[80, 4, 68]_8$	$[665, 4, 580]_8$	3.8
$[605, 4, 528]_8$	$[65, 4, 56]_8$	$[670, 4, 584]_8$	3.8
$[614, 4, 536]_8$	$[65, 4, 56]_8$	$[679, 4, 592]_8$	3.8
$[623, 4, 544]_8$	$[65, 4, 56]_8$	$[688, 4, 600]_8$	3.8
$[632, 4, 552]_8$	$[65, 4, 56]_8$	$[697, 4, 608]_8$	3.8
$[641, 4, 560]_8$	$[65, 4, 56]_8$	$[706, 4, 616]_8$	3.8
$[650, 4, 568]_8$	$[65, 4, 56]_8$	$[715, 4, 624]_8$	3.8
$[585, 4, 512]_8$	$[139, 4, 120]_8$	$[724, 4, 632]_8$	3.8
$[585, 4, 512]_8$	$[149, 4, 128]_8$	$[734, 4, 640]_8$	3.8
$[449, 4, 392]_8$	$[312, 4, 272]_8$	$[761, 4, 664]_8$	3.8
$[724, 4, 632]_8$	$[64, 3, 56]_8$	$[788, 4, 688]_8$	3.7
$[724, 4, 632]_8$	$[73, 3, 64]_8$	$[797, 4, 696]_8$	3.7
$[512, 4, 448]_8$	$[312, 4, 272]_8$	$[824, 4, 720]_8$	3.8
$[531, 4, 464]_8$	$[312, 4, 272]_8$	$[843, 4, 736]_8$	3.8
$[540, 4, 472]_8$	$[312, 4, 272]_8$	$[852, 4, 744]_8$	3.8
$[549, 4, 480]_8$	$[312, 4, 272]_8$	$[861, 4, 752]_8$	3.8
$[558, 4, 488]_8$	$[312, 4, 272]_8$	$[870, 4, 760]_8$	3.8
$[567, 4, 496]_8$	$[312, 4, 272]_8$	$[879, 4, 768]_8$	3.8
$[576, 4, 504]_8$	$[312, 4, 272]_8$	$[888, 4, 776]_8$	3.8
$[585, 4, 512]_8$	$[312, 4, 272]_8$	$[897, 4, 784]_8$	3.8
$[585, 4, 512]_8$	$[322, 4, 280]_8$	$[907, 4, 792]_8$	3.8
$[585, 4, 512]_8$	$[331, 4, 288]_8$	$[916, 4, 800]_8$	3.8

Proposition 3.6. There exists a $[g_q(4, d), 4, d]_q$ code for $d = 2q^3 - 5q^2 + 3q$, $q \ge 5$.

Proof. Let \mathcal{H} be a hyperbolic quadric in $\mathrm{PG}(3, q)$ and let l_1 and l_2 be two skew lines contained in \mathcal{H} . We further take two skew lines l_3 and l_4 contained in \mathcal{H} meeting l_1 and l_2 and four points P_1, \dots, P_4 of \mathcal{H} so that $l_1 \cap l_3 = P_1, l_1 \cap l_4 = P_2, l_2 \cap l_3 = P_3, l_2 \cap l_3 = P_4$. Let l_5 be the line $\langle P_1, P_4 \rangle$ and let l_6 be the line $\langle P_2, P_3 \rangle$. We set $C_0 = l_1 \cup l_2 \cup \cdots \cup l_6$, $C_1 = (\langle l_1, l_3 \rangle \cup \langle l_1, l_4 \rangle \cup \langle l_2, l_3 \rangle \cup \langle l_2, l_4 \rangle \cup \mathcal{H}) \setminus C_0$ and $C_2 = \mathrm{PG}(3, q) \setminus (C_0 \cup C_1)$, where $\langle l_i, l_j \rangle$ stands for the plane containing l_i and l_j . Taking the points of C_i as the columns of a generator matrix i times, we get the desired $[2q^3 - 3q^2 + 1, 4, d]_q$ code, which is Griesmer for $q \geq 5$.

The next two lemmas are well-known to construct good codes from old ones, see Table 1 for the resulting codes.

Lemma 3.7 ([8]). Let C_1 be an $[n_1, k, d_1]_q$ code and C_2 be an $[n_2, k-1, d_2]_q$ code. Assume that C_1 has a codeword c_1 with $wt(c_1) \ge d_1 + d_2$. Then an $[n_1 + n_2, k, d_1 + d_2]_q$ code C exists.

Lemma 3.8 ([8]). If there exist an $[n_1, k, d_1]_q$ code C_1 and an $[n_2, k, d_2]_q$ code C_2 , then so does an $[n_1 + n_2, k, d_1 + d_2]_q$ code C.

We also constructed linear codes with parameters $[206, 4, 177]_8$, $[222, 4, 192]_8$, $[224, 4, 193]_8$, $[232, 4, 200]_8$, $[239, 4, 206]_8$, $[250, 4, 216]_8$, $[255, 4, 220]_8$, $[263, 4, 227]_8$, $[273, 4, 236]_8$, $[284, 4, 246]_8$, $[297, 4, 258]_8$, $[322, 4, 280]_8$, $[331, 4, 288]_8$, $[341, 4, 296]_8$, $[350, 4, 304]_8$, $[359, 4, 312]_8$, $[364, 4, 316]_8$, $[434, 4, 378]_8$, $[743, 4, 648]_8$, $[752, 4, 656]_8$, $[770, 4, 672]_8$, $[779, 4, 680]_8$, $[806, 4, 704]_8$, $[815, 4, 712]_8$, by puncturing or lengthening some good codes with the aid of a computer.

4 The spectra of some $[n, 3, d]_8$ codes

As a preliminary for Section 5, we give the needed results on the spectra of $[n, 3, d]_8$ codes in this section. Table 2 can be obtained from the known results. Note that a Griesmer $[64 - e, 3, 56 - e]_8$ code corresponds to a $\{\theta_1 + e, 1; 2, 8\}$ -minihyper, which necessarily contains a line in PG(2, 8) if $e \leq 3$, see Chap. 13 in [10].

Lemma 4.1 ([3]). $n_8(3,d) = g_8(3,d) + 1$ for $d \in \{13\text{-}16, 29\text{-}32, 37\text{-}40, 43\text{-}48\}$ and $n_8(3,d) = g_8(3,d)$ for other d.

The following three lemmas give the characterization of $[119, 3, 104]_8$, $[118, 3, 103]_8$ and $[117, 3, 102]_8$ codes for q = 8.

Lemma 4.2. The spectrum of a $[2q^2 - q - 1, 3, 2q^2 - 3q]_q$ code with $q \ge 5$ is $(a_{q-1}, a_{2q-1}) = (3, \theta_2 - 3)$. A $(2q^2 - q - 1)$ -plane is obtained from two copies of PG(2, q) with three non-concurrent lines deleted.

Proof. Let \mathcal{C} be an $[n = 2q^2 - q - 1, 3, 2q^2 - 3q]_q$ code with $q \ge 5$. By Lemma 2.2, $\gamma_0 = 2$ and $\gamma_1 = 2q - 1$. Since $(\gamma_1 - \gamma_0)\theta_1 + \gamma_0 = n$, any line through a 2-point is a γ_1 -line. Hence $a_i = 0$ for $\theta_1 + 1 \le i \le \gamma_1 - 1$. Let l be a t-line containing a 1-point P. Considering the lines through P, we get $n \le (\gamma_1 - 1)q + t$, so $t \ge q - 1$. Hence $a_i = 0$ for $1 \le i \le q - 2$. Suppose $a_0 > 0$. Considering the lines through a fixed point of a 0-line, we have $n = q\gamma_1 + 0 - 1$, which implies $a_{\gamma_1 - 1} > 0$, a contradiction. Hence $a_0 = 0$. One can prove $a_{\theta_1 - 1} = a_{\theta_1} = 0$ similarly for $q \ge 5$ considering the lines though a fixed 1-point. Hence $a_i = 0$ for all $i \notin \{q - 1, 2q - 1\}$. The spectrum of \mathcal{C} follows from (2.6) and (2.3). Since $2(q - 1) + (q - 1)\gamma_1 = n$, the three (q - 1)-lines are not concurrent.

Table 2: The spectra of s	ome $[n, 3, d]_8$ codes	3.
---------------------------	-------------------------	----

parameters	possible spectra	reference
$[6, 3, 4]_8$	$(a_0, a_1, a_2) = (34, 24, 15)$	[13]
$[7, 3, 5]_8$	$(a_0, a_1, a_2) = (31, 21, 21)$	[13]
$[8, 3, 6]_8$	$(a_0, a_1, a_2) = (29, 16, 28)$	[13]
$[9, 3, 7]_8$	$(a_0, a_1, a_2) = (28, 9, 36)$	[13]
$[10, 3, 8]_8$	$(a_0, a_2) = (28, 45)$	[13]
$[33, 3, 28]_8$	$(a_0, a_3, a_5) = (9, 16, 48)$	[2]
	$(a_0, a_1, a_4, a_5) = (4, 5, 28, 36)$	
	$(a_0, a_3, a_4, a_5) = (6, 10, 18, 39)$	
$[42, 3, 36]_8$	$(a_0, a_4, a_5, a_6) = (4, 6, 24, 39)$	[1]
	$(a_0, a_3, a_5, a_6) = (3, 7, 21, 42)$	
	$(a_0, a_4, a_6) = (3, 21, 49)$	
	$(a_0, a_2, a_4, a_6) = (2, 3, 18, 50)$	
$[60, 3, 52]_8$	$(a_4, a_6, a_8) = (3, 16, 54)$	[12]
	$(a_0, a_4, a_7, a_8) = (1, 1, 32, 39)$	
	$(a_0, a_5, a_6, a_7, a_8) = (1, 1, 3, 27, 41)$	
	$(a_0, a_6, a_7, a_8) = (1, 6, 24, 42)$	
$[61, 3, 53]_8$	$(a_0, a_6, a_7, a_8) = (1, 3, 21, 48)$	[10]
	$(a_0, a_5, a_7, a_8) = (1, 1, 24, 47)$	
$[62, 3, 54]_8$	$(a_0, a_6, a_7, a_8) = (1, 1, 16, 55)$	[10]
$[63, 3, 55]_8$	$(a_0, a_7, a_8) = (1, 9, 63)$	[4]
$[64, 3, 56]_8$	$(a_0, a_8) = (1, 72)$	[4]
$[70, 3, 61]_8$	$(a_6, a_8, a_9) = (1, 24, 48)$	[4]
	$(a_7, a_8, a_9) = (3, 21, 49)$	
$[71, 3, 62]_8$	$(a_7, a_8, a_9) = (1, 16, 56)$	[4]
$[72, 3, 63]_8$	$(a_8, a_9) = (9, 64)$	[4]
$[73, 3, 64]_8$	$a_9 = 73$	[4]
$[92, 3, 80]_8$	$(a_0, a_8, a_{12}) = (1, 9, 63)$	[16]
	$(a_4, a_{12}) = (6, 67)$	
	$(a_4, a_8, a_{12}) = (1, 10, 62)$	
	$(a_8, a_{12}) = (12, 61)$	
$[101, 3, 88]_8$	$(a_5, a_{13}) = (5, 68)$	[16]
	$(a_9, a_{13}) = (10, 63)$	

Lemma 4.3. A $[2q^2 - q - 2, 3, 2q^2 - 3q - 1]_q$ code with $q \ge 7$ is extendable and its spectrum is $(a_{q-2}, a_{q-1}, a_{2q-2}, a_{2q-1}) = (1, 2, q, q^2 - 2)$ or $(a_{q-1}, a_{2q-2}, a_{2q-1}) = (3, q + 1, q^2 - 3)$.

Proof. Let C be an $[n = 2q^2 - q - 2, 3, 2q^2 - 3q - 1]_q$ code with $q \ge 7$. By Lemma 2.2, $\gamma_0 = 2$ and $\gamma_1 = 2q - 1$. Since $(\gamma_1 - \gamma_0)\theta_1 + \gamma_0 - 1 = n$, the lines though a fixed 2-point is one $(\gamma_1 - 1)$ -line and $q \gamma_1$ -lines, and $a_i = 0$ for $\theta_1 + 1 \le i \le \gamma_1 - 2$. Let l be a t-line containing a 1-point P. Considering the lines through P, we get $n \le (\gamma_1 - 1)q + t$, so $q - 2 \le t$. Hence $a_i = 0$ for $1 \le i \le q - 3$.

Suppose $a_{\theta_1} > 0$. Let l be a θ_1 -line. Since $n = (\gamma_1 - 1)q + \theta_1 - 3$, the lines $(\neq l)$ through a fixed 1-point of l are three $(\gamma_1 - 1)$ -lines and $q - 3 \gamma_1$ -lines, for $\gamma_1 - 3 > \theta_1$. Hence $\sum_{i \neq n, n-d \pmod{q}} a_i = a_{\theta_1} = 1$, which contradicts Theorem 2.6. Hence $a_{\theta_1} = 0$. One can prove $a_0 = a_q = 0$ similarly applying Theorem 2.6. Therefore $a_i = 0$ for all $i \notin \{q - 2, q - 1, 2q - 2, 2q - 1\}$. Applying Theorem 2.4, C is extendable. Hence C can be obtained from a $[2q^2 - q - 1, 3, 2q^2 - 3q]_q$ code C' by removing one coordinate. Let P be the point corresponding to the coordinate. There are two possible spectra as stated according to the cases that P is a 1-point or a 2-point, respectively.

Lemma 4.4. A $[2q^2-q-3, 3, 2q^2-3q-2]_q$ code with $q \ge 7$ is extendable and its spectrum is one of the followings:

(a) $(a_{q-3}, a_{q-1}, a_{2q-2}, a_{2q-1}) = (1, 2, 2q, q^2 - q - 2),$ (b) $(a_{q-2}, a_{q-1}, a_{2q-3}, a_{2q-2}, a_{2q-1}) = (2, 1, 1, 2q - 2, q^2 - q - 1),$ (c) $(a_{q-2}, a_{q-1}, a_{2q-3}, a_{2q-2}, a_{2q-1}) = (1, 2, 1, 2q - 1, q^2 - q - 2),$ (d) $(a_{q-1}, a_{2q-3}, a_{2q-2}, a_{2q-1}) = (3, 1, 2q, q^2 - q - 3),$ (e) $(a_{q-1}, a_{2q-3}, a_{2q-1}) = (3, q + 1, q^2 - 3).$

Proof. Let C be a $[2q^2 - q - 3, 3, 2q^2 - 3q - 2]_q$ code with $q \ge 7$. By Lemma 2.2, $\gamma_0 = 2$ and $\gamma_1 = 2q - 1$. Since $(\gamma_1 - \gamma_0)\theta_1 + \gamma_0 - 2 = n$, a *j*-line through a 2-point satisfies $j \ge \gamma_1 - 2$, and $a_i = 0$ for $\theta_1 + 1 \le i \le \gamma_1 - 3$. Every *t*-line through a 1-point satisfies $n \le (\gamma_1 - 1)q + t$, so $q - 3 \le t$. Hence $a_i = 0$ for $1 \le i \le q - 4$.

Suppose $a_0 > 0$ and let l be a 0-line. Then $\lambda_2 = q^2 - 2q - 4 + \lambda_0 \ge q^2 - q - 3$ from (2.2), for $\lambda_0 \ge |l| = \theta_1$. It follows from (2.1) that $a_0 = 1$ and $a_i = 0$ for $1 \le i \le 2q - 5$, for $\theta_1 \le 2q - 4$. Calculating (2.6) $-2 \cdot (2.7)$, we get $a_{2q-2} = 2q^3 - 3q^2 - 2q + 3 - 2q\lambda_2 \ge 0$. Hence $\lambda_2 \le q^2 - 3q - 1$, a contradiction. Thus $a_0 = 0$.

Suppose $a_{\theta_1} > 0$. Let *l* be a θ_1 -line. From (2.8) with $i = \theta_1$ and t = 1, we have $a_{\theta_1} = 1$ and $a_i = 0$ for $i \notin \{q + 1, 2q - 3, 2q - 2, 2q - 1\}$, for q - 2 > 4. Calculating (2.6) $-2 \cdot (2.7)$, we get $a_{2q-2} = 2q^3 - 6q^2 + 8 - 2q\lambda_2 \ge 0$, whence $\lambda_2 \le q^2 - 3q$, contradicting (2.2). Hence $a_{\theta_1} = 0$.

Suppose $a_q > 0$. Let l be a q-line and let Q be the 0-point of l. Since $n = (\gamma_1 - 1)q + q - 3$ and $\gamma_1 - 3 > \theta_1$, every j-line $(\neq l)$ through a fixed 1-point of l satisfies $j \ge \gamma_1 - 2 = 2q - 3$. From (2.8) with i = q and t = 0, we have

$$c_{q-3} + c_{q-2} + c_{q-1} + c_q \le 1.$$

Assume $c_{q-3} = 1$. Then $a_{q-3} = a_q = 1$ and $a_i = 0$ for $i \notin \{q-3, q, 2q-3, 2q-2, 2q-1\}$. We have $\lambda_2 \ge q^2 - 2q$ from (2.2) since a (q-3)-line contains four 0-points. Calculating (2.6) $-2 \cdot (2.7)$, we get $a_{2q-2} = 2q^3 - 5q^2 + 4q + 3 - 2q\lambda_2 \ge 0$, whence $\lambda_2 \le q^2 - 5q/2 + 2$, a contradiction. One can get a contradiction similarly for the other cases $c_{q-2} = 1$; $c_{q-1} = 1$; $c_q = 1$; $c_{q-3} = c_{q-2} = c_{q-1} = c_q = 0$. Hence $a_q = 0$.

Thus $a_i = 0$ for all $i \notin \{q-3, q-2, q-1, 2q-3, 2q-2, 2q-1\}$. Applying Theorem 2.5, C is extendable. Hence by the previous lemmas, C can be obtained from a $[2q^2 - q - 1, 3, 2q^2 - 3q]_q$ code C' by removing two coordinates. Let P and Q be the point corresponding to the coordinates. There are five possible spectra (a)-(e) as stated, according to the cases (a)

P and *Q* are 1-points on the same (q-1)-line, (b) *P* and *Q* are 1-points from different (q-1)-lines, (c) *P* is a 1-point and *Q* is a 2-point, (d) *P* and *Q* are distinct 2-points, (e) *P* and *Q* are the same 2-points, respectively.

The following three lemmas give the characterization of $[110, 3, 96]_8$, $[109, 3, 95]_8$ and $[108, 3, 94]_8$ codes for q = 8. The proofs are quite similar to the proofs of Lemmas 4.2-4.4 and hence we omit here, see [14].

Lemma 4.5. The spectrum of a $[2q^2-2q-2, 3, 2q^2-4q]_q$ code with $q \ge 7$ is $(a_{q-2}, a_{2q-2}) = (4, \theta_2 - 4)$. A $(2q^2 - 2q - 2)$ -plane is obtained from two copies of PG(2, q) with 4-arc of lines deleted.

Lemma 4.6. A $[2q^2 - 2q - 3, 3, 2q^2 - 4q - 1]_q$ code with $q \ge 8$ is extendable and its spectrum is $(a_{q-3}, a_{q-2}, a_{2q-3}, a_{2q-2}) = (1, 3, q, q^2 - 3)$ or $(a_{q-2}, a_{2q-3}, a_{2q-2}) = (4, q + 1, q^2 - 4)$.

Lemma 4.7. A $[2q^2 - 2q - 4, 3, 2q^2 - 4q - 2]_q$ code with $q \ge 8$ is extendable and its spectrum is one of the followings:

(a) $(a_{q-4}, a_{q-2}, a_{2q-3}, a_{2q-2}) = (1, 3, 2q, q^2 - q - 3),$ (b) $(a_{q-3}, a_{q-2}, a_{2q-4}, a_{2q-3}, a_{2q-2}) = (2, 2, 1, 2q - 2, q^2 - q - 2),$ (c) $(a_{q-3}, a_{q-2}, a_{2q-4}, a_{2q-3}, a_{2q-2}) = (1, 3, 1, 2q - 1, q^2 - q - 3),$ (d) $(a_{q-2}, a_{2q-4}, a_{2q-3}, a_{2q-2}) = (4, 1, 2q, q^2 - q - 4),$

(e) $(a_{q-2}, a_{2q-4}, a_{2q-2}) = (4, q+1, q^2 - 4).$

Lemma 4.8. (1) The spectrum of a $[59, 3, 51]_8$ code satisfies $a_1 = a_2 = 0$. (2) The spectrum of a $[58, 3, 50]_8$ code satisfies $a_1 = 0$.

Proof. (1) Let C be a $[59, 3, 51]_8$ code. By Lemma 2.2, $\gamma_0 = 1$ and $\gamma_1 = 8$. Let l be a t-line containing a 1-point P. Considering the lines through P, we get $59 \le (8-1)8 + t$, so $3 \le t$. Hence $a_i = 0$ for $1 \le i \le 2$. One can prove (2) similarly.

For q even, there exists a (q(q-1)/2, q/2)-arc K in PG(2, q) corresponding to a Griesmer $[q(q-1)/2, 3, q(q-2)/2]_q$ code. Since $(q/2-1)\theta_1 + 1 = q(q-1)/2$, every line meeting K is a q/2-line. Hence, from (2.6) and (2.3), we get the spectrum of K as (1) in the following lemma. Note that the 0-lines form a (q+2)-arc of lines, that is, no three of which are concurrent.

Lemma 4.9. Assume $q \ge 4$ is even.

(1) The spectrum of a $[q(q-1)/2, 3, q(q-2)/2]_q$ code is $(a_0, a_{q/2}) = (q+2, q^2-1)$. (2) The spectrum of a $[q(q-1)/2 - 1, 3, q(q-2)/2 - 1]_q$ code is $(a_0, a_{q/2-1}, a_{q/2}) = (q+2, q+1, q^2-q-2)$.

Proof. (2) It is easy to see that the possible lines are 0-, (q/2 - 1)- and q/2-lines. Hence the spectrum follows from (2.3), (2.6) and (2.7) with $\lambda_2 = 0$.

Lemma 4.10. (1) The spectrum of a $[12,3,9]_8$ code is $(a_0, a_1, a_2, a_3) = (v, 69 - 3v, 3v - 27, 31 - v)$ with $9 \le v \le 23$. (2) The spectrum of a $[13,3,10]_8$ code is $(a_0, a_1, a_2, a_3) = (v, 63 - 3v, 3v - 24, 34 - v)$ with $8 \le v \le 21$. (3) The spectrum of a $[14,3,11]_8$ code is $(a_0, a_1, a_2, a_3) = (v, 58 - 3v, 3v - 23, 38 - v)$ with $8 \le v \le 19$. (4) The spectrum of a $[15,3,12]_8$ code is $(a_0, a_1, a_2, a_3) = (v, 54 - 3v, 3v - 24, 43 - v)$ with $8 \le v \le 18$.

Proof. (4) Let C be a $[15, 3, 12]_8$ code. We have $\gamma_0 = 1$ and $\gamma_1 = 3$ by Lemma 2.2. Hence, from (2.3), (2.6) and (2.7) with $\lambda_2 = 0$, we get the spectrum as stated, where we have $8 \le v \le 18$ from $a_1 \ge 0$ and $a_2 \ge 0$. (1)-(3) are proved similarly.

5 Lower bounds on $n_8(4, d)$

Known results on $n_8(3, d)$ implies that $n_8(4, d) \ge g_8(4, d) + 1$ for $225 \le d \le 232, 289 \le d \le 296$ and $337 \le d \le 360$, for the residual code (see [11]) of each $[g_8(4, d), 4, d]_8$ code with respect to a codeword with weight d cannot exist. It follows from Corollaries 2.11 and 2.13 that in order to give the lower bounds on $n_8(4, d)$ in Theorem 1.1, it suffices to prove the nonexistence of $[g_8(4, d), 4, d]_8$ codes for $d \in \{177, 185, 221, 286, 399, 407, 414, 639, 702, 750, 757, 813, 820\}$.

Lemma 5.1. There exists no $[938, 4, 820]_8$ code.

Proof. Let \mathcal{C} be a putative [938, 4, 820]₈ code. Let δ be an *i*-plane through a *t*-line. Then $t \leq (i+6)/8$ by Lemma 2.3. The spectrum of a γ_2 -plane $\delta_0 \neq \delta$ is (a) $(\tau_6, \tau_7, \tau_{14}, \tau_{15}) = (1, 2, 8, 62)$ or (b) $(\tau_7, \tau_{14}, \tau_{15}) = (3, 9, 61)$ by Lemma 4.3. So, $t \in \{6, 7, 14, 15\}$ and $i \geq 6 \cdot 8 - 6 = 42$. Hence $a_i = 0$ for all $i \notin \{42, 106\text{-}110, 114\text{-}118\}$ by Lemmas 2.3 and 4.1. The equality (2.7) gives

$$2850a_{42} + 66a_{106} + 55a_{107} + 45a_{108} + 36a_{109} + 28a_{110} + 6a_{114} + 3a_{115} + a_{116} = 64\lambda_2 - 18126.$$
(5.1)

Setting $i = \gamma_2 = 118$, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.1) are $(c_{42}, c_{118}) = (1, 7)$ for t = 6; $(c_{106}, c_{110}, c_{118}) = (5, 1, 2)$ for t = 7; $(c_{106}, c_{118}) = (1, 7)$ for t = 14; $(c_{114}, c_{118}) = (1, 7)$ for t = 15. Estimating the LHS of (5.1) for each of the two possible spectra of δ , we get

$$64\lambda_2 - 18126 \le 0 + 2850\tau_6 + 358\tau_7 + 66\tau_{14} + 6\tau_{15} \le 4466.$$

Hence $\lambda_2 \leq 353$ and the equality holds only if $a_{42} > 0$ and δ has spectrum (a). On the other hand, (2.2) gives $\lambda_2 = 353 + \lambda_0 \geq 353$, and we have $\lambda_2 \geq 384$ when $a_{42} > 0$ since a 42-plane has 31 0-points, a contradiction. This completes the proof.

Lemma 5.2. There exists no $[930, 4, 813]_8$ code.

Proof. Let C be a putative $[930, 4, 813]_8$ code. By Lemma 4.4, the spectrum of a γ_2 -plane is $(\tau_5, \tau_7, \tau_{14}, \tau_{15}) = (1, 2, 16, 54), (\tau_6, \tau_7, \tau_{13}, \tau_{14}, \tau_{15}) = (2, 1, 1, 14, 55), (\tau_6, \tau_7, \tau_{13}, \tau_{14}, \tau_{15}) = (1, 2, 1, 15, 54), (\tau_7, \tau_{13}, \tau_{14}, \tau_{15}) = (3, 1, 16, 53)$ or $(\tau_7, \tau_{13}, \tau_{15}) = (3, 9, 61)$, so there is no *i*-plane for all i < 34 by Lemma 2.3. Hence $a_i = 0$ for all $i \notin \{42, 98-101, 106-110, 114-117\}$ by Lemmas 2.3 and 4.1. It follows from (2.7) that

$$2775a_{42} + 171a_{98} + 153a_{99} + 136a_{100} + 120a_{101} + 55a_{106} + 45a_{107} + 36a_{108} + 28a_{109} + 21a_{110} + 3a_{114} + a_{115} = 64\lambda_2 - 17565.$$
(5.2)

Let δ be an *i*-plane with spectrum τ_i 's.

Setting i = 42, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.2) are $(c_{98}, c_{107}, c_{117}) = (2, 1, 5)$ for t = 0; $(c_{101}, c_{117}) = (2, 6)$ for t = 2; $(c_{98}, c_{114}, c_{115}, c_{117}) = (1, 1, 1, 5)$ for t = 3; $(c_{101}, c_{117}) = (1, 7)$ for t = 4; $(c_{109}, c_{117}) = (1, 7)$ for t = 5; $c_{117} = 8$ for t = 6. Estimating the LHS of (5.2) for each of the four possible spectra of δ (see Table 2), we get

$$64\lambda_2 - 17565 \le 2775 + 387\tau_0 + 240\tau_2 + 175\tau_3 + 120\tau_4 + 28\tau_5 + 0 \cdot \tau_6 \le 6456$$

whence $\lambda_2 \leq 375$. Since δ has at least 31 0-points, it follows from (2.2) that $\lambda_2 = 345 + \lambda_0 \geq 376$, a contradiction. Hence $a_{42} = 0$.

Setting i = 117, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.2) are $(c_{98}, c_{110}, c_{117}) = (4, 1, 3)$ for t = 5; $(c_{98}, c_{99}, c_{117}) = (3, 1, 3)$ for t = 6; $(c_{98}, c_{107}, c_{117}) = (3, 1, 4)$ for t = 7; $(c_{98}, c_{117}) = (1, 7)$ for t = 13; $(c_{106}, c_{117}) = (1, 7)$ for t = 14; $(c_{114}, c_{117}) = (1, 7)$ for t = 15. Estimating the LHS of (5.2) according to each of the five possible spectra of δ , we get

$$64\lambda_2 - 17565 \le 0 + 705\tau_5 + 666\tau_6 + 558\tau_7 + 171\tau_{13} + 55\tau_{14} + 3\tau_{15} \le 3396.$$

Hence $\lambda_2 \leq 327$, which contradicts that $\lambda_2 = 345 + \lambda_0 \geq 345$.

The following Lemma can be proved similarly as in the proof of Lemma 5.2 using Lemmas 2.3, 4.1, Table 2 for the possible spectra of a 42-plane, Lemma 4.6 for the possible spectra of a γ_2 -plane and estimating the LHS of (2.7), see [14].

Lemma 5.3. There exists no $[866, 4, 757]_8$ code.

Lemma 5.4. There exists no $[860, 4, 752]_8$ code.

Proof. Let C be a putative $[860, 4, 752]_8$ code. By Lemma 4.7, the spectrum of a γ_2 -plane δ is $(\tau_4, \tau_6, \tau_{13}, \tau_{14}) = (1, 3, 16, 53), (\tau_5, \tau_6, \tau_{12}, \tau_{13}, \tau_{14}) = (2, 2, 1, 14, 54), (\tau_5, \tau_6, \tau_{12}, \tau_{13}, \tau_{14}) = (1, 3, 1, 15, 53), (\tau_6, \tau_{12}, \tau_{13}, \tau_{14}) = (4, 1, 16, 52)$ or $(\tau_6, \tau_{12}, \tau_{14}) = (4, 9, 60)$, so there is no *i*-plane for all i < 28 by Lemma 2.3. Hence $a_i = 0$ for all $i \notin \{28, 92, 100, 108\}$ by Lemmas 2.3, 4.1 and 2.7. It follows from (2.3)-(2.5) that

$$45a_{28} + a_{92} = \lambda_2 - 225. \tag{5.3}$$

Recall that a 28-plane has a 0-line by Lemma 4.9. Setting i = 28 and t = 0, (2.8) has no solution since a 108-plane has no 0-line. Hence $a_{28} = 0$.

Setting i = 108, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.3) are $(c_{92}, c_{108}) = (5, 3)$ for t = 4; $(c_{92}, c_{100}, c_{108}) = (4, 1, 3)$ for t = 5; $(c_{92}, c_{108}) = (4, 4)$ for t = 6; $(c_{92}, c_{108}) = (1, 7)$ for t = 12; $(c_{100}, c_{108}) = (1, 7)$ for t = 13; $c_{108} = 8$ for t = 14. Estimating the LHS of (5.3) for each of the five spectra for δ , we get $\lambda_2 - 225 \leq$ $0 + 5\tau_4 + 4\tau_5 + 4\tau_6 + \tau_{14} \leq 25$. Hence $\lambda_2 \leq 250$. On the other hand, from (2.2), we get $\lambda_2 \geq 275$, a contradiction. This completes the proof.

Lemma 5.5. There exists no $[859, 4, 751]_8$ code.

Proof. Let C be a putative $[859, 4, 751]_8$ code. Note that γ_j is the same with that for a putative $[860, 4, 752]_8$ code for $0 \leq j \leq 2$. Hence there are five possible spectra for a γ_2 -plane δ , so there is no *i*-plane for all i < 27 by Lemma 2.3. Hence $a_i = 0$ for all $i \notin \{27, 28, 91, 92, 99\text{-}101, 107, 108\}$ by Lemmas 2.3 and 4.1. (2.7) gives

$$3240a_{27} + 3160a_{28} + 136a_{91} + 120a_{92} + 36a_{99} + 28a_{100} + 21a_{101} = 64\lambda_2 - 12920.$$
(5.4)

Setting i = 101, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.4) are $(c_{91}, c_{92}, c_{108}) = (2, 2, 4)$ for t = 5; $(c_{91}, c_{108}) = (2, 6)$ for t = 9; $(c_{107}, c_{108}) = (2, 6)$ for t = 13. Estimating the LHS of (5.4) according to each of the two spectra of a 101-plane in Table 2, we get

$$64\lambda_2 - 12920 \le 21 + 512\tau_5 + 272\tau_9 + 0 \cdot \tau_{13} \le 2741,$$

whence $\lambda_2 \leq 244$. From (2.2), we get $\lambda_2 = 274 + \lambda_0 \geq 274$ a contradiction. Hence $a_{101} = 0$. Applying Theorem 2.4, C is extendable, which contradicts Lemma 5.4.

Lemma 5.6. There exists no $[858, 4, 750]_8$ code.

Proof. Let C be a putative $[858, 4, 750]_8$ code. From the possible five spectra for a γ_2 -plane, we have $a_i = 0$ for all $i \notin \{26\text{-}28, 42, 90\text{-}92, 98\text{-}101, 106\text{-}108\}$ by Lemmas 2.3 and 4.1. It holds from (2.7) that

$$3321a_{26} + 3240a_{27} + 3160a_{28} + 2145a_{42} + 153a_{90} + 136a_{91} + 120a_{92} + 45a_{98} + 36a_{99} + 28a_{100} + 21a_{101} + a_{106} = 64\lambda_2 - 12831.$$
(5.5)

Setting i = 42, (2.8) has no solution satisfying $c_{42} > 0$ for all t. Hence $a_{42} \le 1$. Setting i = 101, the maximum possible contributions of c_j 's in (2.8) to the LHS of (2.3) are $(c_{42}, c_{107}, c_{108}) = (1, 1, 6)$ if $c_{42} > 0$ and $(c_{90}, c_{91}, c_{92}, c_{108}) = (1, 1, 2, 4)$ if $c_{42} = 0$ for t = 5; $(c_{90}, c_{91}, c_{108}) = (1, 1, 6)$ for t = 9; $(c_{106}, c_{107}, c_{108}) = (1, 1, 6)$ for t = 13. Since $a_{42} \le 1$, estimating the LHS of (5.5) for the two possible spectra of a 101-plane in Table 2, we get two inequalities:

(a)
$$64\lambda_2 - 12831 \le 21 + (2145 \cdot 1 + 529(\tau_5 - 1)) + 1 \cdot \tau_{13} = 4350$$
,

(b) $64\lambda_2 - 12831 \le 21 + 289\tau_9 + 1\tau_{13} = 2974.$

Hence $\lambda_2 \leq 268$. On the other hand, from (2.2), we have $\lambda_2 = 273 + \lambda_0 \geq 273$, a contradiction. Hence $a_{101} = 0$. Applying Theorem 2.5, C is extendable, which contradicts Lemma 5.5. This completes the proof.

Lemma 5.7. There exists no $[805, 4, 704]_8$ code.

Proof. Let C be a putative $[805, 4, 704]_8$ code. By Table 2, the spectrum of a γ_2 -plane δ is $(\tau_5, \tau_{13}) = (5, 68)$ or $(\tau_9, \tau_{13}) = (10, 63)$, so there is no *i*-plane for all i < 37 by Lemma 2.3. Hence $a_i = 0$ for all $i \notin \{69, 71, 73, 101\}$ by Lemmas 2.3, 4.1 and 2.7. Setting i = 101, the solutions of (2.8) are $(c_{69}, c_{101}) = (2, 6)$ for t = 5; $(c_{69}, c_{101}) = (1, 7)$ for t = 9; $c_{101} = 8$ for t = 13. Hence $a_{71} = a_{73} = 0$. It follows from (2.6) and (2.3) that $(a_{69}, a_{101}) = (10, 575)$, $\lambda_2 = 230$ and

$$\lambda_0 = 10. \tag{5.6}$$

Assume that the spectrum of δ is $(\tau_5, \tau_{13}) = (5, 68)$. Then δ has exactly ten 0-points from (2.5). For a 5-line l on δ , there are six 101-planes through l other then δ . Since l has four 0-points, we get $\lambda_0 \ge 10 + (10 - 4)6$, contradicting (5.6). Hence all 101-planes have spectrum $(\tau_9, \tau_{13}) = (10, 63)$ containing no 0-point from (2.5). For a 13-line l' on δ , all planes through l' are 101-planes of this type, whence $\lambda_0 = 0$, contradicting (5.6) again. This completes the proof.

Lemma 5.8. There exists no $[804, 4, 703]_8$ code.

Proof. Let C be a putative $[804, 4, 703]_8$ code. It follows from the possible spectra for a γ_2 -plane and from Lemmas 2.3 and 4.1 that $a_i = 0$ for all $i \notin \{68-73, 100, 101\}$. Then (2.7) gives

$$528a_{68} + 496a_{69} + 465a_{70} + 435a_{71} + 406a_{72} + 378a_{73} = 64\lambda_2 - 9696.$$
(5.7)

Suppose $a_{73} > 0$ and let δ be a 73-plane. Recall from Table 2 that δ has 9-lines only. Setting i = 73, the solution of (2.8) is $(c_{100}, c_{101}) = (5, 3)$ for t = 9. Hence $a_j = 0$ for all $j \notin \{73, 100, 101\}$ and $a_{73} = 1$. Then, (5.7) gives $\lambda_2 = 5037/32$, a contradiction. Hence $a_{73} = 0$. Setting i = 72 and t = 8, (2.8) has no solution. Hence $a_{72} = 0$. We can see $a_{71} = a_{70} = 0$ similarly. Thus we have $a_i = 0$ for all $i \notin \{68, 69, 100, 101\}$. Applying Theorem 2.4, C is extendable, which contradicts Lemma 5.7.

Lemma 5.9. There exists no $[803, 4, 702]_8$ code.

Proof. Let C be a putative $[803, 4, 702]_8$ code. It follows from the possible spectra for a γ_2 -plane and from Lemmas 2.3 and 4.1 that $a_i = 0$ for all $i \notin \{67-73, 99-101\}$, and (2.7) yields

$$561a_{67} + 528a_{68} + 496a_{69} + 465a_{70} + 435a_{71} + 406a_{72} + 378a_{73} + a_{99} = 64\lambda_2 - 9623.$$
(5.8)

The electronic journal of combinatorics ${\bf 18}~(2011),~\#{\rm P34}$

Setting i = 73, the maximum possible contribution of c_j 's in (2.8) to the LHS of (5.8) is $(c_{99}, c_{101}) = (3, 5)$ for t = 9. Estimating the LHS of (5.8) for the spectrum of a 73-plane $\tau_9 = 73$, we get $64\lambda_2 - 9623 \leq 378 + 3\tau_9 = 597$, whence $\lambda_2 \leq 159$. On the other hand, from (2.2), we get $\lambda_2 \geq 218$, a contradiction. Hence $a_{73} = 0$. We can prove $a_{72} = 0$ similarly. We also get $a_{71} = a_{70} = 0$ since (2.8) has no solution for (i, t) = (71, 7) and (i, t) = (70, 6). Thus we have proved that $a_i = 0$ for all $i \notin \{67-69, 99-101\}$. Applying Theorem 2.5, \mathcal{C} is extendable, which contradicts Lemma 5.8. This completes the proof.

Lemma 5.10. There exists no $[732, 4, 640]_8$ code.

Proof. Let C be a putative $[732, 4, 640]_8$ code. From Table 2, the spectrum of a γ_2 -plane δ is $(\tau_0, \tau_8, \tau_{12}) = (1, 9, 63), (\tau_4, \tau_{12}) = (6, 67)$ or $(\tau_4, \tau_8, \tau_{12}) = (1, 10, 62)$. Since δ has no *i*-line for i = 1-3, 5-7, 9-11, $a_i = 0$ for all $i \notin \{0, 28, 60, 62, 64, 92\}$ by Lemmas 2.3, 4.1 and 2.7. It also holds that $a_0 = a_{28} = a_{60} = a_{62} = a_{64} = 0$ since (2.8) has no solution for $(i, t) \in \{(0, 0), (28, 0), (60, 6), (60, 7), (62, 7), (64, 8)\}$, see Table 2 and Lemma 4.9 for the possible spectra for an *i*-plane. Hence $a_{92} = 585$, which contradicts (2.4).

For a putative $[731, 4, 639]_8$ code, we have $a_i = 0$ for all $i \notin \{0, 27, 28, 59-64, 91, 92\}$ by Lemmas 2.3, 4.1. One can rule out the possibility of *i*-planes for i = 0, 61-64 using Theorem 2.6 and (2.8). Hence, applying Theorem 2.4, we get a contradiction. Thus the following holds.

Lemma 5.11. There exists no $[731, 4, 639]_8$ code.

Lemma 5.12. There exists no $[476, 4, 416]_8$ code.

Proof. Let \mathcal{C} be a putative $[476, 4, 416]_8$ code. Then $\gamma_0 = 1$ by Theorem 2.2 and $\gamma_2 = n - d = 60$. Let δ be a γ_2 -plane. From Table 2, there are four possible spectra for δ . Since δ has no *i*-line for $i = 1, 2, 3, a_i = 0$ for all $i \notin \{0, 28, 60\}$ by Lemmas 2.3, 4.1. It follows from (2.3)-(2.5) that $105a_0 = -336$, a contradiction.

Lemma 5.13. There exists no $[475, 4, 415]_8$ code.

Proof. Let \mathcal{C} be a putative $[475, 4, 415]_8$ code. It follows from the possible spectra for a γ_2 -plane and from Lemmas 2.3 and 4.1 that $a_i = 0$ for all $i \notin \{0, 27, 28, 59, 60\}$. Suppose $a_0 > 0$. Setting i = t = 0, the possible solution for (2.8) is $(c_{59}, c_{60}) = (5, 3)$. Hence $\sum_{i \neq n, n-d \pmod{q}} a_i = a_0 = 1$, which contradicts Theorem 2.6 since \mathcal{C} is not extendable by Lemma 5.12. Hence $a_0 = 0$. Then, we can apply Theorem 2.4 so that \mathcal{C} is extendable, a contradiction again.

Lemma 5.14. There exists no $[474, 4, 414]_8$ code.

Proof. Let C be a putative $[474, 4, 414]_8$ code. From the possible spectra for a γ_2 -plane and from Lemmas 2.3, 4.1, we have $a_i = 0$ for all $i \notin \{0, 26\text{-}28, 42, 58\text{-}60\}$. Then, (2.7) with $\lambda_2 = 0$ gives

$$1770a_0 + 561a_{26} + 528a_{27} + 496a_{28} + 153a_{42} + a_{58} = 2841.$$
(5.9)

Setting i = t = 0, the possible solutions for (2.8) are $(c_{58}, c_{60}) = (3, 5)$, $(c_{58}, c_{59}, c_{60}) = (2, 2, 4)$, $(c_{58}, c_{59}, c_{60}) = (1, 4, 3)$ or $(c_{59}, c_{60}) = (6, 2)$. Hence $a_0 = 1$, $a_{26} = a_{27} = a_{28} = a_{42} = 0$ and $a_{58} \leq 3 \cdot 73 = 219$, which implies that the LHS of (5.9) is at most 1770 + 219 = 1989, a contradiction. Hence $a_0 = 0$. Applying Theorem 2.5, C is extendable, which contradicts Lemma 5.13. This completes the proof.

Lemma 5.15. There exists no $[467, 4, 408]_8$ code.

Proof. Let C be a putative $[467, 4, 408]_8$ code. By Lemma 4.8, the spectrum of a γ_2 -plane satisfies $\tau_1 = \tau_2 = 0$. Hence $a_i = 0$ for all $i \notin \{27, 59\}$ by Lemmas 2.3, 4.1 and 2.7. It follows from (2.6) that $a_{27} = 53/4$, a contradiction.

Lemma 5.16. There exists no $[466, 4, 407]_8$ code.

Proof. Let C be a putative $[466, 4, 407]_8$ code. We can see $a_i = 0$ for all $i \notin \{0, 26, 27, 28, 42, 58, 59\}$ similarly with the case for a putative $[467, 4, 408]_8$ code. It follows from (2.7) with $\lambda_2 = 0$ that

$$1711a_0 + 528a_{26} + 496a_{27} + 465a_{28} + 136a_{42} = 2996.$$
(5.10)

Suppose $a_0 > 0$. From the possible solutions for (2.8) with i = t = 0, we have $a_0 = 1$ and $a_{26} = a_{27} = a_{28} = a_{42} = 0$, contradicting (5.10). Hence $a_0 = 0$. Suppose $a_{28} > 0$. Let δ be a 28-plane. Then δ has spectrum (τ_0, τ_4) = (10, 63) by Lemma 4.9. Setting i = 28, the minimum possible contributions of c_j 's in (2.8) to the LHS of (5.10) are $(c_{42}, c_{59}) = (2, 6)$ for t = 0; $(c_{58}, c_{59}) = (2, 6)$ for t = 4. Estimating the LHS of (5.10) with the spectrum of δ , we get

$$2996 \ge 465 + 272\tau_0 + 0 \cdot \tau_4 = 3185,$$

a contradiction. Hence $a_{28} = 0$. Applying Theorem 2.4, C is extendable, which contradicts Lemma 5.15.

Lemma 5.17. There exists no $[458, 4, 400]_8$ code.

Proof. Let C be a putative $[458, 4, 400]_8$ code. We have $\gamma_0 = 1$ and $a_i = 0$ for all $i \notin \{0, 10, 26, 28, 42, 58\}$ by Lemmas 2.2, 2.3, 4.1, 2.7. It follows from (2.3)-(2.5) that $609a_0 + 384a_{10} + 128a_{26} + 105a_{28} = -288$, a contradiction.

Lemma 5.18. There exists no $[457, 4, 399]_8$ code.

Proof. Let \mathcal{C} be a putative $[457, 4, 399]_8$ code. By Lemma 4.8, the spectrum of a γ_2 -plane satisfies $\tau_1 = 0$. Hence $a_i = 0$ for all $i \notin \{0, 9, 10, 25\text{-}28, 33, 41, 42, 49, 57, 58\}$ by Lemmas 2.3 and 4.1. It follows from (2.7) with $\lambda_2 = 0$ that

$$1653a_0 + 1176a_9 + 1128a_{10} + 528a_{25} + 496a_{26} + 465a_{27} + 435a_{28} + 300a_{33} + 136a_{41} + 120a_{42} + 36a_{49} = 3192.$$
(5.11)

Setting i = t = 0, the possible solution for (2.8) is $(c_{57}, c_{58}) = (7, 1)$. Hence $a_0 = 1$ and $a_j = 0$ for $1 \le j \le 56$, contradicting (5.11). Hence $a_0 = 0$. Suppose $a_{27} > 0$. Setting i = 27 in (2.8), $c_{27} + c_{28} \le 1$ for t = 0 and $c_{27} + c_{28} = 0$ for t = 3, 4. Hence $\sum_{i \ne n, n-d \pmod{q}} a_i = a_{27} + a_{28} \le 1 + 1 \cdot 10 = 11$, which implies that \mathcal{C} is extendable by Theorem 2.6, a contradiction. Thus $a_{27} = 0$. One can prove $a_{28} = 0$ similarly. Applying Theorem 2.4, \mathcal{C} is extendable, which contradicts Lemma 5.17. This completes the proof.

Lemma 5.19. There exists no $[330, 4, 288]_8$ code.

Proof. Let \mathcal{C} be a putative $[330, 4, 288]_8$ code. From Table 2, there are four possible spectra for a γ_2 -plane. Since δ has no *i*-line for i = 1, It follows from Lemmas 2.3, 4.1 and 2.7 that $a_i = 0$ for all $i \notin \{0, 10, 26, 28, 42\}$. Hence, from (2.3)-(2.5), we get

$$147a_0 + 72a_{10} + 4a_{26} = 360. (5.12)$$

Setting i = t = 0, (2.8) has no solution. Hence $a_0 = 0$. Suppose $a_{10} > 0$ and let δ be a 10-plane. Recall from Table 2 that δ has spectrum $(\tau_0, \tau_2) = (28, 45)$. For i = 10, the solutions for (2.8) are $(c_{26}, c_{42}) = (1, 7)$ for t = 0; $c_{42} = 8$ for t = 2. Hence $a_{10} = 1$, $a_{28} = 0$ and $a_{26} = \tau_0 = 28$, which implies that the LHS of (5.12) is equal to $72 + 4 \cdot 28 = 184$, a contradiction. Hence $a_{10} = 0$. Then, from (5.12) and (2.6), we get $a_{28} = -480/7$, a contradiction.

Lemma 5.20. There exists no $[329, 4, 287]_8$ code.

Proof. Let C be a putative $[329, 4, 287]_8$ code. Since a γ_2 -plane has no 1-line, $a_i = 0$ for all $i \notin \{0, 9, 10, 25-28, 33, 41, 42\}$ by Lemmas 2.3 and 4.1.

Suppose $a_0 > 0$. Setting i = t = 0, the solution for (2.8) is $(c_{41}, c_{42}) = (7, 1)$. Hence $a_0 = 1$ and $a_j = 0$ for $1 \le j \le 40$. Then $\sum_{i \ne n, n-d \pmod{q}} a_i = a_0 = 1$, which contradicts Theorem 2.6. Hence $a_0 = 0$.

Suppose $a_{28} > 0$. A 28-plane has spectrum $(\tau_0, \tau_4) = (10, 63)$ by Lemma 4.9. Setting i = 28, the solutions for (2.8) satisfies $c_{27} + c_{28} \leq 2$ for t = 0 and $c_{27} + c_{28} = 0$ for t = 4. Hence $\sum_{i \neq n, n-d \pmod{q}} a_i = a_{27} + a_{28} \leq 1 + 2\tau_0 = 21$, which contradicts Theorem 2.6. Thus $a_{28} = 0$. One can prove $a_{27} = 0$ similarly.

Applying Theorem 2.4, C is extendable, which contradicts Lemma 5.19.

Lemma 5.21. There exists no $[328, 4, 286]_8$ code.

Proof. Let \mathcal{C} be a putative $[328, 4, 286]_8$ code. Since a γ_2 -plane has no 1-line, $a_i = 0$ for all $i \notin \{0, 8-10, 24-28, 32, 33, 40-42\}$ by Lemmas 2.3 and 4.1. It follows from (2.7) with $\lambda_2 = 0$ that

$$861a_0 + 561a_8 + 528a_9 + 496a_{10} + 153a_{24} + 136a_{25} + 120a_{26} + 105a_{27} + 91a_{28} + 45a_{32} + 36a_{33} + a_{40} = 4633.$$
(5.13)

We first note that $a_j \leq 1$ holds for all $j \leq 10$ from (2.1).

Suppose $a_0 > 0$. Setting i = t = 0, the maximum possible contribution of c_j 's in (2.8) to the LHS of (5.13) is $(c_{40}, c_{42}) = (4, 4)$. Hence $a_0 = 1$, $a_j = 0$ for $1 \le j \le 39$, and $a_{40} \le 4 \cdot 73 = 292$, which implies that the LHS of (5.13) is at most 861 + 292 = 1153, a contradiction. Thus $a_0 = 0$.

Suppose $a_{28} > 0$. A 28-plane has spectrum $(\tau_0, \tau_4) = (10, 63)$ by Lemma 4.9. For i = 28, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.13) are $(c_8, c_{40}, c_{42}) = (1, 1, 6)$ if $c_8 > 0$, $(c_9, c_{40}, c_{41}, c_{42}) = (1, 1, 1, 5)$ if $c_9 > 0$, $(c_{10}, c_{40}, c_{42}) = (1, 2, 5)$ if $c_{10} > 0$ and $(c_{24}, c_{42}) = (2, 6)$ if $c_8 = c_9 = c_{10} = 0$ for t = 0; $(c_{30}, c_{42}) = (2, 6)$ for t = 4. Since a_8, a_9, a_{10} are at most 1, estimating the LHS of (5.13), we get

$$4633 \le 91 + 561 \cdot 1 + 529 \cdot 1 + 498 \cdot 1 + 306(\tau_0 - 3) + 2\tau_4 = 3947,$$

a contradiction. Hence $a_{28} = 0$. One can prove $a_{27} = 0$ similarly. Applying Theorem 2.5, C is extendable, which contradicts Lemma 5.20. This completes the proof.

Lemma 5.22. There exists no $[254, 4, 221]_8$ code.

Proof. Let C be a putative $[254, 4, 221]_8$ code. Recall from Table 2 that the spectrum of a γ_2 -plane δ is $(\tau_0, \tau_3, \tau_5) = (9, 16, 48), (\tau_0, \tau_1, \tau_4, \tau_5) = (4, 5, 28, 36)$ or $(\tau_0, \tau_3, \tau_4, \tau_5) = (6, 10, 18, 39)$. Since δ has no 2-line, $a_i = 0$ for all $i \notin \{0, 1, 14, 15, 22\text{-}28, 30\text{-}33\}$ by Lemmas 2.3 and 4.1. It follows from (2.7) with $\lambda_2 = 0$ that

$$528a_0 + 496a_1 + 171a_{14} + 153a_{15} + 55a_{22} + 45a_{23} + 36a_{24} + 28a_{25} + 21a_{26} + 15a_{27} + 10a_{28} + 3a_{30} + a_{31} = 4715.$$
(5.14)

Suppose $a_0 > 0$. Setting a = c = 0 in (2.1) we have $b \ge 23$. Hence $a_0 = 1$ and $a_j = 0$ for $1 \le j \le 22$. Calculating $5 \cdot (2.6) - (5.14)$ gives $5a_{23} + 9a_{24} + 12a_{25} + 14a_{26} + 15a_{27} + 15a_{28} + 12a_{30} + 9a_{31} + 5a_{32} = -537$, a contradiction. Hence $a_0 = 0$. We can prove $a_1 = 0$ similarly.

Setting i = 14, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.14) are $(c_{14}, c_{28}, c_{33}) = (1, 1, 6)$ for t = 0; $(c_{22}, c_{30}, c_{31}, c_{33}) = (1, 1, 1, 5)$ for t = 1; $(c_{25}, c_{33}) = (1, 7)$ for t = 2; $c_{33} = 8$ for t = 3. Estimating the LHS of (5.14) with the spectrum of (3) in Lemma 4.10, we get

$$171 + 181\tau_0 + 59\tau_1 + 28\tau_2 + 0 \cdot \tau_3 = 2949 + 88v \le 2949 + 88 \cdot 19 = 4533,$$

a contradiction. Hence $a_{14} = 0$. One can see $a_{15} = 0$ similarly.

Now, calculating $5 \cdot (2.6) - (5.14)$ again gives $5a_{23} + 9a_{24} + 12a_{25} + 14a_{26} + 15a_{27} + 15a_{28} + 12a_{30} + 9a_{31} + 5a_{32} = -900$, a contradiction.

The following theorem gives the nonexistence of $[213, 4, 185]_8$ codes.

Theorem 5.23. There exists no $[(q^3 - q^2 - 3q + 2)/2, 4, q^3/2 - q^2 - q + 1]_q$ code for even $q \ge 4$.

Proof. For a putative Griesmer $[(q^3 - q^2 - 3q + 2)/2, 4, q^3/2 - q^2 - q + 1]_q$ code, the spectrum of a γ_2 -plane is $(\tau_0, \tau_{q/2}) = (q+2, q^2-1)$ by Lemma 4.9. Hence we have $a_i = 0$ for all $i \notin \{0, (q^2 - 3q + 2)/2, \cdots, (q^2 - q)/2\}$ by Lemma 2.3 and the Griesmer bound. It follows from (2.7) with $\lambda_2 = 0$ that

$$\binom{\gamma_2}{2}a_0 + \sum_{j=0}^{q-3} \binom{q-1-j}{2}a_{s+j} = (q^5 + q^4 - 12q^2 - 4q + 8)/8, \tag{5.15}$$

where $s = (q^2 - 3q + 2)/2$. We can see $a_0 \le 1$ from (2.1). Calculating $4(q-2) \cdot (2.6) - 8 \cdot (5.15)$ gives $0 \le \sum_{j=0}^{q-2} 4j(q-1-j)a_{s+j} = -(q^5 - 5q^4 + 8q^3 - 4q^2) + (q^4 - 4q^3 + 5q^2 - 2q)a_0 \le -q(q^4 - 6q^3 + 12q^2 - 9q + 2) < 0$, a contradiction.

Lemma 5.24. There exists no $[204, 4, 177]_8$ code.

Proof. For a putative $[204, 4, 177]_8$ code, the spectrum of a γ_2 -plane δ is $(\tau_0, \tau_3, \tau_4) = (10, 9, 54)$ by Lemma 4.9. Since δ has no *t*-line for t = 1, 2, we have $a_i = 0$ for all $i \notin \{0, 12\text{-}15, 20\text{-}27\}$ by Lemmas 2.3 and 4.1. Then, (2.7) gives

$$351a_0 + 105a_{12} + 91a_{13} + 78a_{14} + 66a_{15} + 21a_{20} + 15a_{21} + 10a_{22} + 6a_{23} + 3a_{24} + a_{25} = 4497.$$
(5.16)

It is easy to see that $a_0 \leq 1$ from (2.1).

Suppose $a_{15} > 0$. Setting i = 15, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.16) are $(c_0, c_{27}) = (1, 7)$ if $c_0 > 0$ and $(c_{12}, c_{15}, c_{27}) = (1, 1, 6)$ if $c_0 = 0$ for t = 0; $(c_{15}, c_{26}) = (1, 7)$ for t = 1 since $c_{27} = 0$; $(c_{23}, c_{26}) = (1, 7)$ for t = 2 since $c_{27} = 0$; $(c_{24}, c_{27}) = (1, 7)$ for t = 3. Since $a_0 \le 1$, estimating the LHS of (5.16) with the spectrum of (4) in Lemma 4.10, we get

$$66 + 351 \cdot 1 + 171(\tau_0 - 1) + 66\tau_1 + 6\tau_2 + 3\tau_3 = 3795 - 12v \le 3795 - 12 \cdot 8 = 3699,$$

a contradiction. Hence $a_{15} = 0$.

Suppose $a_0 > 0$. Then, we have $a_0 = 1$ and $a_{12} = a_{13} = a_{14} = 0$ from (2.1), and calculating $3 \cdot (2.6) - (5.16)$ gives $3a_{21} + 5a_{22} + 6a_{23} + 6a_{24} + 5a_{25} + 3a_{26} = -1518$, a contradiction. Hence $a_0 = 0$.

Suppose $a_{14} > 0$. For i = 14, the maximum possible contributions of c_j 's in (2.8) to the LHS of (5.16) are $(c_{14}, c_{27}) = (2, 6)$ for t = 0; $(c_{20}, c_{22}, c_{26}) = (1, 1, 6)$ for t = 1 since

 $c_{27} = 0$; $(c_{24}, c_{26}) = (1, 7)$ for t = 2 since $c_{27} = 0$; $(c_{25}, c_{27}) = (1, 7)$ for t = 3. Estimating the LHS of (5.16) with the spectrum of (3) in Lemma 4.10, we get

 $78 + 156\tau_0 + 31\tau_1 + 3\tau_2 + 1\tau_3 = 1835 + 71v \le 1835 + 71 \cdot 19 = 3184,$

a contradiction. Hence $a_{14} = 0$. One can prove $a_{13} = a_{12} = 0$ similarly. Now, calculating $3 \cdot (2.6) - (5.16)$ gives $3a_{21} + 5a_{22} + 6a_{23} + 6a_{24} + 5a_{25} + 3a_{26} = -1518$, a contradiction. This completes the proof.

References

- A. Betten, E.J. Cheon, S.J. Kim, T. Maruta, The classification of (42,6)₈ arcs, Adv. Math. Commun., to appear.
- [2] A. Betten, E.J. Cheon, S.J. Kim, T. Maruta, The classification of $(33, 5)_8$ arcs, in preparation.
- [3] M. Grassl, Tables of linear codes and quantum codes (electronic table, online), http://www.codetables.de/.
- [4] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. **116** (1993) 229–268.
- [5] R. Hill, Optimal linear codes, in: C. Mitchell, ed., Cryptography and Coding II (Oxford Univ. Press, Oxford, 1992) 75–104.
- [6] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr. 17 (1999) 151–157.
- [7] R. Hill, P. Lizak, Extensions of linear codes, Proc. IEEE Int. Symposium on Inform. Theory (Whistler, Canada, 1995) 345.
- [8] R. Hill, D.Z. Newton, Optimal ternary linear codes, Des. Codes Cryptogr. 2 (1992) 137-157.
- [9] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.
- [10] J.W.P. Hirschfeld, Projective Geometries over Finite Fields 2nd ed., Clarendon Press, Oxford, 1998.
- [11] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
- [12] S. Innamorati, F. Zuanni, Minimum blocking configurations, Journal of Geometry 55 (1996) 86-98.
- [13] C. Jones, A. Matney, H. Ward, Optimal four-dimensional codes over GF(8), Electronic J. Combinatorics 13 (2006), #R43.
- [14] R. Kanazawa, On the minimum length of linear codes of dimension 4, MSc Thesis, Osaka Prefecture University, 2011.

- [15] A. Kohnert, Best linear codes, http://www.algorithm.uni-bayreuth.de/en/research/ Coding_Theory/Linear_Codes_BKW/
- [16] I. Landjev, L. Storme, A study of (x(q+1), x; 2, q)-minihypers, Des. Codes Cryptogr 54 (2010) 135-147.
- [17] T. Maruta, On the minimum length of q-ary linear codes of dimension four, Discrete Math. 208/209 (1999) 427–435.
- [18] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001) 165-177.
- [19] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.geocities.jp/mars39geo/griesmer.htm.
- [20] T. Maruta, I.N. Landjev, A. Rousseva, On the minimum size of some minihypers and related linear codes, Des. Codes Cryptogr. 34 (2005) 5–15.
- [21] T. Maruta, Y. Yoshida, A generalized extension theorem for linear codes, submitted for publication.
- [22] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. 308 (2008) 842–854.
- [23] H.N. Ward, Divisible codes a survey, Serdica Math, J. 27 (2001) 263-278.
- [24] Y. Yoshida, T. Maruta, An extension theorem for $[n, k, d]_q$ codes with gcd(d, q) = 2. Aust. J. Combin. **48** (2010) 117–131.

Table 3: Values and bounds for $n_8(4, d)$ for $d \leq 832$.

d	$g_8(4, d)$	$n_8(4, d)$	d	$g_8(4, d)$	$n_8(4, d)$	d	$g_8(4, d)$	$n_8(4, d)$
1	4	4	61	71	72	121	140	141-142
2	5	5	62	72	73	122	141	142 - 143
3	6	6	63	73	74	123	142	143 - 144
4	7	7	64	74	75	124	143	144 - 145
5	8	8	65	77	77	125	144	145 - 146
6	9	9	66	78	78	126	145	146-147
7	10	11	67	79	79	127	146	147-148
8	10	19	68	80	80	121	140	148-140
0	12	12	60	81	81.89	120	150	140 - 143 150 151
10	14	13	70	81	81-82	129	150	151 152
10	14	14	70	02	02-03	100	151	151-152
11	15	15	(1	83	83-84	131	152	152-153
12	10	10	12	84	84-85	132	153	153-154
13	17	17-18	13	80	80-87	133	154	154-150
14	18	18-19	74	87	87-88	134	155	155-157
15	19	20	75	88	88-89	135	156	156 - 158
16	20	21	76	89	89-90	136	157	157 - 159
17	22	22	77	90	90-91	137	159	159 - 161
18	23	23	78	91	91 - 92	138	160	160 - 162
19	24	24	79	92	92-93	139	161	161 - 163
20	25	25	80	93	94	140	162	162 - 164
21	26	26 - 27	81	95	95-96	141	163	163 - 165
22	27	28	82	96	96-97	142	164	164 - 166
23	28	29	83	97	97-98	143	165	165 - 167
24	29	30	84	98	98-99	144	166	166 - 168
25	31	31-32	85	99	99-100	145	168	168 - 170
26	32	32-33	86	100	100-101	146	169	169 - 171
27	33	33-34	87	101	102	147	170	170 - 172
28	34	34-35	88	102	103	148	171	171-173
29	35	35-36	89	104	104 - 105	149	172	172 - 174
30	36	37	90	105	105 - 106	150	173	173 - 175
31	37	38	91	106	106-107	151	174	174-176
32	38	39	92	107	107-108	152	175	175-177
33	40	40-41	93	108	108-109	153	177	177-179
34	41	41-42	94	109	109-110	154	178	178-180
35	42	42-43	95	110	111	155	179	179-181
36	43	43-44	96	111	112	156	180	180-182
37	44	44-45	97	113	114	157	181	181-183
38	45	46-47	98	114	115	158	182	182-184
39	46	47-48	99	115	116	159	183	183-185
40	47	48-49	100	116	117	160	184	184-186
40	49	49-50	101	117	118	161	186	186-188
41	49 50	49-50 50-51	101	118	110	162	187	187-180
42	51	51-52	102	110	120	162	188	188-100
40	52	52 52	103	110	120	164	180	180 101
44	52	52-55	104	120	121	165	109	100 102
40	54	55	105	122	123	166	101	190-192 101 103
40	55	56	107	123	124	167	102	102 104
41	55	50	107	124	120	107	192	192-194
40	50	57	100	120	120	100	195	195-195
49	50	50	109	120	127	109	195	190-197
50	59	59	110	127	128	170	190	196-198
51	00	00	111	128	129	170	197	197-199
52	61	61	112	129	130	172	198	198-200
53	62	62	113	131	132	173	199	199-201
54	63	63	114	132	133	174	200	200-202
55	64	64	115	133	134	175	201	201-203
56	65	65	116	134	135	176	202	202-204
57	67	68	117	135	136	177	204	205-206
58	68	69	118	136	137	178	205	206-208
59	69	70	119	137	138	179	206	207-209
60	70	71	120	138	139	180	207	208-210

	Table	e 3: Contin	ued.						
181 208 209-211 241 278 278-279 301 345 346-347 183 210 211-213 243 279 280-281 303 347 348-349 184 211 212-214 244 280 281-282 304 348 349-350 185 213 214-215 216 224-283 306 351 352-353 186 214 215-216 246 282 283-284 306 351 352-353 187 215 216-217 247 288-289 310 355 356-357 190 218 219-220 250 287 288-289 311 366 357-358 193 223 223-224 253 290 291-292 313 359 366.366 194 224 224-224 254 292 293-294 315 361 362-363 195 225 225-227 255 <	d	$g_8(4, d)$	$n_8(4, d)$	d	$g_{8}(4, d)$	$n_8(4, d)$	d	$g_{8}(4, d)$	$n_8(4, d)$
182 200 210-212 242 278 279 280 302 346 347-348 184 211 212-214 244 280 281-282 304 348 348-349 185 213 214-215 245 281 282-283 305 350 351-352 186 214 215-216 246 282 284-286 307 352 353-354 188 216 217-218 248 284 285-287 308 354 355-356-357 190 216 217-221 251 287 288-289 311 356 366-367 193 223 232-242 253 290 291-292 313 359 360-361 194 224 224-226 254 291 292-293 314 360 361-362 195 225 225-227 255 292 293-294 315 361 362-363 196 2	181	208	209-211	241	277	278 - 279	301	345	346 - 347
183 210 211-213 243 279 280-281 303 347 348-349 184 211 212-215 245 281 282-283 305 350 351-352 186 214 215-216 246 282 283-284 306 351 352-353 187 216 217-218 248 284 285-287 308 353 354-355 189 217 218-219 249 286 287-288 300 355 356-357 191 219 220-221 252 225 227 255 292 293 314 360 366-361 194 224 224-224 254 292 293 294-293 316 366 366-363 196 226 225-227 255 292 293-294 315 361 362-363 197 227 227-229 257 296 296 317 363 366-367 <td>182</td> <td>209</td> <td>210-212</td> <td>242</td> <td>278</td> <td>279-280</td> <td>302</td> <td>346</td> <td>347 - 348</td>	182	209	210-212	242	278	279-280	302	346	347 - 348
184 211 212-214 244 280 281-282 304 348 349-350 185 213 214-215-216 246 282 283-284 306 351 352-353 187 216 217-218 244 284 284-287 308 353 354-355 188 216 217-218 248 284-287 309 354 355-356 190 218 219-220 250 289 290-291 311 356 357-358 192 220 221-222 252 289 290-291 312 357 366-367 194 224 224-226 254 291 292-231 314 360 361-362 195 225 225-27 257 296 296 317 363 364-366 197 227 227-229 237 318 364 365-367 190 229 292-331 299 299 29	183	210	211 - 213	243	279	280 - 281	303	347	348 - 349
185 213 214-215 245 281 282-283 305 350 351-352 186 214 215-216 247 283 284-286 307 352 353-354 188 216 217-218 248 284 285-287 308 353 354-355 189 217 218-219 249 286 287-288 300 354 355-356 190 218 219-220 251 287 288-289 311 356 357-358 192 220 221-222 252 289 290-291 312 357 358-359 193 223 224 245-227 255 292 293-244 315 361 362-363 196 226 226-229 256 292 294-245 316 364-366 198 228 228-230 258 297 296 317 363 364-366 199 229 292-3	184	211	212-214	244	280	281-282	304	348	349-350
186 214 215-216 246 282 283-284 306 351 352-333 187 215 216-217 247 283 284-286 307 352 353-354 189 217 218-219 249 286 287-288 309 354 355-356 190 218 219-220 251 288 289-290 311 356 357-358 192 220 221-222 252 299 291-292 313 359 360-361 194 224 224-226 254 291 292-293 314 360 361-362 195 225 225-225 257 296 296 317 363 364-366 198 228 228-230 258 297 297 318 364 366 367-369 200 230 232-234 261 300 302-303 323 371 373-374 201 232	185	213	214-215	245	281	282-283	305	350	351-352
187 215 216-217 247 283 284-286 307 352 353-354 188 216 217-218 248 284 285-287 308 353 354-355 190 218 219-220 250 287 288-289 310 355 356-357 191 219 220-221 251 288 289-290 311 356 367-358 192 220 221-222 252 289 290-291 312 357 358-350 193 223 232-242 253 290 291-292 314 360 361-362 196 226 225-230 258 297 297 318 364 356 366 198 228 228-230 258 297 297 318 364 356 366 366 366 366 366 366 366 366 366 366 366 366 366 366<	186	214	215-216	246	282	283-284	306	351	352-353
	187	215	216-217	247	283	284-286	307	352	353-354
189 217 218 219 249 249 286 287 288 280 300 354 353-350 191 219 220 221-222 251 288 288-280 310 355 358-359 193 223 232-224 253 290 291-292 313 359 360-361 194 224 224-226 255 292 293-294 315 361 362-363 195 225 225-227 255 292 294-295 316 362 363-364 196 226 226-228 256 293 294-295 316 366 366-368 200 230 230-232 260 299 299-300 320 366 367-369 201 232 232-237 264 303 330-304 321 369 370-371 203 234 234-238 265 305 305 325 373 373-374 205 236 236-238 266 305 306	188	216	217-218	248	284	285-287	308	353	354-355
	189	217	218-219	249	286	287-288	309	354	355-356
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	190	218	219-220	250	287	288-289	310	300	300-307
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	191	219	220-221	251	288	289-290	311	350	307-308
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	192	220	221-222	202	209	290-291	012 919	307 250	260 261
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	195	223	223-224	255	290	291-292	313	360	361 362
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	105	224	224-220	255	291	292-293	314	361	362 363
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	195	220	220-221	256	292	293-294	316	362	363-364
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197	220 227	220-220	257	295	294-295	317	363	364-366
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	198	221	228-230	258	297	297	318	364	365-367
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	199	229	229-231	259	298	298-299	319	365	366-368
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	230	230-232	260	299	299-300	320	366	367-369
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	232	232-234	261	300	300-301	321	369	369-370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202	233	233-235	262	301	301-302	322	370	370-371
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203	234	234-236	263	302	302-303	323	371	371-372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	204	235	235-237	264	303	303-304	324	372	372-373
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205	236	236-238	265	305	305	325	373	373-374
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	206	237	237 - 239	266	306	306	326	374	374 - 375
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207	238	238-241	267	307	307	327	375	375-376
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208	239	239-242	268	308	308	328	376	376-377
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	209	241	241 - 243	269	309	309	329	378	378 - 380
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	242	242 - 244	270	310	310	330	379	379 - 381
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211	243	243 - 245	271	311	311	331	380	380 - 382
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212	244	244 - 246	272	312	312	332	381	381 - 383
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	213	245	245-247	273	314	314-315	333	382	382-384
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	214	246	246-248	274	315	315-316	334	383	383-385
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	215	247	247-249	275	316	316-317	335	384	384-386
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216	248	248-250	276	317	317-318	330	385	385-387
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	217 218	200 251	250-252	211	310 310	310-319	228 228	388	380 300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210 210	251	251-255	210	319	319-320	330	380	309-390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	252	253-255	210	321	321-322	340	390	391-392
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	200 254	255-257	281	323	323-324	341	391	392-393
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	222	255	256-258	282	324	324-325	342	392	393-394
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	223	256	257 - 259	283	325	325-326	343	393	394-395
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	224	257	258-260	284	326	326-327	344	394	395-396
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	225	259	260-261	285	327	327-328	345	396	397-398
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	226	260	261-262	286	328	329	346	397	398-399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227	261	262-263	287	329	330	347	398	399-400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228	262	263 - 265	288	330	331	348	399	400-401
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	229	263	264 - 266	289	332	333 - 334	349	400	401 - 402
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230	264	265 - 267	290	333	334 - 335	350	401	402 - 403
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	231	265	266 - 268	291	334	335-336	351	402	403-404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232	266	267-269	292	335	336-337	352	403	404-405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233	268	269-270	293	336	337-338	353	405	406-407
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	234	269	270-271	294	337	338-339	354	406	407-408
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	235	270	271-272	295	338	339-340	355 250	407	408-409
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	230 227	271	212-213	290	339	340-341	300 257	408	409-410
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	237	272	213-213	291	341 240	342-343 242-344	307 950	409	410-411
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∠əð 220	213 974	214-210 975,977	298 200	342 242	343-344 344, 245	350 350	410 711	411-412 419-419
	$\frac{233}{240}$	275	276-278	300	344	345-346	360	412	413-414

The electronic journal of combinatorics $\mathbf{18}$ (2011), $\#\mathrm{P34}$

- m 1 1	0	a 1	
ana	×۰	Continued	
1 6 0 0 0		CANTERING CO.	

d	$q_8(4, d)$	$n_8(4, d)$	d	$q_8(4, d)$	$n_8(4, d)$	d	$q_8(4, d)$	$n_8(4, d)$
361	414	415-416	421	482	483	481	551	551
362	415	416-417	422	483	484	482	552	552
363	416	417-418	423	484	485	483	553	553
364	417	418-419	424	485	486	484	554	554
365	418	419-420	425	487	488	485	555	555
366	419	420-421	426	488	489	486	556	556
367	420	421-422	427	489	490	487	557	557
368	421	422-423	428	490	491	488	558	558
369	423	424-425	420	491	492	489	560	560
370	420	425-426	430	492	492	400	561	561
371	425	426-427	400	492	490	401	562	562
372	426	420-421	432	495	494	491	563	563
373	420	421-420	432	494	495	492	564	564
374	421	420-429	433	490	497	490	565	565
975	420	429-430	494	491	498	494	566	566
276	429	430-431	435	498	499	495	567	567
370	430	431-432	430	4 <i>99</i> 500	500	490	560	560
311	432	433	407	500	501	497	509	509
310	433	434	438	501	502	498	570	570
379	434	435-436	439	502	503	499	571	571
380	435	436-437	440	503	504	500	572	572
381	436	437-438	441	505	505	501	573	573
382	437	438-439	442	506	506	502	574	574
383	438	439-440	443	507	507	503	575	575
384	439	440-441	444	508	508	504	576	576
385	442	442	445	509	509	505	578	578
386	443	443	446	510	510	506	579	579
387	444	444	447	511	511	507	580	580
388	445	445	448	512	512	508	581	581
389	446	446	449	515	515	509	582	582
390	447	447	450	516	516	510	583	583
391	448	448	451	517	517	511	584	584
392	449	449	452	518	518	512	585	585
393	451	451 - 452	453	519	519	513	589	589
394	452	452 - 453	454	520	520	514	590	590
395	453	453 - 454	455	521	521	515	591	591
396	454	454 - 455	456	522	522	516	592	592
397	455	455 - 456	457	524	524	517	593	593
398	456	456 - 457	458	525	525	518	594	594
399	457	458	459	526	526	519	595	595
400	458	459	460	527	527	520	596	596
401	460	460-461	461	528	528	521	598	598
402	461	461-462	462	529	529	522	599	599
403	462	462-463	463	530	530	523	600	600
404	463	463-464	464	531	531	524	601	601
405	464	464-465	465	533	533	525	602	602
406	465	465-466	466	534	534	526	603	603
407	466	467	467	535	535	527	604	604
408	467	468	468	536	536	528	605	605
409	469	469-470	469	537	537	529	607	607
410	470	470-471	470	538	538	530	608	608
411	471	471-472	471	539	539	531	609	609
412	472	472-473	472	540	540	532	610	610
413	473	473-474	473	549	542	533	611	611
414	474	475	474	543	543	534	619	612
415	475	476	475	544	544	535	612	613
416	410	477	476	5/5	545	536	614	614
417	410	470	477	546	546	537	616	616
41 <i>1</i> /10	410	419	411	540 547	540 547	500	617	617
410	419	400	410	041 E 40	549	520	017	619
419	480	401	479	048 540	040 E 40	539	018	010 610
420	481	482	480	549	549	540	619	019

- T 1 1	0	a 1
Table	<u>≺</u> .	Continued

d	$q_8(4, d)$	$n_8(4, d)$	d	$q_8(4, d)$	$n_8(4, d)$	d	$q_8(4, d)$	$n_8(4, d)$
541	620	620	601	689	689-690	661	757	757-758
542	621	621	602	690	690-691	662	758	758-759
543	622	622	603	691	691-692	663	759	759-760
544	623	623	604	692	692-693	664	760	760-761
545	625	625	605	603	603 604	665	762	762 763
546	626	626	606	604	604 605	666	762	762 764
540	020	020	000	094	094-095	000	703	703-704
547	627	027	607	695	095-090	007	764	704-705
548	628	628	608	696	696-697	668	765	765-766
549	629	629	609	698	698-699	669	766	766-767
550	630	630	610	699	699-700	670	767	767-768
551	631	631	611	700	700-701	671	768	768 - 769
552	632	632	612	701	701 - 702	672	769	769-770
553	634	634	613	702	702 - 703	673	771	771-772
554	635	635	614	703	703 - 704	674	772	772-773
555	636	636	615	704	704-705	675	773	773-774
556	637	637	616	705	705-706	676	774	774-775
557	638	638	617	707	707-708	677	775	775-776
558	639	639	618	708	708-709	678	776	776-777
559	640	640	619	709	709-710	679	777	777-778
560	641	641	620	710	710-711	680	778	778-779
561	643	643	621	711	711-712	681	780	780-781
562	644	644	622	712	712-713	682	781	781-782
563	645	645	622	712	712 - 710 713 - 714	683	782	782 783
505	640	645	624	713	713-714	694	102	102-103
504	040	040	024	714	714-713	004	100	100-104
505	047 649	047	020	716	(10-(1)	080	784	184-180
566	648	648	626	717	717-718	686	785	785-786
567	649	649	627	718	718-719	687	786	786-787
568	650	650	628	719	719-720	688	787	787-788
569	652	652 - 653	629	720	720-721	689	789	789-790
570	653	653-654	630	721	721-722	690	790	790-791
571	654	654 - 655	631	722	722 - 723	691	791	791-792
572	655	655 - 656	632	723	723-724	692	792	792 - 793
573	656	656 - 657	633	725	725 - 727	693	793	793-794
574	657	657 - 658	634	726	726-728	694	794	794 - 795
575	658	658-659	635	727	727 - 729	695	795	795 - 796
576	659	659-660	636	728	728-730	696	796	796-797
577	662	662	637	729	729-731	697	798	798-799
578	663	663	638	730	730-732	698	799	799-800
579	664	664	639	731	732-733	699	800	800-801
580	665	665	640	732	733-734	700	801	801-802
581	666	666-667	641	735	735-736	701	802	802-803
582	667	667-668	642	736	736-737	702	803	804
583	668	668-669	643	737	737-738	703	804	805
584	669	669-670	644	738	738-739	704	805	806
585	671	671-672	645	730	739-740	704	808	808
586	679	672.672	646	739	740.741	706	200	800
500	672	672 674	647	740	740-741	700	810	810
501	073	073-074	047	741	741-742	700	010	010
500	074	074-075	040	742	742-745	700	011	011
589	675	675-676	649	744	744-745	709	812	812
590	676	676-677	650	745	745-746	710	813	813
591	677	677-678	651	746	746-747	711	814	814
592	678	678-679	652	747	747-748	712	815	815
593	680	680-681	653	748	748-749	713	817	817
594	681	681 - 682	654	749	749-750	714	818	818
595	682	682 - 683	655	750	750-751	715	819	819
596	683	683-684	656	751	751 - 752	716	820	820
597	684	684 - 685	657	753	753 - 754	717	821	821
598	685	685-686	658	754	754 - 755	718	822	822
599	686	686-687	659	755	755-756	719	823	823
600	687	687-688	660	756	756-757	720	824	824

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table	3: Contin	ued.			
721 826 826 781 894 894 722 827 827 782 895 895 723 828 827 783 896 896 724 829 829 784 897 897 725 830 830 785 899 $899-900$ 726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-906$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-917-918$ 743 850 $850-851$ 803 </td <td>d</td> <td>$g_8(4, d)$</td> <td>$n_8(4, d)$</td> <td>d</td> <td>$g_8(4, d)$</td> <td>$n_8(4, d)$</td>	d	$g_8(4, d)$	$n_8(4, d)$	d	$g_8(4, d)$	$n_8(4, d)$
722 827 827 782 895 895 723 828 828 783 896 896 724 829 829 784 897 897 725 830 830 785 899 $899-900$ 726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-908$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-912$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $855-856$ 80	721	826	826	781	894	894
723 828 828 783 896 896 724 829 829 784 897 897 725 830 830 785 899 $899-900$ 726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-905$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 803 919 $919-920$ 744 851 $851-852$ <td>722</td> <td>827</td> <td>827</td> <td>782</td> <td>895</td> <td>895</td>	722	827	827	782	895	895
724 829 829 784 897 897 725 830 830 785 899 $899-900$ 726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-909$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-912$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-$	723	828	828	783	896	896
725 830 830 785 899 $899-900$ 726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-905$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 <	724	829	829	784	897	897
726 831 831 786 900 $900-901$ 727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-902$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-917-918$ 742 849 $849-850$ 802 918 $918-912$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 747 855 $855-856$ 807 923 $923-924$ 748 85	725	830	830	785	899	899-900
727 832 832 787 901 $901-902$ 728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-909$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-928$ 742 849 $849-850$ 802 918 $918-919$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $857-851$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $857-856$ 807 923 $923-924$ 748 85	726	831	831	786	900	900-901
728 833 833 788 902 $902-903$ 729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-902$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-919$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $855-856$ 807 923 $923-924$ 744 851 $857-858$ 806 922 $922-923$ 750 858 859 810 927 $927-928$ 751 85	727	832	832	787	901	901-902
729 835 $835-836$ 789 903 $903-904$ 730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-906$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-912$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 <td< td=""><td>728</td><td>833</td><td>833</td><td>788</td><td>902</td><td>902-903</td></td<>	728	833	833	788	902	902-903
730 836 $836-837$ 790 904 $904-905$ 731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-905$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 <td< td=""><td>729</td><td>835</td><td>835-836</td><td>789</td><td>903</td><td>903 - 904</td></td<>	729	835	835-836	789	903	903 - 904
731 837 $837-838$ 791 905 $905-906$ 732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-909$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-925$ 755 86	730	836	836-837	790	904	904-905
732 838 $838-839$ 792 906 $906-907$ 733 839 $839-840$ 793 908 $908-909$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-9192$ 743 850 $850-851$ 803 919 $919-922$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-925$ 752 8	731	837	837-838	791	905	905-906
733 839 $839-840$ 793 908 $908-909$ 734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-9192$ 743 850 $850-851$ 803 919 $919-922$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-925$ 752 860 861 812 929 $929-930$ 753 862 <	732	838	838-839	792	906	906-907
734 840 $840-841$ 794 909 $909-910$ 735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-912$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-925$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 <	733	839	839-840	793	908	908-909
735 841 $841-842$ 795 910 $910-911$ 736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-912$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864	734	840	840-841	794	909	909-910
736 842 $842-843$ 796 911 $911-912$ 737 844 $844-845$ 797 912 $912-913$ 738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-912$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 755 864 $864-865$ 815 932 933 756 866 876 817 935 $935-936$ 757 866 867	735	841	841-842	795	910	910-911
737844844-845 797 912912-913 738 845845-846 798 913913-914 739 846846-847 799 914914-915 740 847847-848800915915-916 741 848848-849801917917-918 742 849849-850802918918-912 743 850850-851803919919-920 744 851851-852804920920-921 745 853853-854805921921-922 746 854854-855806922922-923 747 855855-856807923923-924 748 856856-857808924924-925 749 857857-858809926926-927 750 858859810927927-928 751 859860811928928-926 752 860861812929929-930 753 862862-863813930931 754 863863-864814931932 755 864864-865815932933 756 867868818936936-937 759 868869819937937-938 760 869870820938939 761 871872821939 <td< td=""><td>736</td><td>842</td><td>842-843</td><td>796</td><td>911</td><td>911-912</td></td<>	736	842	842-843	796	911	911-912
738 845 $845-846$ 798 913 $913-914$ 739 846 $846-847$ 799 914 $914-915$ 740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-919$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864 $864-865$ 815 932 933 756 867 868 818 936 $936-937$ 759 868 869 819 937 $937-938$ 760 869 870 <td< td=""><td>737</td><td>844</td><td>844-845</td><td>797</td><td>912</td><td>912-913</td></td<>	737	844	844-845	797	912	912-913
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	738	845	845-846	798	913	913 - 914
740 847 $847-848$ 800 915 $915-916$ 741 848 $848-849$ 801 917 $917-918$ 742 849 $849-850$ 802 918 $918-919$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-925$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864 $864-865$ 815 932 933 756 865 $865-866$ 816 933 934 757 866 867 817 935 $935-936$ 758 867 868 818 936 $936-937$ 759 868 869 819 937 $937-938$ 760 869 870 820 </td <td>739</td> <td>846</td> <td>846-847</td> <td>799</td> <td>914</td> <td>914 - 915</td>	739	846	846-847	799	914	914 - 915
741848848-849801917917-918 742 849849-850802918918-919 743 850850-851803919919-920 744 851851-852804920920-921 745 853853-854805921921-922 746 854854-855806922922-923 747 855855-856807923923-924 748 856856-857808924924-925 749 857857-858809926926-927 750 858859810927927-928 751 859860811928928-929 752 860861812929929-930 753 862862-863813930931 754 863863-864814931932 755 864864-865815932933 756 865865-866816933934 757 866867817935935-936 758 867868818936936-937 759 868869819937937-938 760 869870820938939 761 871872821939940 762 872873822940941 763 873874823941942 764 <td>740</td> <td>847</td> <td>847-848</td> <td>800</td> <td>915</td> <td>915-916</td>	740	847	847-848	800	915	915-916
742 849 $849-850$ 802 918 $918-919$ 743 850 $850-851$ 803 919 $919-920$ 744 851 $851-852$ 804 920 $920-921$ 745 853 $853-854$ 805 921 $921-922$ 746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864 $864-865$ 815 932 933 756 865 $865-866$ 816 933 934 757 866 867 817 935 $935-936$ 758 867 868 818 936 $936-937$ 759 868 869 819 937 $937-938$ 760 869 870 820 938 939 761 871 872 821 939 940 762 872 873 822 940 <td>741</td> <td>848</td> <td>848-849</td> <td>801</td> <td>917</td> <td>917-918</td>	741	848	848-849	801	917	917-918
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	742	849	849-850	802	918	918-919
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	743	850	850-851	803	919	919-920
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	744	851	851-852	804	920	920-921
746 854 $854-855$ 806 922 $922-923$ 747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864 $864-865$ 815 932 933 756 865 $865-866$ 816 933 934 757 866 867 817 935 $935-936$ 758 867 868 818 936 $936-937$ 759 868 869 819 937 $937-938$ 760 869 870 820 938 939 761 871 872 821 939 940 762 872 873 822 940 941 763 873 874 823 941 942 764 874 875 824 942 943	745	853	853-854	805	921	921-922
747 855 $855-856$ 807 923 $923-924$ 748 856 $856-857$ 808 924 $924-925$ 749 857 $857-858$ 809 926 $926-927$ 750 858 859 810 927 $927-928$ 751 859 860 811 928 $928-929$ 752 860 861 812 929 $929-930$ 753 862 $862-863$ 813 930 931 754 863 $863-864$ 814 931 932 755 864 $864-865$ 815 932 933 756 865 $865-866$ 816 933 934 757 866 867 817 935 $935-936$ 758 867 868 818 936 $936-937$ 759 868 869 819 937 $937-938$ 760 869 870 820 938 939 761 871 872 821 939 940 762 872 873 822 940 941 763 873 874 823 941 942 764 874 875 824 942 943	746	854	854-855	806	922	922-923
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	747	855	855-856	807	923	923-924
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	748	856	856-857	808	924	924-925
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	749	857	857-858	809	926	926-927
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	750	858	859	810	927	927-928
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	751	859	860	811	928	928-929
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	752	860	861	812	929	929-930
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	753	862	862-863	813	930	931
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	754	863	863-864	814	931	932
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	755	864	864-865	815	932	933
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	756	865	865-866	816	933	934
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	757	866	867	817	935	935-936
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	758	867	868	818	936	936-937
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	759	868	869	819	937	937-938
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	760	869	870	820	938	939
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	761	871	872	821	939	940
763 873 874 823 941 942 764 874 875 824 942 943 765 875 826 942 943	762	872	873	822	940	941
764 874 875 824 942 943 765 876 895 944 945	763	873	874	823	941	942
765 075 076 005 044 045	764	874	875	824	942	943
100 810 820 944 945	765	875	876	825	944	945
766 876 877 826 945 946	766	876	877	826	945	946
767 877 878 827 946 947	767	877	878	827	946	947
768 878 879 828 947 948	768	878	879	828	947	948
769 881 881 829 948 949	769	881	881	829	948	949
770 882 882 830 949 950	770	882	882	830	949	950
771 883 883 831 950 951	771	883	883	831	950	951
772 884 884 832 951 952	772	884	884	832	951	952
773 885 885	773	885	885			
774 886 886	774	886	886			
775 887 887	775	887	887			
776 888 888	776	888	888			
777 890 890	777	890	890			
778 891 891	778	891	891			
779 892 892	779	892	892			
780 893 893	780	893	893			