Sharp threshold functions for random intersection graphs via a coupling method.

Katarzyna Rybarczyk

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60–769 Poznań, Poland

kryba@amu.edu.pl

Submitted: Nov 25, 2009; Accepted: Feb 7, 2011; Published: Feb 14, 2011 Mathematics Subject Classification: 05C80 keywords: random intersection graphs, threshold functions, connectivity, Hamilton cycle, perfect matching, coupling

Abstract

We present a new method which enables us to find threshold functions for many properties in random intersection graphs. This method is used to establish sharp threshold functions in random intersection graphs for k-connectivity, perfect matching containment and Hamilton cycle containment.

1 Introduction

In a general random intersection graph $\overline{\mathcal{G}}(n, m, \mathcal{P}_{(m)})$, as defined in [9], each vertex vfrom a vertex set \mathcal{V} ($|\mathcal{V}| = n$) is assigned independently a subset of features $W_v \subseteq \mathcal{W}$ from an auxiliary set of features \mathcal{W} ($|\mathcal{W}| = m$). Namely, for any vertex $v \in \mathcal{V}$, independently of all other vertices, first a cardinality of W_v is chosen according to the probability distribution $\mathcal{P}_{(m)} = (P_0, \ldots, P_m)$, and then the set W_v is picked uniformly at random from all subsets of \mathcal{W} having the chosen cardinality. Two vertices v and v' are adjacent in a general intersection graph $\overline{\mathcal{G}}(n, m, \mathcal{P}_{(m)})$ if and only if W_v and $W_{v'}$ intersect. In this article we concentrate on the widely studied random intersection graph model $\mathcal{G}(n, m, p)$ first defined in [11, 17] which is a special case of the one above-mentioned. However the obtained results may be extended to a wider subclass of the $\overline{\mathcal{G}}(n, m, \mathcal{P}_{(m)})$ model, which will be also discussed. In $\mathcal{G}(n, m, p)$, as defined in [11, 17], the cardinality of W_v has the binomial distribution Bin(m, p), i.e. $\Pr \{w \in W_v\} = p$ independently for all $v \in \mathcal{V}$ and $w \in \mathcal{W}$. Usually, it is assumed that $m = n^{\alpha}$ for some constant $\alpha > 0$ (see for example [2, 6, 8, 11, 16, 17, 18]). However the main theorem of this article does not require this additional assumption.

Obviously, $\Pr\left\{\left\{v, v'\right\} \in E(\mathcal{G}(n, m, p))\right\} = 1 - (1 - p^2)^m$ for any distinct $v, v' \in \mathcal{V}$. Therefore one could expect that there is some relation between $\mathcal{G}(n, m, p)$ and a random graph $G(n, \hat{p})$ with edges appearing independently with probability \hat{p} for \hat{p} approximately $1 - (1 - p^2)^m$. It follows from the results on subgraph containment as presented in [11, 16], in general, these are not equivalence relations since the structures of $\mathcal{G}(n, m, p)$ and $G(n, \hat{p})$ differ significantly. However it was shown in [8] that for large m (i.e. $m = n^{\alpha}$ and $\alpha > 6$, dependencies between edge appearances in $\mathcal{G}(n, m, p)$ are small and the models have asymptotically the same properties. The equivalence theorem is extended to $m = n^{\alpha}$ and $\alpha \geq 3$ (see [15]), but for $m = n^{\alpha}$ and $\alpha < 3$ it is not true in general (see for example [11, 16]). In the context of the results stated above it seems intriguing that for $m = n^{\alpha}$ and $\alpha > 1$ the threshold functions of connectivity and phase transition in $\mathcal{G}(n,m,p)$ and $\mathcal{G}(n,\hat{p})$ coincide (see [2, 7, 17]) even though the models differ a lot (for example the expected number of triangles in $\mathcal{G}(n, m, p)$ significantly exceeds the expected number of triangles in $G(n, \hat{p})$ for $\alpha < 3$). One of the aims of this paper is to get an improved understanding of the phenomena by a closer insight into the structure of $\mathcal{G}(n,m,p)$ and to use this knowledge to establish sharp threshold functions for other important properties of $\mathcal{G}(n, m, p)$.

Our work is partially inspired by the result of Effthymiou and Spirakis [6]. However the method significantly differs from the one used in [6] and therefore it enables us to obtain sharper threshold functions for the property of Hamilton cycle containment than those from [6].

The article is organised as follows. In Section 2 we present and prove the main theorem which relates $\mathcal{G}(n, m, p)$ to $G(n, \hat{p})$. In Section 3 the theorem is used to study properties of $\mathcal{G}(n, m, p)$. In particular, an alternative short proof of the connectivity theorem shown in [17] is given. Moreover, results concerning sharp threshold functions for Hamilton cycle containment, perfect matching containment and k-connectivity are proved. The method introduced here is strong enough to give some partial results on the threshold functions for other properties of $\mathcal{G}(n, m, p)$. However we present here graph properties for which the threshold functions obtained by our method are tight at least for $m = n^{\alpha}$ and $\alpha > 1$. In Section 4 extensions of the results to a wider subclass of the general random intersection graph model are presented. Moreover some interesting questions related to the main theorem are discussed.

All limits in the paper are taken as $n \to \infty$. Throughout the paper we use the notation $a_n = o(b_n)$ if $a_n/b_n \to 0$ and $a_n \sim b_n$ if $a_n/b_n \to 1$. Also by Bin (n, p) and Po (λ) we denote the binomial distribution with parameters n, p and the Poisson distribution with expected value λ , respectively. Moreover if a random variable X is stochastically dominated by Y we write $X \prec Y$. We also use the phrase "with high probability" to say with probability tending to one as n tends to infinity.

2 Main Result

Recall that for the family \mathcal{G} of all graphs with a vertex set \mathcal{V} , we call $\mathcal{A} \subseteq \mathcal{G}$ an increasing property if \mathcal{A} is closed under isomorphism and $G \in \mathcal{A}$ implies $G' \in \mathcal{A}$ for all $G' \in \mathcal{G}$

such that $E(G) \subseteq E(G')$. The theorem stated below relates $\mathcal{G}(n,m,p)$ to $G(n,\hat{p})$ for increasing properties. A motivation for the investigation in a comparison was the fact that, for $m = n^{\alpha}$ and $\alpha > 1$, if p and \hat{p} are connectivity threshold functions of $\mathcal{G}(n,m,p)$ and $G(n,\hat{p})$, respectively, then $\Pr\{\{v,v'\} \in E(\mathcal{G}(n,m,p))\} \sim 1 - (1-p^2)^m \sim mp^2 \sim \hat{p}$ (see [17]). In the proof of the theorem we explain that this is due to the fact that $np \to 0$. Surprisingly, in some cases the comparison also gives tight results for $np \not\to 0$, however with \hat{p} differing from $1 - (1-p^2)^m$. This is due to the fact that as $np \to \infty$ the number of large cliques in $\mathcal{G}(n,m,p)$ increases compared to $G(n,\hat{p})$ and thus both models have significantly different edge structures. Basically, as $np \to \infty$ and $\hat{p} = (1 + o(1))mp/n$, $\mathcal{G}(n,m,p)$ has more edges than $G(n,\hat{p})$, however both models have the same number of isolated vertices. In the theorem we have the case $nmp \to \infty$ instead of $np \to \infty$, since the thesis also holds true in this case. However as $nmp \to \infty$ and $np \not\to \infty$ the results obtained using the theorem will not be tight.

Theorem 1. Let \mathcal{A} be an increasing property, $mp^2 < 1$, and

$$\hat{p}_{-} = \begin{cases} mp^2 \left(1 - (n-2)p - \frac{mp^2}{2} \right) & \text{for } np = o(1); \\ \frac{mp}{n} \left(1 - \frac{\omega}{\sqrt{mnp}} - \frac{2}{np} - \frac{mp}{2n} \right) & \text{for } nmp \to \infty \\ & \text{and some } \omega \to \infty, \omega = o(\sqrt{mnp}). \end{cases}$$
(1)

If

then

$$\Pr \left\{ G\left(n, \hat{p}_{-}\right) \in \mathcal{A} \right\} \to 1,$$

$$\Pr \left\{ \mathcal{G}\left(n, m, p\right) \in \mathcal{A} \right\} \to 1.$$
(2)

The main ingredient of the proof is a comparison of $\mathcal{G}(n, m, p)$ and $G(n, \hat{p})$ using intermediate auxiliary graphs. The comparison is made by a sequence of couplings and measuring the distance between distributions of auxiliary graph valued random variables. First we introduce necessary definitions and notation.

Let M be a random variable with range in the set of non-negative integers (in the simplest case M is a given positive integer with probability one). By $\mathcal{G}_*(n, M)$ we denote a random graph with vertex set \mathcal{V} and edge set constructed by sampling M times with repetition elements from the set of all two element subsets of \mathcal{V} . A subset $\{v, v'\}$ is an edge of $\mathcal{G}_*(n, M)$ if and only if it is sampled at least once. If M equals a constant t with probability one, has the binomial distribution, or the Poisson distribution, we write $\mathcal{G}_*(n, t), \mathcal{G}_*(n, \text{Bin}(\cdot, \cdot))$, or $\mathcal{G}_*(n, \text{Po}(\cdot))$, respectively.

For any random variables G_1 and G_2 with values in a countable set A, by the total variation distance we mean

$$d_{TV}(G_1, G_2) = \max_{A' \subseteq A} |\Pr\{G_1 \in A'\} - \Pr\{G_2 \in A'\}|$$

= $\frac{1}{2} \sum_{a \in A} |\Pr\{G_1 = a\} - \Pr\{G_2 = a\}|.$

By a coupling (G_1, G_2) of two random variables G_1 and G_2 we mean a choice of a probability space on which a random vector (G'_1, G'_2) is defined and G'_1 and G'_2 have the same distributions as G_1 and G_2 , respectively. For simplicity of notation we will not differentiate between (G'_1, G'_2) and (G_1, G_2) . For two graph valued random variables G_1 and G_2 we write

$$G_1 \preceq G_2$$
 or $G_1 \preceq_{1-o(1)} G_2$,

if there exists a coupling (G_1, G_2) , such that under the coupling G_1 is a subgraph of G_2 with probability 1 or 1 - o(1), respectively. Moreover, we write

$$G_1 = G_2,$$

if G_1 and G_2 have the same probability distribution (equivalently there exists a coupling (G_1, G_2) such that $G_1 = G_2$ with probability one).

It is simple to construct suitable couplings which implies the following fact.

Fact 1. (i) Let M_n be a sequence of random variables and let a_n be a sequence of numbers. If

$$\Pr\{M_n \ge a_n\} = o(1) \quad (\Pr\{M_n \le a_n\} = o(1)),$$

then

$$\mathcal{G}_*(n, M_n) \preceq_{1-o(1)} \mathcal{G}_*(n, a_n) \quad (\mathcal{G}_*(n, a_n) \preceq_{1-o(1)} \mathcal{G}_*(n, M_n))$$

(ii) If a random variable M is stochastically dominated by M' (i.e. $M \prec M'$), then

$$\mathcal{G}_*(n,M) \preceq \mathcal{G}_*(n,M')$$
.

The proof of the next fact is analogous to the proof of Fact 2 in [15].

Fact 2. Let $(G_i)_{i=1,\dots,m}$ and $(G'_i)_{i=1,\dots,m}$ be sequences of independent random graphs. If

$$G_i \preceq G'_i, \text{ for all } i = 1, \dots, m$$

then

$$\bigcup_{i=1}^m G_i \preceq \bigcup_{i=1}^m G'_i.$$

Proof of Theorem 1. Let $w \in \mathcal{W}$. Denote by V_w the set of vertices which have chosen feature w and put $X_w = |V_w|$. Let $\mathcal{G}[V_w]$ be a graph with vertex set \mathcal{V} and edge set containing those edges which have both ends in V_w (i.e. its edges form a clique with the vertex set V_w). We can construct a coupling $(\mathcal{G}_*(n, \lfloor X_w/2 \rfloor), \mathcal{G}[V_w])$ which implies

$$\mathcal{G}_*(n, \lfloor X_w/2 \rfloor) \preceq \mathcal{G}[V_w],$$

in the following way. Given the value of X_w , first we generate an instance G_w of $\mathcal{G}_*(n, \lfloor X_w/2 \rfloor)$. Let Y_w be the number of non-isolated vertices in G_w . By definition Y_w is at most X_w , therefore V_w may be chosen to be a union of the set of non-isolated vertices in G_w and $X_w - Y_w$ vertices chosen uniformly at random from the remaining ones.

Graphs $\mathcal{G}_*(n, \lfloor X_w/2 \rfloor), w \in \mathcal{W}$, are independent, and $\mathcal{G}[V_w], w \in \mathcal{W}$, are independent. Thus by Fact 2 and the definition of $\mathcal{G}(n, m, p)$, we have

$$\bigcup_{w \in \mathcal{W}} \mathcal{G}_*\left(n, \lfloor X_w/2 \rfloor\right) \preceq \bigcup_{w \in \mathcal{W}} \mathcal{G}[V_w] = \mathcal{G}\left(n, m, p\right).$$

Since $X_w, w \in \mathcal{W}$, are independent random variables and $\mathcal{G}[V_w], w \in \mathcal{W}$, are independent as well, by the above equation and the definition of $\mathcal{G}_*(n, \cdot)$,

$$\mathcal{G}_*\left(n, \sum_{w \in \mathcal{W}} \lfloor X_w/2 \rfloor\right) = \bigcup_{w \in \mathcal{W}} \mathcal{G}_*\left(n, \lfloor X_w/2 \rfloor\right) \preceq \mathcal{G}\left(n, m, p\right).$$
(3)

Now consider the following two cases

CASE 1: np = o(1).

Notice that

$$\sum_{w \in \mathcal{W}} \mathbb{I}_w \prec \sum_{w \in \mathcal{W}} \lfloor X_w / 2 \rfloor,$$

where

$$\mathbb{I}_w = \begin{cases} 1, & \text{if } X_w \ge 2; \\ 0, & \text{otherwise.} \end{cases}$$

The random variable $Z_1 = \sum_{w \in \mathcal{W}} \mathbb{I}_w$ has the binomial distribution $\operatorname{Bin}(m,q)$, where $q = \Pr\{X_w \ge 2\}$, therefore by Fact 1(ii),

$$\mathcal{G}_*(n, \operatorname{Bin}(m, q)) \preceq \mathcal{G}_*(n, \sum_{w \in \mathcal{W}} \lfloor X_w/2 \rfloor).$$
 (4)

Let M_1 and M_2 be random variables with the binomial distribution Bin(m,q) and the Poisson distribution Po(mq), respectively. A simple calculation shows that in $\mathcal{G}_*(n, M_1)$ each edge appears independently with probability $1 - \exp(-mq/\binom{n}{2})$ (see [8]). Therefore by properties of the total variation distance and the Poisson approximation of binomial random variables (see [8] and [1] or [15]), we have

$$d_{TV}\left(\mathcal{G}_{*}\left(n, \operatorname{Bin}\left(m, q\right)\right), G\left(n, 1 - \exp(-mq/\binom{n}{2})\right)\right) \\ = d_{TV}\left(\mathcal{G}_{*}\left(n, M_{1}\right), \mathcal{G}_{*}\left(n, M_{2}\right)\right) \leq 2d_{TV}\left(M_{1}, M_{2}\right) \leq 2q \leq 2\binom{n}{2}p^{2} = o(1).$$
(5)

Moreover $q \ge \Pr\{X_w = 2\} = \binom{n}{2}p^2(1-p)^{n-2}$ and $1 - \exp(-x) \ge x - x^2/2$ for x < 1 (recall that $mp^2 < 1$ by the assumptions of the theorem), thus

$$p_{-} = mp^{2} \left(1 - (n-2)p - \frac{mp^{2}}{2} \right) \le 1 - \exp(-mq/\binom{n}{2})$$

Therefore by a standard coupling of $G(n, \cdot)$ we obtain

$$G(n, p_{-}) \preceq G\left(n, 1 - \exp(-mq/\binom{n}{2})\right).$$
(6)

The electronic journal of combinatorics 18 (2011), #P36

CASE 2: $nmp \rightarrow \infty$. Notice that

$$\frac{Z_2}{2} - m \prec \sum_{w \in \mathcal{W}} \lfloor X_w / 2 \rfloor,$$

where $Z_2 = \sum_{w \in \mathcal{W}} X_w$ has the binomial distribution Bin(nm, p). By Fact 1(ii),

$$\mathcal{G}_*\left(n, \frac{Z_2}{2} - m\right) \preceq \mathcal{G}_*\left(n, \sum_{w \in \mathcal{W}} \lfloor X_w/2 \rfloor\right).$$
(7)

By Chernoff's bound for the Poisson distribution (see [14] Lemma 1.2) for any function $\omega \to \infty, \ \omega = o(\sqrt{nmp}),$

$$\Pr\left\{\frac{Z_2}{2} - m \le \frac{nmp}{2}\left(1 - \frac{\omega}{2\sqrt{nmp}} - \frac{2}{np}\right)\right\} = \Pr\left\{Z_2 \le nmp - \frac{\omega\sqrt{mnp}}{2}\right\} = o(1).$$

Moreover, the same bound applied to a random variable Z_3 with the Poisson distribution Po $\left(\frac{nmp}{2}\left(1-\frac{\omega}{\sqrt{nmp}}-\frac{2}{np}\right)\right)$ gives

$$\Pr\left\{Z_3 \ge \frac{nmp}{2}\left(1 - \frac{\omega}{2\sqrt{nmp}} - \frac{2}{np}\right)\right\} = \Pr\left\{Z_3 \ge \mathbb{E}Z_3 + \frac{\omega\sqrt{nmp}}{4}\right\} = o(1)$$

Therefore, using twice Fact 1(i), we get

$$\mathcal{G}_*\left(n, \operatorname{Po}\left(\frac{nmp}{2}\left(1 - \frac{\omega}{\sqrt{nmp}} - \frac{2}{np}\right)\right)\right) \preceq_{1-o(1)} \mathcal{G}_*\left(n, \frac{Z_2}{2} - m\right).$$
(8)

Recall that, for any λ , in $\mathcal{G}_*(n, \operatorname{Po}(\lambda))$ each edge appears independently with probability $1 - \exp(-\lambda/\binom{n}{2})$ (see [8]). Therefore

$$G\left(n, 1 - \exp\left(-\frac{mp}{n-1}\left(1 - \frac{\omega}{\sqrt{nmp}} - \frac{2}{np}\right)\right)\right) = \mathcal{G}_*\left(n, \operatorname{Po}\left(\frac{nmp}{2}\left(1 - \frac{\omega}{\sqrt{nmp}} - \frac{2}{np}\right)\right)\right).$$
(9)

Since

$$\frac{mp}{n}\left(1-\frac{\omega}{\sqrt{nmp}}-\frac{2}{np}-\frac{mp}{2n}\right) \le 1-\exp\left(-\frac{mp}{n-1}\left(1-\frac{\omega}{\sqrt{nmp}}-\frac{2}{np}\right)\right),$$

a standard coupling of $G(n, \cdot)$ implies

$$G(n, p_{-}) \preceq G\left(n, 1 - \exp\left(-\frac{mp}{n-1}\left(1 - \frac{\omega}{\sqrt{nmp}} - \frac{2}{np}\right)\right)\right).$$
(10)

In equations (3)–(10) we have established relations between $G(n, p_{-})$ and $\mathcal{G}(n, m, p)$ using intermediate auxiliary random graphs. From them we can deduce the assertion of the theorem.

First recall (see for example [8]) that if for some graph valued random variables G_1 and G_2

$$d_{TV}(G_1, G_2) = o(1),$$

then for any $a \in [0, 1]$ and any graph property \mathcal{A}

$$\Pr\{G_1 \in \mathcal{A}\} \to a \quad \text{iff} \quad \Pr\{G_2 \in \mathcal{A}\} \to a.$$

Now let G_1 and G_2 be two random graphs such that

$$G_1 \preceq G_2 \quad \text{or} \quad G_1 \preceq_{1-o(1)} G_2.$$
 (11)

Assume that for an increasing property \mathcal{A} ,

$$\Pr\left\{G_1 \in \mathcal{A}\right\} \to 1$$

Under the coupling (G_1, G_2) given by (11) define event $\mathcal{H} := \{G_1 \subseteq G_2\}$. Then

$$1 \ge \Pr \{G_2 \in \mathcal{A}\} \ge \Pr \{G_2 \in \mathcal{A} | \mathcal{H}\} \Pr \{\mathcal{H}\}$$

$$\ge \Pr \{G_1 \in \mathcal{A} | \mathcal{H}\} \Pr \{\mathcal{H}\}$$

$$= \Pr \{\{G_1 \in \mathcal{A}\} \cap \mathcal{H}\}$$

$$= \Pr \{G_1 \in \mathcal{A}\} + \Pr \{\mathcal{H}\} - \Pr \{\{G_1 \in \mathcal{A}\} \cup \mathcal{H}\}$$

$$\ge \Pr \{G_1 \in \mathcal{A}\} + \Pr \{\mathcal{H}\} - 1$$

$$= 1 + o(1),$$

which means that

 $\Pr\left\{G_2 \in \mathcal{A}\right\} \to 1.$

Therefore the above facts concerning the total variation distance and the properties of couplings combined with equations (3), (4), (5) and (6) imply Theorem 1 in the case np = o(1) and combined with equations (3), (7), (8), (9) and (10) imply the theorem in the case $nmp \to \infty$

3 Sharp threshold functions

Many graph properties in $G(n, \hat{p})$ follow the so called "minimum degree phenomenon". This means that with high probability the properties hold in $G(n, \hat{p})$ as soon as their necessary minimum degree condition is satisfied. In this section, using Theorem 1, we show that the "minimum degree phenomenon" also holds in the case of $\mathcal{G}(n, m, p)$ for $m = n^{\alpha}$ and $\alpha > 1$ and, to some extent, for $m = n^{\alpha}$ and $\alpha \leq 1$. Recall that while studying properties of $\mathcal{G}(n, m, p)$, it is standard to assume $m = n^{\alpha}$, and in this section we follow this convention. The properties considered are: k-connectivity, perfect matching containment and Hamilton cycle containment. All these properties are increasing and thus Theorem 1 may be used. Note that for p_k considered in the theorems if $\alpha > 1$ then $np \to 0$ and if $\alpha \leq 1$, then $np \to \infty$. The following theorems are proved.

Theorem 2. Let $m = n^{\alpha}$ and

$$p_1 = \begin{cases} \frac{\ln n + \omega}{m}, & \text{for } \alpha \le 1; \\ \sqrt{\frac{\ln n + \omega}{nm}}, & \text{for } \alpha > 1. \end{cases}$$

- (i) If $\omega \to -\infty$, then with high probability $\mathcal{G}(n, m, p_1)$ is disconnected and does not contain a perfect matching.
- (ii) If $\omega \to \infty$, then with high probability $\mathcal{G}(n, m, p_1)$ is connected and contains a perfect matching.

Theorems 3 and 4 consider the same properties. However they are stated separately since in the case $\alpha > 1$ (Theorem 3) the obtained threshold functions are tight and for $\alpha \leq 1$ (Theorem 4) they may possibly be tightened by other methods.

Theorem 3. Let $k \ge 1$ be a constant integer, $\alpha > 1$, $m = n^{\alpha}$ and

$$p_k = \sqrt{\frac{\ln n + (k-1)\ln\ln n + \omega}{mn}}$$

- 1. (i) If $\omega \to -\infty$, then with high probability $\mathcal{G}(n, m, p_k)$ is not k-connected.
 - (ii) If $\omega \to \infty$, then with high probability $\mathcal{G}(n, m, p_k)$ is k-connected.
- 2. (i) If $\omega \to -\infty$, then with high probability $\mathcal{G}(n, m, p_2)$ does not contain a Hamilton cycle.
 - (ii) If $\omega \to \infty$, then with high probability $\mathcal{G}(n, m, p_2)$ contains a Hamilton cycle.

Theorem 4. Let $k \ge 1$ be a constant integer, $\alpha \le 1$, $m = n^{\alpha}$,

$$p_k = \frac{\ln n + (k-1)\ln\ln n + \omega}{m}$$

- 1. (i) If $\omega \to -\infty$, then with high probability $\mathcal{G}(n, m, p_1)$ is not k-connected.
 - (ii) If $\omega \to \infty$, then with high probability $\mathcal{G}(n, m, p_k)$ is k-connected.
- 2. (i) If $\omega \to -\infty$, then with high probability $\mathcal{G}(n, m, p_1)$ does not contain a Hamilton cycle.
 - (ii) If $\omega \to \infty$, then with high probability $\mathcal{G}(n, m, p_2)$ contains a Hamilton cycle.

Theorem 2 in its part concerning connectivity was obtained in [17]. However we state it here since it gives a global overview of the new method's implications and we are able to provide a new elegant proof of it. To the best of our knowledge the remaining results have not been proved before.

Proof of Theorems 2, 3 and 4. Denote

$$\hat{p}_k = \frac{\ln n + (k-1)\ln\ln n + \omega}{n}$$

By some classical results (Erdős and Rényi [7], Bollobás and Thomason [5], Komlós and Szeméredi [12] and Bollobás [4])

- 1. (i) If $\omega \to -\infty$, then with high probability $G(n, \hat{p}_1)$ does not contain a perfect matching.
 - (ii) If $\omega \to \infty$, then with high probability $G(n, \hat{p}_1)$ contains a perfect matching.
- 2. (i) If $\omega \to -\infty$, then with high probability $G(n, \hat{p}_k)$ is not k-connected.
 - (ii) If $\omega \to \infty$, then with high probability $G(n, \hat{p}_k)$ is k-connected.
- 3. (i) If $\omega \to -\infty$, then with high probability $G(n, \hat{p}_2)$ does not contain a Hamilton cycle.
 - (ii) If $\omega \to \infty$, then with high probability $G(n, \hat{p}_2)$ contains a Hamilton cycle.

Since k-connectivity, Hamilton cycle containment and perfect matching containment are all increasing properties, parts (ii) of Theorems 2, 3 and 4 follow by Theorem 1.

We are left with proving parts (i). The necessary condition for k-connectivity, perfect matching and Hamilton cycle containment are minimum degree at least k, 1 and 2, respectively. Therefore the following two lemmas imply parts (i) of the theorems.

Denote by $\delta(\mathcal{G}(n, m, p))$ the minimum degree of $\mathcal{G}(n, m, p)$.

Lemma 1. Let $k \ge 1$ be a constant integer, $\alpha > 1$ and

$$p_k = \sqrt{\frac{\ln n + (k-1)\ln\ln n + \omega}{nm}}$$

- (i) If $\omega \to -\infty$ then with high probability $\delta(\mathcal{G}(n, m, p_k)) < k$
- (ii) If $\omega \to \infty$ then with high probability $\delta(\mathcal{G}(n, m, p_k)) \ge k$

Lemma 2. Let $\alpha \leq 1$ and

$$p_1 = \frac{\ln n + \omega}{m}$$

- (i) If $\omega \to -\infty$ then with high probability $\delta(\mathcal{G}(n, m, p_1)) = 0$.
- (ii) If $\omega \to \infty$ then with high probability $\delta(\mathcal{G}(n, m, p_1)) \geq 1$.

Lemma 2 was shown in [17]. Part (ii) of Lemma 1 is easily obtained by the first moment method (see for example [10]). Moreover, to prove the theorems, only part (i) is needed. Its proof is a standard application of the second moment method (see [10]) and we sketch it for completeness.

We assume that $\omega = o(\ln n)$. Since the property "minimum degree at least k" is increasing, the result for larger ω follows by a simple coupling argument applied to $\mathcal{G}(n, m, \cdot)$. The vertex degree analysis becomes complex for α near 1 due to edge dependencies. Therefore, to simplify arguments, instead of a random variable representing the degree of a vertex $v \in \mathcal{V}$, we study the auxiliary random variable

$$Z_{v} = |\{(v', w) : v \neq v' \in \mathcal{V}, w \in W_{v} \text{ and } w \in W_{v'}\}|.$$

Let

$$\xi_v = \begin{cases} 1, & \text{if } Z_v = k - 1; \\ 0, & \text{otherwise;} \end{cases} \quad \text{and} \quad \xi = \sum_{v \in \mathcal{V}} \xi_v.$$

Clearly, if $\xi_v = 1$, then the degree of the vertex v is at most k-1. Therefore $\Pr{\{\xi > 0\}} \to 1$ implies part (i) of Lemma 1.

Let $X_v = |W_v|$. By Chernoff's bound (see Theorem 2.1 in [10] or Lemma 1.1 in [14]),

$$\Pr\{x_{-} \le X_{v} \le x_{+}\} = 1 - o(n^{-2}) \quad \text{for } x_{\pm} = mp_{k}\left(1 \pm \sqrt{5\ln n/(mp_{k})}\right).$$

Moreover, given $X_v = x$, Z_v has the binomial distribution $Bin((n-1)x, p_k)$. Thus after careful calculation we get

$$\mathbb{E}\xi = n \Pr \{Z_v = k - 1\}$$

= $n \sum_{x=x_-}^{x_+} \Pr \{Z_v = k - 1 | X_v = x\} \Pr \{X_v = x\} + o(n^{-2})$
 $\geq \frac{1}{(k-1)!} \exp (-\omega + o(1)) (1 + o(1)) \to \infty.$ (12)

Let $v, v' \in \mathcal{V}$ and $S = |W_v \cap W_{v'}|$. Given $i \in \{0, 1, 2\}$ and $x, x' \in [x_-; x_+ + 2]$ denote by $\mathcal{H}(x, x', i)$ the event $\{X_v = x + i, X_{v'} = x' + i, S = i\}$. A calculation shows that if $i \in \{0, 1, 2\}$ and $x, x' \in [x_-; x_+ + 2]$, then uniformly over all x, x'

$$\Pr \{ \mathcal{H}(x, x', i) \} = \Pr \{ X_v = x + i \} \Pr \{ X_{v'} = x' + i \} \Pr \{ S = i | X_{v'} = x' + i, X_v = x + i \}$$
$$= (1 + o(1)) \Pr \{ X_v = x \} \Pr \{ X_{v'} = x' \} \Pr \{ S = i \}.$$

Moreover, uniformly over all $x, x' \in [x_-; x_+ + 2]$, we have

$$\Pr \{ Z_v = k - 1, Z_{v'} = k - 1 | \mathcal{H}(x, x', i) \}$$

= (1 + o(1))
$$\Pr \{ Z_v = k - 1 | X_v = x \} \Pr \{ Z_{v'} = k - 1 | X_{v'} = x \}.$$

Denote $J = [x_{-} + 2, x_{+}]$. Since S has the binomial distribution $Bin(m, p_{k}^{2})$, and by Chernoff's bound applied to X_{v} and $X_{v'}$, we get

$$\Pr\{X_v \notin J \text{ or } X_{v'} \notin J \text{ or } S \notin \{0, 1, 2\}\} \\ \leq \Pr\{X_v \notin J\} + \Pr\{X_{v'} \notin J\} + \Pr\{S \ge 3\} = o(n^{-2}).$$

Finally by the above calculation and (12) for $v \neq v' \in \mathcal{V}$

$$\mathbb{E}\xi(\xi-1) = n(n-1) \Pr \{Z_v = k-1, Z_{v'} = k-1\}$$

$$\leq n(n-1)$$

$$\cdot \sum_{x=x_-}^{x_+} \sum_{x'=x_-}^{x_+} \sum_{i=0}^{2} \Pr \{Z_v = k-1, Z_{v'} = k-1 | \mathcal{H}(x, x', i)\} \Pr \{\mathcal{H}(x, x', i)\}$$

$$+ n(n-1) \Pr \{X_v \notin J \text{ or } X_{v'} \notin J \text{ or } S \notin \{0, 1, 2\}\}$$

$$= (1+o(1)) \Pr \{Z_v = k-1\} \Pr \{Z_{v'} = k-1\} + o(1),$$

which by the second moment method implies $\Pr{\{\xi > 0\}} \to 1$.

4 Final remarks

The obtained results may be extended to a wider class of the general random intersection graph model $\overline{\mathcal{G}}(n, m, \mathcal{P}_{(m)})$. As an example we state here a uniform random intersection graph which is $\overline{\mathcal{G}}(n, m, \mathcal{P}_{(m)}) = \overline{\mathcal{G}}(n, m, \mathcal{P}_d)$ with probability distribution $\mathcal{P}_{(m)} = \mathcal{P}_d$ concentrated in d = d(n), for some d(n). More precisely in $\overline{\mathcal{G}}(n, m, \mathcal{P}_d)$, for all $v \in \mathcal{V}$, the set W_v is chosen uniformly at random from all *d*-element subsets of \mathcal{W} . By Lemma 4 from [3] Theorems 2 and 3 hold true, if we assume that $\alpha > 1$ and replace p_k by $d_k = mp_k$ and $\mathcal{G}(n, m, p_k)$ by $\overline{\mathcal{G}}(n, m, \mathcal{P}_{d_k})$.

As it clearly follows from Theorem 2, the couplings used in the proof of Theorem 1 are tight. However, in the case $np \to \infty$ they do not always give the best results (see Theorem 4). Notice that in the case $\alpha < 1$ it is easy to strengthen Lemma 2 by a simple application of Chernoff's bound.

Lemma 3. Let $\alpha < 1$ and

$$p_1 = \frac{\ln n + \omega}{m}.$$

If $\omega \to \infty$ then with high probability $\delta(\mathcal{G}(n, m, p_1)) \ge (1 + o(1))n \ln n/m$.

Therefore having in mind the "minimum degree phenomenon", we may conjecture that the threshold function given in Theorem 4 may be tightened. However we believe that to prove the following conjecture a new method has to be used.

Conjecture 1. Let $\alpha < 1$,

$$p = \frac{\ln n + \omega}{m},$$

and $\omega \to \infty$. Then with high probability $\mathcal{G}(n, m, p)$ is k-connected for any constant k and contains a Hamilton cycle.

This conjecture contains the assumption $\alpha < 1$. Probably the case $\alpha = 1$ is more complex. The thesis may be supported by the results concerning the degree distribution [18] and the phase transition [13] for $\alpha = 1$. Although they consider p near phase transition threshold, they show that, for some properties, there is a value of α for which an analysis of $\mathcal{G}(n, m, p)$ is complicated.

Acknowledgements

I would like to thank all colleagues attending our seminar and Mindaugas Bloznelis for their helpful remarks, which allowed me to improve the layout of the paper and remove some ambiguities. I am also grateful to the anonymous referee and my colleagues Erhard Godehardt and Michał Ren for making many helpful suggestions that improved the exposition.

References

- BARBOUR, A. D., HOLST, L. AND JANSON, S. Poisson Approximation. Oxford University Press, 1992
- [2] BEHRISCH, M. Component evolution in random intersection graphs. *Electron. J. Combin.* 14, R17, 2007.
- [3] BLOZNELIS, M., JAWORSKI, J. AND RYBARCZYK, K. Component evolution in a secure wireless sensor networks. *Networks* 53, 19–26, 2009.
- [4] BOLLOBÁS, B. The evolution of sparse graphs, *Graph Theory and Combinatorics* (*Cambridge 1983*), 35-57, Academic Press, 1984.
- [5] BOLLOBÁS, B. AND THOMASON, A. Random graphs of small order. Random Graphs '83, Proceedings, Poznań, 1983, 47 – 97, 1985.
- [6] EFTHYMIOU, C. AND SPIRAKIS, P. G. On the existence of hamiltonian cycles in random intersection graphs. In: Automata, Languages and Programming 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, 690–701, 2005.
- [7] ERDŐS, P. AND RÉNYI, A. On random graphs I. Publ. Math. Debrecen 6, 290–297, 1959.
- [8] FILL, J. A., SCHEINERMAN, E. R. AND SINGER-COHEN, K. B. Random intersection graphs when $m = \omega(n)$: An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models. Random Structures Algorithms 16, 156–176, 2000.
- [9] GODEHARDT, E. AND JAWORSKI, J. Two models of random intersection graphs for classification. In: M. Schwaiger, O. Opitz, (eds.): Exploratory Data Analysis in Empirical Research, (Proceedings of the 25th Annual Conference of the Gesellschaft für Klassifikation e.V., University of Munich, 2001). Springer, 67–81, 2002.
- [10] JANSON, S., ŁUCZAK, T. AND RUCIŃSKI, A. Random Graphs. Wiley-Interscience, New York, 2000.
- [11] KAROŃSKI, M., SCHEINERMAN, E. R. AND SINGER-COHEN, K. B. On random intersection graphs: the subgraph problem. *Combin. Probab. Comput.* 8, 131–159, 1999.
- [12] KOMLÓS, J. AND SZEMÉREDI, E. Limit distributions for the existence of hamilton cycles in a random graph. Discrete Math. 43, 55 – 63, 1983.
- [13] LAGERÅS, A. N. AND LINDHOLM, M. Electron. J. Combin. 15 (1), N10, 2008.
- [14] PENROSE, M. Random Geometric Graphs. Oxford University Press, 2003.
- [15] RYBARCZYK, K. Equivalence of a random intersection graph and G(n, p). Random Structures and Algorithms **38** (1-2), 205–234, 2011.
- [16] RYBARCZYK, K. AND STARK, D. Poisson approximation of the number of cliques in random intersection graphs. *Journal of Applied Probability* 47 (3), 826–840, 2010.
- [17] SINGER-COHEN, K. B. Random intersection graphs. PhD thesis, Department of Mathematical Sciences, The Johns Hopkins University, 1995.
- [18] STARK, D. The vertex degree distribution of random intersection graphs. Random Structures and Algorithms 24, 249–258, 2004.