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Abstract

Let G be a graph. It is well known that the maximum multiplicity of a root of

the matching polynomial µ(G,x) is at most the minimum number of vertex disjoint

paths needed to cover the vertex set of G. Recently, a necessary and sufficient

condition for which this bound is tight was found for trees. In this paper, a similar

structural characterization is proved for any graph. To accomplish this, we extend

the notion of a (θ,G)-extremal path cover (where θ is a root of µ(G,x)) which was

first introduced for trees to general graphs. Our proof makes use of the analogue

of the Gallai-Edmonds Structure Theorem for general root. By way of contrast, we

also show that the difference between the minimum size of a path cover and the

maximum multiplicity of matching polynomial roots can be arbitrarily large.

1 Introduction

All the graphs in this paper are simple. The vertex set and edge set of a graph G are
denoted by V (G) and E(G) respectively. A matching of a graph G is a set of pairwise
non-adjacent edges of G. Recall that for a graph G on n vertices, the matching polynomial
µ(G, x) of G is given by

µ(G, x) =
∑

k≥0

(−1)kp(G, k)xn−2k,

where p(G, k) is the number of matchings with k edges in G and p(G, 0) = 1 by convention.
Let mult(θ, G) denote the multiplicity of θ as a root of µ(G, x).
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The following result is well known. A proof of this assertion can be found in [2,
Theorem 4.5 on p. 107].

Theorem 1.1. The maximum multiplicity of a root of the matching polynomial µ(G, x)

is at most the minimum number of vertex disjoint paths needed to cover the vertex set

of G.

Consequently,

Theorem 1.2. If G has a Hamiltonian path, then all roots of its matching polynomial

are simple.

The above is the source of motivation for our work. In this note, we give a necessary
and sufficient condition for the maximum multiplicity of a root of the matching polynomial
of a graph to be equal to the minimum number of vertex disjoint paths needed to cover it.
The special case for trees (or forests) was previously proved by the authors in [6, Theorem
1.7]. Before stating the main result, we require some terminology and basic properties of
matching polynomials.

If u ∈ V (G), then G\u is the graph obtained from G by deleting the vertex u and the
edges of G incident to u. It is not difficult to prove that the roots of µ(G \ u, x) interlace
those of µ(G, x), that is, the multiplicity of a root changes by at most one upon deleting
a vertex from G (see [2, Corollary 1.3 on p. 97]).

Lemma 1.3. Suppose θ is a root of µ(G, x) and u is a vertex of G. Then

mult(θ, G) − 1 ≤ mult(θ, G \ u) ≤ mult(θ, G) + 1.

As a consequence of Lemma 1.3, we can classify the vertices in a graph by assigning a
‘sign’ to each vertex [3, Section 3].

Definition 1.4. Let θ be a root of µ(G, x). For any vertex u ∈ V (G),

• u is θ-essential if mult(θ, G \ u) = mult(θ, G) − 1,

• u is θ-neutral if mult(θ, G \ u) = mult(θ, G),

• u is θ-positive if mult(θ, G \ u) = mult(θ, G) + 1.

Note that even if θ is not a root of µ(G, x), it is still valid to talk about θ-neutral
and θ-positive vertices. A further classification of vertices plays an important role in
establishing some structural properties of a graph:

Definition 1.5. Let θ be a root of µ(G, x). For any vertex u ∈ V (G), u is θ-special if it

is not θ-essential but has a neighbor that is θ-essential.

It turns out that a θ-special vertex must be θ-positive (see [3, Corollary 4.3]).
We now introduce the following definition which is crucial in describing our main

result.
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Definition 1.6. Let G be a graph and P = {P1, . . . , Pm} be a set of vertex disjoint paths

that cover G. For each i = 1, . . . , m, let Gi denote the subgraph induced by Pi. Then P

is said to be (θ, G)-extremal if it satisfies the following:

(a) θ is a root of µ(Gi, x) for all i = 1, . . . , m;

(b) for every edge e = {u, v} ∈ E(G) with u ∈ Gr and v ∈ Gs, r 6= s, either u is

θ-special in Gr or v is θ-special in Gs.

Note that if G is a tree, then Gi = Pi for all i = 1, . . . , m, so the definition of a (θ, G)-
extremal path cover coincides with that introduced in [6, Section 1] for forests.

Our main result is the following:

Theorem 1.7. Let G be a graph and P = {P1, . . . , Pm} be a set of vertex disjoint paths

covering G. Then m is the maximum multiplicity of a root of the matching polynomial

µ(G, x), say mult(θ, G) = m for some root θ, if and only if P is (θ, G)-extremal.

The outline of this paper is as follows: Section 2 contains some basic properties of
matching polynomials and Section 3 gives an account of the Gallai-Edmonds Structure
Theorem. Section 4 is devoted to graphs with a Hamiltonian path. The proof of the main
result is presented in Section 5. We conclude by observing that there exist (connected)
graphs such that the gap between the maximum multiplicity of matching polynomial roots
and the minimum size of a path cover can be made arbitrarily large.

2 Basic Properties

In this section, we collect some useful results proved in [1], [2] and [3]. Recall that if
u ∈ V (G), then G\u is the graph obtained from G by deleting the vertex u and the edges
of G incident to u. We also denote the graph (G \ u) \ v by G \ uv. In general, we denote
the graph obtained after deleting vertices u1, . . . ur from G by G \u1 · · ·ur. Note that the
resulting graph does not depend on the order of which the vertices are deleted.

If e ∈ E(G), the graph G − e is the graph obtained from G by deleting the edge e.
The matching polynomial satisfies the following basic identities.

Proposition 2.1. [2, Theorem 1.1] Let G and H be graphs, with matching polynomials

µ(G, x) and µ(H, x), respectively. Then

(a) µ(G ∪ H, x) = µ(G, x)µ(H, x),

(b) µ(G, x) = µ(G − e, x) − µ(G \ uv, x) where e = {u, v} is an edge of G,

(c) µ(G, x) = xµ(G \ u, x) −
∑

v∼u µ(G \ uv, x) for any vertex u of G.

Suppose P is a path in G. Let G\P denote the graph obtained from G be deleting the
vertices of P and all the edges incident to these vertices. It is known that the multiplicity
of a root decreases by at most one upon deleting a path.
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Lemma 2.2. [3, Corollary 2.5] For any root θ of µ(G, x) and a path P in G,

mult(θ, G \ P ) ≥ mult(θ, G) − 1.

If equality holds, we say that the path P is θ-essential in G. Godsil [3] proved that if a
vertex v is not θ-essential in G, then no path with v as an end point is θ-essential in G.
In other words,

Lemma 2.3. [3, Lemma 3.3] If P is a θ-essential path in G, then its end points are

θ-essential in G.

The following useful result appeared in [1]. We include its short proof here.

Lemma 2.4. [1, Lemma 3.4] Let u be a θ-positive vertex in G, adjacent to a θ-essential

vertex v. Let e = {u, v} ∈ E(G). Then mult(θ, G − e) = mult(θ, G), therefore u remains

θ-positive and v remains θ-essential in G − e.

Proof. Let k = mult(θ, G) and G′ = G− e. Notice that mult(θ, G′ \u) = mult(θ, G \u) =

k + 1 and mult(θ, G′ \ v) = mult(θ, G \ v) = k − 1. By interlacing (Lemma 1.3), it follows

that mult(θ, G′) = k, so u is θ-positive and v is θ-essential in G′.

3 Gallai-Edmonds Decomposition

The Gallai-Edmonds Structure Theorem describes a certain canonical decomposition of
V (G) with respect to the zero root of µ(G, x). Its statement essentially consists of two
lemmas, the Stability Lemma and Gallai’s Lemma. For more information, see [7, Section
3.2]. Recently, Chen and Ku [1] extended these results to all nonzero roots of the matching
polynomial. A recent application of this result can be found in [5]. The special case θ = 0
is the celebrated Gallai-Edmonds Decomposition.

Let
V (G) = Bθ(G) ∪ Aθ(G) ∪ Pθ(G) ∪ Nθ(G)

be a partition of V (G) where

Bθ(G) is the set of all θ-essential vertices in G,

Aθ(G) is the set of all θ-special vertices in G,

Nθ(G) is the set of all θ-neutral vertices in G,

Pθ(G) = Qθ(G) \ Aθ(G), where Qθ(G) is the set of all θ-positive vertices in G.

Note that there are no 0-neutral vertices. So N0(G) = ∅ and V (G) = B0(G) ∪ A0(G) ∪
P0(G).

Theorem 3.1 (θ-Stability Lemma, [1, Theorem 1.5]). Let G be a graph with θ a root of

µ(G, x). If u ∈ Aθ(G) then
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(i) Bθ(G \ u) = Bθ(G),

(ii) Pθ(G \ u) = Pθ(G),

(iii) Nθ(G \ u) = Nθ(G),

(iv) Aθ(G \ u) = Aθ(G) \ {u}.

Theorem 3.2 (θ-Gallai’s Lemma, [1, Theorem 1.7]). If every vertex of G is θ-essential

and G is connected, then mult(θ, G) = 1.

Suppose θ is a root of µ(G, x). Call G θ-critical if every vertex of G is θ-essential. In
view of Theorem 3.2, if G is θ-critical and connected then mult(θ, G) = 1.

Suppose G has exactly s θ-special vertices and mult(θ, G) = k. Then, by Theorem
3.1 and Theorem 3.2, after removing all the θ-special vertices from G, we obtain k + s

pairwise disjoint connected θ-critical graphs. Call such a graph a θ-critical component of
G \ Aθ(G).

The Stability Lemma says that the ‘sign’ of a vertex does not change upon deleting a θ-
special vertex. Godsil proved a result very similar to the Stability Lemma by investigating
how the sign changes when deleting a θ-positive vertex.

Proposition 3.3 (Theorem 4.2, [3]). Let θ be a root of µ(G, x) and let u be a θ-positive

vertex in G. Then

(a) if v is θ-positive in G then it is θ-essential or θ-positive in G \ u;

(b) if v is θ-essential in G then it is θ-essential in G \ u;

(c) if v is θ-neutral in G then it is θ-essential or θ-neutral in G \ u.

Chen and Ku [1] investigated the effect on the sign of vertices when deleting a θ-neutral
vertex. Among other results, they gave the following statement which is analogous to
Proposition 3.3. However, the proof of the following statement was omitted in [1]. For
the sake of completeness, we supply below a proof which is similar to that of Godsil’s [3].

Proposition 3.4. Let θ be a root of µ(G, x) with non-zero multiplicity k and let u be a

θ-neutral vertex in G. Then

(a) if v is θ-positive in G then it is θ-positive or θ-neutral in G \ u;

(b) if v is θ-essential in G then it is θ-essential in G \ u;

(c) if v is θ-neutral in G then it is θ-neutral or θ-positive in G \ u.
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Proof. (a) Suppose v is θ-positive in G. By Proposition 3.3, u is either θ-neutral or

θ-essential in G \ v. Therefore, either mult(θ, G \ vu) = k +1 or mult(θ, G \ vu) = k. This

means that v is either θ-positive or θ-neutral in G \ u.

(b) Suppose v is θ-essential in G. Since mult(θ, G \ u) = k, we have mult(θ, G \ vu) =

mult(θ, G \ uv) ≥ k − 1 by interlacing, so u is not θ-essential in G \ v. Assume for the

moment that u is θ-positive in G \ v. Then mult(θ, G \ uv) = k. As u is not θ-essential

in G, it follows from Lemma 2.2 and Lemma 2.3 that mult(θ, G \ P ) ≥ k for every path

P from u to v in G.

Recall the Heilmann-Lieb Identity (see [3, Lemma 2.4]):

µ(G \ u, x)µ(G \ v, x) − µ(G, x)µ(G \ uv, x) =
∑

P∈P(u,v)

µ(G \ P, x)2,

where P(u, v) is the set of all paths in G from u to v.

Using the above identity, we deduce that mult(θ, G \ u) + mult(θ, G \ v) ≥ 2k, contra-

dicting the fact that u is θ-neutral and v is θ-essential in G. So u is θ-neutral in G \ v,

i.e. v is θ-essential in G \ u.

(c) Suppose v is θ-neutral in G. Since mult(θ, G\u) = k, by interlacing, mult(θ, G\uv) ≥

k − 1. Since mult(θ, G \ v) = k, θ has multiplicity at least 2k − 1 as a root of p(x) where

p(x) := µ(G \ u, x)µ(G \ v, x) − µ(G, x)µ(G \ uv, x).

On the other hand, by considering the right hand side of the Heilmann-Lieb Identity, the

multiplicity of θ as a root of p(x) must be even. So this multiplicity must be at least

2k, whence θ has multiplicity at least 2k as a root of µ(G, x)µ(G \ uv, x). Therefore,

mult(θ, G \ uv) ≥ k, i.e. v is not θ-essential in G \ u.

Remark 3.5. The assertions of Proposition 3.3 and Proposition 3.4, excluding part (b),

still hold even if θ is not a root of µ(G, x).

Lemma 3.6. A θ-neutral vertex cannot be joined to any θ-essential vertex.

Proof. Suppose u is a θ-neutral vertex and is joined to a θ-essential vertex v. By Propo-

sition 3.4, the path uv is θ-essential in G whence u and v are θ-essential in G (Lemma

2.3), which is a contradiction.

The preceding implies that a θ-special vertex must be θ-positive ([3, Corollary 4.3]).

4 Graph with a Hamiltonian Path

In this section, we study the matching polynomial roots and their multiplicities in graphs
with a Hamiltonian path. The results here will be needed in the proof of the main result
in the next section.
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Proposition 4.1. Suppose G has a Hamiltonian path P . Let H be the graph obtained

from G by deleting an end point of P . Then µ(G, x) and µ(H, x) have no common roots.

Proof. We prove it by induction on the number n ≥ 2 of vertices of G. If n = 2, then G

consists of a single edge and H is a point. Clearly, their matching polynomials have no

roots in common. Let n > 2. Let u be an end point of P and H = G \ u. Also, let v be

the vertex joined to u in P .

Assume, for a contradiction, that θ is a root of µ(G, x) and µ(H, x). By Theorem 1.2,

mult(θ, G) = 1 = mult(θ, H). This implies that u is θ-neutral in G. By induction, µ(H, x)

and µ(H \ v, x) have no common roots. Therefore, v is θ-essential in H . By Proposition

3.4, we deduce that v is θ-essential in G. But u is adjacent to v in G, contradicting

Lemma 3.6.

Corollary 4.2. Suppose G has a Hamiltonian path P . Then the end points of P are

θ-essential in G.

Corollary 4.3. If G has a Hamiltonian cycle, then every vertex of G is θ-essential.

Corollary 4.4. Suppose G has a Hamiltonian path P and θ is a root of µ(G, x). Then

every vertex of G which is not θ-essential must be θ-special.

Proof. Let w be a vertex which is not θ-essential. By Corollary 4.2, w is not an end point

of P . Let u and v be the two neighbors of w in P . Let P1 and P2 denote the disjoint

paths obtained after removing w from P . We may assume that u is an end point of P1.

Consider the paths P1 and P1uw in G. Suppose u is not θ-essential in G. Then, by

Lemma 2.3, P1 and P1uw are not θ-essential paths in G. By Lemma 2.2, both mult(θ, G\

P1) and mult(θ, G \ P1uw) is at least 1, i.e. µ(G \P1, x) and µ(G \P1uw, x) have at least

one common root, contradicting Proposition 4.1. Therefore, u is θ-essential in G and so

w is θ-special in G.

Lemma 4.5. Let u and u′ be two distinct θ-special vertices in G. Suppose u is adjacent to

a θ-essential vertex v such that G − e has a Hamiltonian path, where e = {u, v} ∈ E(G).

Then u and u′ remain θ-special in G − e. Moreover, mult(θ, G − e) = mult(θ, G).

Proof. Let k = mult(θ, G) > 0. By Lemma 2.4, mult(θ, G − e) = k, u is θ-positive and

v is θ-essential in G − e. By Corollary 4.4, u is θ-special in G − e. By Theorem 3.1,

mult(θ, G \ uu′) = k + 2 and so u′ is θ-positive in G \ u. Note that G \ u = (G − e) \ u.

Therefore, u′ is θ-positive in (G − e) \ u. Since u is θ-positive in G − e, we deduce from

Proposition 3.3 that u′ is θ-positive in G − e. By Corollary 4.4 again, u′ is θ-special in

G − e.

Lemma 4.6. Suppose that G has a Hamiltonian path P = (u1, . . . , un) and Aθ(G) =

{uk1
, . . . uks

}, where 1 < k1 < · · · < ks < n. Then G \ Aθ(G) is comprised of s + 1
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θ-critical components C1, . . ., Cs+1 where each Ci is the subgraph of G induced by the path

Pi = (uki+1, . . . , uki−1). Consequently, there are no edges of G between Ci and Cj for all

i 6= j.

Proof. Clearly, each Ci is a connected subgraph of G \Aθ(G), so G \Aθ(G) consists of at

most s+1 components. Since mult(θ, G) = 1, by the Gallai-Edmonds Structure Theorem

(Theorem 3.1 and Theorem 3.2) and Corollary 4.4, G \ Aθ(G) consists of exactly s + 1

θ-critical components. Therefore, the subgraphs Ci must be pairwise disjoint and each of

them is θ-critical.

Proposition 4.7. Suppose G has a Hamiltonian path P = (u1, . . . , un) and θ is a root of

µ(G, x). Let w be a θ-special vertex of G. Let Q = wPun denote the subpath of P which

starts from w and ends at un. Let u ∈ G \ Q. Then u is θ-special in G \ Q if and only if

u is θ-special in G.

Proof. Suppose there are s θ-special vertices in G. Let uk1
, . . . , uks

denote these θ-special

vertices. By Corollary 4.2, 1 < k1 < k2 < · · · < ks < n. By Lemma 4.6, G \ uk1
· · ·uks

consists of s + 1 θ-critical components C1, . . . , Cs+1 such that each Ci has a Hamiltonian

path Pi where

P1 = (u1, . . . , uk1−1),

Pi = (uki−1+1, . . . , uki−1) for all i = 2, . . . , s,

Ps+1 = (uks+1, . . . , un).

Moreover, by Theorem 1.2, mult(θ, Ci) = 1 for all i = 1, . . . , s + 1.

We may assume that w = ukr
for some r ∈ {1, . . . s}. Set H = G \ Q. Notice that Q

is the path (w = ukr
, ukr+1, . . . , un) and mult(θ, H) = 1. We can view H as the subgraph

of G induced by V (C1) ∪ · · · ∪ V (Cr) ∪ {uk1
, . . . , ukr−1

}.

(⇐=) Suppose u is θ-special in G and u ∈ V (H). Then u ∈ {uk1
, . . . , ukr−1

}. Note

that after removing uk1
, . . . , ukr−1

from H , we obtain a union of pairwise disjoint graphs

C1, . . . , Cr. Clearly, mult(θ, H \ uk1
· · ·ukr−1

) = r. This implies that each uki
with i ∈

{1, . . . , r− 1} (one of which is u) must be θ-special in H ; otherwise uki
is θ-essential in H

for some i (by Corollary 4.4), and thus by first deleting uki
from H followed by removing

ukj
for all j ∈ {1, . . . , r − 1}, j 6= i, we would have mult(θ, H \ uk1

· · ·ukr−1
) < r by

interlacing (Lemma 1.3), contradicting the fact that mult(θ, H \ uk1
· · ·ukr−1

) = r.

(=⇒) Suppose u is θ-special in H . First we see that if r = 1 then w = uk1
, whence

H = C1 and it contains only θ-essential vertices (by Theorem 3.1), contradicting the

assumption that u is θ-special in H . Therefore, r > 1 and the set {uk1
, . . . , ukr−1

} is not

empty. We need to prove that u ∈ {uk1
, . . . , ukr−1

}. Let F denote the set of all edges

{x, y} ∈ E(G) \ E(P ) where x ∈ V (H), y ∈ V (Cr+1) ∪ V (Cr+2) ∪ · · · ∪ V (Cs+1). By

Lemma 4.6, x ∈ {uk1
, . . . , ukr−1

}, i.e. x must be θ-special in G.
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Now, consider removing the edges in F from G one by one. At each step of removing

such an edge, the resulting graph always has the Hamiltonian path P = (u1, . . . , un). Let

G∗ denote the graph obtained from G after removing all edges in F . By repeated appli-

cations of Lemma 4.5, uk1
, . . . , uks

remain θ-special in G∗ and mult(θ, G∗) = mult(θ, G).

Moreover, since G∗ \Aθ(G) = G\Aθ(G), by Theorem 3.1, θ-essential vertices of G remain

θ-essential in G∗. Note that G∗ \ ukr
· · ·uks

is the union of H , Cr+1, . . . , Cs+1. Moreover,

the set of θ-special vertices of G∗ \ ukr
· · ·uks

is {uk1
, . . . , ukr−1

} which turns out to be

Aθ(H). Hence u ∈ {uk1
, . . . , ukr−1

}. This completes the proof.

5 Proof of Main Result

We proceed to establish the main result (Theorem 1.7) which will be given by Theorem
5.2 and Theorem 5.3 below. We begin by proving the following lemma:

Lemma 5.1. Let G be a graph and mult(θ, G) = m. Let P = {P1, . . . , Pm} be a set of

vertex disjoint paths covering G. Then either G is θ-critical or G has a θ-special vertex.

Proof. Suppose G is not θ-critical. If G has a component C which has θ as a root of

its matching polynomial and is not θ-critical, then C (and thus G) contains a θ-special

vertex (see Lemma 3.6). For a contradiction, we may assume that G has a component C

such that mult(θ, C) = 0. Clearly, mult(θ, G \ V (C)) = mult(θ, G) = m. Observe that

G \ V (C) can be covered by at most m− 1 paths since at least one path of P is required

to cover C. But this contradicts Theorem 1.1.

Theorem 5.2. Let G be a graph and mult(θ, G) = m. Let P = {P1, . . . , Pm} be a set of

vertex disjoint paths covering G. Then P is (θ, G)-extremal.

Proof. For each i = 1, . . . , m, let Gi denote the subgraph of G induced by Pi. Suppose

all vertices of G are θ-essential. Then, G is the disjoint union of all Gi, i = 1, . . . , m;

otherwise, mult(θ, G) would be strictly less than m by Theorem 3.2, a contradiction.

Clearly, P is (θ, G)-extremal as G has no edges between Gi and Gj for all i 6= j. We may

assume that not all vertices of G are θ-essential, so G has a θ-special vertex (Lemma 5.1).

Also, the result holds if m = 1. So we may assume that m ≥ 2.

We first claim that θ is a root of µ(Gi, x) for each i. We shall prove this by induction on

m ≥ 1. The case m = 1 is obvious. Let m ≥ 2. Since P2, . . . , Pm cover G \P1, we deduce

from Theorem 1.1 that mult(θ, G \ P1) ≤ m − 1. On the other hand, mult(θ, G \ P1) ≥

mult(θ, G)−1 = m−1 (Lemma 2.2). So mult(θ, G\P1) = m−1. By induction, θ is a root

of µ(Gi, x) for all i = 2, . . . , m. Similarly, θ is a root of µ(Gi, x) for all i = 1, . . . , m − 1

if we had deleted Pm instead of P1 in the preceding argument. This proves the claim.

Moreover, by Theorem 1.2, mult(θ, Gi) = 1 for each i.
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Now, let {u, v} ∈ E(G) with u ∈ V (Gr) and v ∈ V (Gs) for some r 6= s. We need to

show that either u is θ-special in Gr or v is θ-special in Gs. Let w be a θ-special vertex

in G. Then mult(θ, G \ w) = m + 1. Suppose w ∈ Pt for some t ∈ {1, . . . , m}.

Note that w is not an end point of Pt; otherwise G \ w can be covered by at most m

paths, whence mult(θ, G \ w) ≤ m by Theorem 1.1, a contradiction. Let H denote the

graph obtained from G \ w after deleting all paths Pi, i 6= t. By repeated applications of

Lemma 2.2, we have mult(θ, H) ≥ mult(θ, G \ w) − (m − 1) = 2. Note that H = Gt \ w.

Since mult(θ, Gt) = 1, we deduce that w is θ-positive in Gt. By Corollary 4.4, w is

θ-special in Gt.

If w = u then r = t and u is θ-special in Gr, so we are done. The case w = v can be

proved similarly.

Therefore, we may assume that w 6= u, w 6= v. We proceed by induction on the

number of vertices. Since w is not an end point of Pt, let Q1 and Q2 denote the paths

obtained from Pt after removing w from Pt. Note that mult(θ, G \ w) = m + 1 and

Q = {Q1, Q2} ∪ {Pi : i 6= t} is a set of m + 1 vertex disjoint paths that cover G \ w. By

induction, Q is (θ, G \ w)-extremal. If t 6= r, s, then either u is θ-special in Gr or v is

θ-special in Gs, so we are done. It remains to consider the following cases:

Case I. t = r.

Let H1 and H2 be the subgraphs of Gr induced by Q1 and Q2 respectively.

Without loss of generality, either u is θ-special in H1 or v is θ-special in Gs. If v is

θ-special in Gs, we are done. Otherwise, using the fact that w is θ-special in Gr and

Proposition 4.7, we deduce that u is θ-special in Gr.

Case II. t = s.

An argument similar to Case I proves that either u is θ-special in Gr or v is θ-special

in Gs.

We note that so long as w 6= u, v, the graph G \ w cannot be θ-critical since G \ w

consists of at most m components (because u is still joined to v in G \ w); otherwise,

mult(θ, G \ w) ≤ m which is not possible. So G \ w would always contain a θ-special

vertex (by Lemma 5.1). Therefore, the base cases of our induction occur when w = u or

w = v.

Theorem 5.3. Let G be a graph and P = {P1, . . . , Pm} be a set of vertex disjoint paths

covering G. Suppose P is (θ, G)-extremal. Then mult(θ, G) = m and θ is a root µ(G, x)

with the maximum multiplicity.

Proof. By Theorem 1.1, mult(θ, G) ≤ m. It remains to show that mult(θ, G) ≥ m. As

usual, for i = 1, . . . , m, let Gi denote the subgraph of G induced by Pi. We shall prove

the theorem by induction on the number of vertices.

An edge {u, v} of G is said to be crossing if u and v belong to different paths in

P. Let C be the total number of crossing edges of G. If C = 0, then G consists of
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disjoint components G1, . . . , Gm such that each Gi contains Pi as a Hamiltonian path. By

Theorem 1.2 and Proposition 2.1 (a), we must have mult(θ, G) = m, as desired.

Therefore, we may assume that C > 0. Then, there exists a crossing edge {u, v}, say

u ∈ V (P1) and v ∈ V (P2). Since P is (θ, G)-extremal, without loss of generality, we may

assume that u is θ-special in G1.

Since u is θ-special in G1, u cannot be an end point of P1 (Corollary 4.2). So P1 \ u

consists of two disjoint paths Q1 and Q2. Let H1 and H2 denote the subgraphs of G1

induced by Q1 and Q2 respectively. By Proposition 4.7, θ-special vertices in H1 and H2

are precisely the θ-special vertices of G in H1 and H2 respectively. Moreover, any edge

between H1 and H2 must be incident to either a θ-special vertex in H1 or a θ-special

vertex in H2 (Lemma 4.6). Therefore, {Q1, Q2, P2, P3, . . . , Pm} is (θ, G \ u)-extremal. By

induction, mult(θ, G \ u) = m + 1. By interlacing (Lemma 1.3), mult(θ, G) ≥ m, as

desired.

Notice that the base cases of our induction occur when there are no crossing edges.

6 Conclusion

For a graph G, let maxmult(G) and minpc(G) denote the maximum multiplicity of a root
of µ(G, x) and the minimum size of a path cover of G respectively. Our main result
(Theorem 1.7) gives a characterization of graphs G for which maxmult(G) = minpc(G).
The characterization is given in terms of the notion of a (θ, G)-extremal path cover.
Though the conditions of such a path cover do not seem easy to check in general, they do
sometimes provide a quick way to identify graphs G for which maxmult(G) < minpc(G).
For example, take a graph H which has a Hamiltonian cycle and join one vertex, say v,
of H to the second vertex u of the path P4 on four vertices to form the graph W . Clearly,
minpc(W ) = 2. By Corollary 4.3, v is not θ-special in H for any root θ of µ(H, x). It
is also easy to check by hand that u is not θ-special in P4 for any root θ of µ(P4, x).
Therefore, in view of Theorem 1.7, maxmult(W ) < 2.

It is worth mentioning that there exist connected graphs G for which the difference
minpc(G)−maxmult(G) can be arbitrarily large. Indeed, consider the following graph S:

���������

?????????��
��

��
��

�

??
??

??
??

?

• •

•

•

•

•

v2 v1

v3

v4

v5

v6

Let S1, . . ., Sk be k disjoint copies of S and for each 1 ≤ i ≤ k, let vi
1, . . . , v

i
6 denote

the vertices of Si corresponding to the vertices v1, . . . , v6 of S respectively. Let Pi denote
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the (Hamiltonian) path (vi
1, v

i
2, v

i
3, v

i
4, v

i
5, v

i
6) in Si.

For each k ≥ 2, define the graph Gk as follows:

V (Gk) =

k
⋃

i=1

V (Si), E(Gk) =

(

k
⋃

i=1

E(Si)

)

∪

(

k
⋃

i=2

{{vi
5, v

i−1
2 }}

)

.

It is not difficult to see that we may assume a minimum-sized path cover of Gk al-
ways contain P1. Then a simple induction yields minpc(Gk) = k. Next, we claim that
maxmult(Gk) = 1. Let Ti = Pi \ vi

1v
i
6 for 1 ≤ i ≤ k. Consider the path Zk in Gk obtained

by bridging the paths Tk, Tk−1, . . ., T1 with the edges {vk
5 , v

k−1
2 }, {vk−1

5 , vk−2
2 }, . . . , {v2

5, v
1
2}.

Observe that Gk \ Zk consists of isolated vertices and so mult(θ, Gk \ Zk) = 0 provided
θ 6= 0. Therefore, if θ is a root of Gk (note that θ 6= 0 since Gk has a perfect matching),
then Zk is a θ-essential path in Gk. In view of Lemma 2.2, we deduce that mult(θ, Gk) = 1,
thus establishing the claim.
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