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Abstract

The combinatorial Alexander dual of the independence complex Ind(G) and
that of the edge covering complex EC(G) are shown to have isomorphic homology
groups for each non-null graph G. This yields isomorphisms of homology groups
of Ind(G) and EC(G) with homology dimensions being appropriately shifted and
restricted. The results exhibits the complementary nature of homology groups of
Ind(G) and EC(G) which had been proved by Ehrenborg-Hetyei [10], Engström [11],
and Marietti-Testa [16] for forests at homotopy level.

1 Introduction and Preliminaries

All graphs are assumed to be finite and simple. Topology of independence complexes has
recently drawn much attention of various authors. See, for example, [2], [5] [6], [7], [9],
[10], [11], [12], [14] [16], [15] etc. Ehrenborg and Hetyei [10] proved that the independence
complex of a forest is either contractible or is homotopy equivalent to a sphere. Also
Engström [11] and Marietti-Testa [15] independently gave algorithms to determine the
dimension of the associated sphere (see [13] for another approach). Marietti and Testa
[16] have shown that the homotopy types of the independence complex Ind(F ) and the
edge covering complex EC(F ) of a forest F are closely related: they are either both
homotopy equivalent to spheres or both contractible. Furthermore, the dimensions of the
associated spheres are both related to the domination number and differ by the number of
components of F [16, Theorem 4.16]. The referee of the first manuscript kindly pointed out
that the method of Engström [11] can be applied to obtain these homotopy equivalences.

The result of the present paper shows that this complementary phenomenon is ob-
served, to certain extent, for every non-null graph G at homology level. It is pointed
out in Proposition 2.4 that susp(Ind(G)∗) ≃ susp(EC(G)∗), where Ind(G)∗ and EC(G)∗
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denote the combinatorial Alexander duals of Ind(G) and EC(G) respectively. This and
the Alexander duality provide us with isomorphisms of homology groups of Ind(G) and
EC(G) in appropriately shifted and restricted dimensions (Theorem 2.5).

The result is a consequence of two theorems. One is due to Csorba [7]: the indepen-
dence complex Ind(G2) of the graph G2, obtained from a graph G by replacing each edge
with a path of length 2, is homotopy equivalent of the suspension susp(Ind(G)∗) of the
combinatorial Alexander dual of Ind(G). The other is due to Jonsson [12]: the indepen-
dence complex of a bipartite graph is homotopy equivalent to the suspension of a simplicial
complex defined in terms of adjacency relation of the graph (see below for the definition).
The above theorem of Jonsson enables us to give another description of Ind(G2) in terms
of the independence complex of an associated bipartite graph with partite set V (G) and
E(G), which yields the desired homotopy equivalence Ind(G2) ≃ susp(EC(G)∗).

In the rest of this section, we make notational convention, give basic definitions and
state auxiliary results. We follow [8] for terminology on graph theory. For a graph G,
V (G) and E(G) denote the vertex set and the edge set of G respectively. A graph with
non-empty edge set is called a non-null graph. For a vertex v of G, NG(v) denotes the set
of all neighbors of v. For a subset A of V (G), the set NG(A) = ∪v∈ANG(v) is called the
set of neighbors of A. A subset I of V (G) is said to be independent if, for each pair u, v
of distinct vertices of I, we have uv /∈ E(G). For a vertex v and an edge e, the notation
“v ∈ e” means that v is an end vertex of e. A subset C of E(G) is said to cover G if,
for each vertex v ∈ V (G), there exists an edge e of C such that v ∈ e. Such subset C is
called an edge cover of G. A subset D of V (G) is a dominating set of G if, for each vertex
v of V (G) \ D, there exists a vertex u ∈ D such that uv ∈ E(G).

For a graph G, G2 is the graph obtained from G by replacing each edge of G by a
path of length 2 [7]. Similarly, a graph Gn is defined in [7] for n ≥ 2, while we focus on
G2 here.

An abstract simplicial complex K with a vertex set V is a family of non-empty subsets
of V with the property: σ ∈ K and τ ⊂ σ imply τ ∈ K. We identify K with its geometric
realization, which causes no confusion. For two simplicial complexes K and L, K ∼= L
means that they are isomorphic as simplicial complexes. The suspension over a simplicial
complex K is denoted by susp(K). For a simplicial complex K with vertex set V , the
combinatorial Alexander dual K∗ is the simplicial complex defined by

K∗ = {σ | σ ⊂ V, V \ σ /∈ K}.

When K is not the simplex with the vertex set V , K is regarded as a subset of S |V |−2-
dimensional sphere and it is known that K∗ is homotopy equivalent to S |V |−2 \ K ([7]).

For two simpicial complexes K and L, K ≃ L means that K and L have the same
homotopy type. For a simplicial complex K, H̃i(K) and H̃i(K) denote the reduced singular
homology and singular cohomology groups of K with integer coefficients respectively. We
make a convention that H̃i(K) = H̃i(K) = 0 for each i < 0. It is well-known [17]

H̃i(susp(K)) ∼= H̃i−1(K) and H̃i(susp(K)) ∼= H̃i−1(X) (1)

for each i ≥ 0.

the electronic journal of combinatorics 18 (2011), #P39 2



For a graph G, the following two simplicial complexes are the subject of our study.
The independence complex Ind(G) with the vertex set V (G) is defined by

Ind(G) = {σ | ∅ 6= σ ⊂ V (G), σ is independent }.

The edge covering complex EC(G) with the vertex set E(G) is defined by

EC(G) = {F | ∅ 6= F ⊂ E(G), E(G) \ F is an edge cover of G}.

We apply the Alexander duality in the following form to derive the desired homology
equivalence:

Theorem 1.1 ([17], Theorem 71.1) For each proper subcomplex K of

the n-dimensional sphere Sn, we have an isomorphism

H̃n−1−i(S
n \ K) ∼= H̃i(K)

for each i = −1, . . . , n. In particular, for each non-simplex simplicial complex K with n
vertices, being regarded as a subcomplex of Sn−2, we have

H̃n−3−i(K
∗) ∼= H̃i(K)

for each i = −1, . . . , n − 2, where K∗ denotes the combinatorial Alexander dual of K.

Now we recall a theorem due to Jonsson [12]. For a bipartite graph B = B(X, Y ) with
partite sets X and Y , we define simplicial complexes ΓX and ΓY as follows:

ΓX = {σ ⊂ X | Y \ NB(σ) 6= ∅} and

ΓY = {τ ⊂ Y | X \ NB(τ) 6= ∅}.

Theorem 1.2 ([12], Theorem 3.2) For each bipartite graph B with partite sets X and

Y , we have the following homotopy equivalences.

Ind(B) ≃ susp(ΓX)

≃ susp(ΓY )

2 Result

For a graph G, we define a bipartite graph BG = B(V (G), E(G)) with the partite sets
V (G) and E(G) by the following: for v ∈ V (G) and e ∈ E(G),

ve ∈ E(BG) if and only if v is an end vertex of e.

It is easy to see that the graph BG is isomorphic to G2. For the graph BG defined above,
the simplicial complex ΓE(G) in Theorem 1.2 is written as follows:

ΓE(G) = {F ⊂ E(G) | V (G) \ ∪e∈F NBG
(e) 6= ∅}

= {F ⊂ E(G) | E(G) \ F is not an edge cover of G}.
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The definition of the combinatorial Alexander dual immediately implies

ΓE(G) = EC(G)∗

and hence by Theorem 1.2 we have

Lemma 2.1 For each non-null graph G, we have a homotopy equivalence Ind(G2) ∼=
Ind(BG) ≃ susp(EC(G)∗).

Remark 2.2 The dominance complex Dom(G) of a graph G is a simplicial complex with

the vertex set V (G) defined as follows.

Dom(G) = {σ | ∅ 6= σ ⊂ V (G) and V (G) \ σ is a dominating set of G}.

As in the above argument, we have the following inclusion

Dom(G)∗ ⊂ ΓV (G).

Now we recall the following theorem due to Csorba [7]:

Theorem 2.3 ([7], Theorem 6) For each graph G, we have the following homotopy

equivalence:

Ind(G2) ≃ susp(Ind(G)∗).

Combining Lemma 2.1 with Theorem 2.3, we have the following:

Proposition 2.4 For each non-null graph G, we have the following homotopy equiva-

lence:

susp(Ind(G)∗) ≃ susp(EC(G)∗).

The above result is applied to prove homology isomorphisms mentioned in the intro-
duction. Following [16], let κ(G) = |V (G)| − |E(G)|. When G is a forest, κ(G) is the
number of components of G.

Theorem 2.5 For each non-null graph G and for each i with

max(−1, κ(G) − 1) ≤ i ≤ |V (G)| − 2, we have an isomorphism:

H̃i(Ind(G)) ∼= H̃i−κ(G)(EC(G)).

Proof. Let n = |V (G)| and m = |E(G)| so that κ(G) = n − m. The simplices with
the vertex set V (G) and with the vertex set E(G) are denoted by ∆V (G) and ∆E(G)

respectively. Notice that dim ∆V (G) = n − 1 and dim ∆E(G) = m − 1. In particular,
the boundary complexes ∂∆V (G) and ∂∆E(G) are homeomorphic to (n− 2)- and (m− 2)-
dimensional spheres. Since G is a non-null graph, we see that Ind(G) ⊂ ∂∆V (G). Also it
is easy to see that EC(G) ⊂ ∂∆E(G).

By Theorem 1.1, we have the following isomorphisms of homology groups

H̃i(Ind(G)) ∼= H̃n−3−i(Ind(G)∗) (2)
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for each i with −1 ≤ i ≤ n − 2, and

H̃i(EC(G)) ∼= H̃m−3−i(EC(G)∗) (3)

for each i with −1 ≤ i ≤ m − 2. For each i with max(−1, n − m − 1) ≤ i ≤ n − 2, the
desired isomorphism is obtained by a sequence of isomorphisms as follows:

H̃i(Ind(G)) ∼= H̃n−3−i(Ind(G)∗) (by (2) )
∼= H̃n−2−i(susp(Ind(G)∗)) ( by (1) )
∼= H̃n−2−i(susp(EC(G)∗)) ( by Proposition 2.4)
∼= H̃n−3−i(EC(G)∗) ( by (1) )
∼= H̃(m−2−1)−(n−3−i)(EC(G)) ( by (3) )

= H̃m−n+i(EC(G)) = H̃i−κ(G)(EC(G)).

This completes the proof.

As is mentioned in Section 1, Results of Ehrenborg-Hetyei ([10]), Engström ([11]) and
Marietti - Testa ([15] and [16]) tell us that for each forest F , Ind(F ) and EC(F ) are
either both contractible, or both homotopy equivalent to spheres. Moreover, if Ind(F ) is
not contractible, then we have homotopy equivalences: Ind(F ) ≃ Sγ(F )−1 and EC(F ) ≃
Sγ(F )−1−κ(F ), where γ(F ) is the domination number of F :

γ(F ) = min{|D| | D is a dominating set of F}.

Since γ(F ) ≥ κ(F ), we may apply Theorem 2.5 to confirm the isomorphism
H̃γ(F )−1(Ind(F )) ∼= H̃γ(F )−1−κ(F )(EC(F ))(∼= Z). Theorem 2.5 exhibits that this com-
plementary phenomenon is observed for general (non-null) graph at homology (hence a
weaker) level with homology dimensions being shifted and restricted.

Acknowledgment. The author expresses his deep gratitude to the referee who pointed
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the paper.
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