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Abstract

Let V be an infinite matrix with rows and columns indexed by the positive
integers, and entries in a field F . Suppose that vi,j only depends on i − j and is 0
for |i − j| large. Then V n is defined for all n, and one has a “generating function”
G =

∑

a1,1(V
n)zn. Ira Gessel has shown that G is algebraic over F (z). We extend

his result, allowing vi,j for fixed i − j to be eventually periodic in i rather than
constant. This result and some variants of it that we prove will have applications
to Hilbert-Kunz theory.

1 Introduction

Throughout, Λ is a ring with identity element 1. Suppose that wi,j, i and j ranging over
the positive integers, are in Λ and that wi,j = 0 whenever i − j lies outside a fixed finite
set. Then if W is the infinite matrix |wi,j|, one may speak of W n for all n ≥ 0, and one
gets a generating function G(W ) =

∑∞
0 anzn in Λ[[z]], where an is the (1,1) entry in the

matrix W n. We shall prove:

Theorem I. Suppose that wi,j = 0 if i − j 6∈ {−1, 0, 1}, and that wi+1,j+1 = wi,j unless
i = j = 1. Suppose further that Λ = Ms(F ), F a field, so that G(W ) may be viewed as an
s by s matrix with entries in F [[z]]. Then these matrix entries are algebraic over F (z).

Corollary. Let F be a field and vi,j, i and j ranging over the positive integers, be in F .
Suppose:

(a) vi,j = 0 whenever i − j lies outside a fixed finite set.

(b) For fixed r in Z, vi,i+r is an eventually periodic function of i.

Then if V is the matrix |vi,j|, the generating function G(V ) is algebraic over F (z).
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Proof. To derive the corollary we choose s so that:

(1) vi,j = 0 whenever i ≤ s and j > 2s or j ≤ s and i > 2s.

(2) vi+s,j+s = vi,j whenever i + j ≥ s + 2.

We then write the initial 2s by 2s block in V as |D C
A B | with A, B, C, D in Ms(F ). Our

choice of s tells us that V is built out of s by s blocks, where the blocks along the diagonal
are a single D, followed by B’s, those just below a diagonal block are A’s, those just above
a diagonal block are C’s, and all other entries are 0. Now let Λ = Ms(F ) and W = |wi,j|
where wi+1,i = A, wi,i+1 = C, w1,1 = D, wi,i = B for i > 1, and all other wi,j are 0. View
G(W ) as an s by s matrix with entries in F [[z]]. One sees easily that G(V ) is the (1,1)
entry in this matrix, and Theorem I applied to W gives the corollary.

Remark. When vi,j only depends on i − j, the above corollary is due to Gessel. (When
the matrix entries of V are all 0’s and 1’s the result is contained in Corollary 5.4 of [1].
The restriction on the matrix entries isn’t essential in Gessel’s proof, as one can use a
generating function for walks with weights.)

Our proof of Theorem I is easier than Gessel’s proof of his special case of the corollary.
The reason for this is that by working over Λ rather than over F we are able to restrict our
study to walks with step-sizes in {−1, 0, 1}. (A complication, fortunately minor, is that
the weights must be taken in the non-commutative ring Λ.) Our proof is well-adapted
to finding an explicit polynomial relation between G(V ) and z; we’ll work out a few
examples. This paper would not have been possible without Ira Gessel’s input. I thank
him for showing me tools of the combinatorial trade.

2 Walks and generating functions

Definition 2.1. If l ≥ 0, an ordered l+1-tuple α = (α0, . . . , αl) of integers is a (Motzkin)
walk of length l = l(α) if each of α1 − α0, . . . , αl − αl−1 is in {−1, 0, 1}.

We say that the start of the walk is α0, the finish is αl, and that α is a walk from α0

to αl.

Definition 2.2. If α and β are walks of lengths l and m, the concatenation αβ of α and
β is the walk (α0, . . . , αl, αl + (β1 − β0), . . . , αl + (βm − β0)) of length l + m.

Now let Λ be a ring with identity element 1, and A, B, C, D lie in Λ. To each walk
α we attach weights w(α) and w∗(α) in Λ:

Definition 2.3. If l(α) = 0, w(α) = w∗(α) = 1. If l(α) > 0, w(α) = U1 · . . . · Ul where
Ui = A, B or C according as αi−αi−1 is −1, 0, or 1. The definition of w∗(α) is the same
with one change: if αi = αi−1 = 0 then Ui = D rather than B.

Evidently w(αβ) = w(α)w(β). Furthermore w∗(αβ) = w∗(α)w∗(β) whenever α and β
are walks from 0 to 0.
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Definition 2.4. α is “standard” if each αi ≥ αl. Note that a walk from 0 to 0 is standard
if and only if each αi ≥ 0.

Definition 2.5. α is “primitive” if l(α) > 0, α0 = αl and no αi with 0 < i < l is α0.
Note that a standard walk from 0 to 0 is primitive if and only if l(α) > 0 and each αi,
0 < i < l, is > 0.

Definition 2.6.

(1) G(w) =
∑

w(α)zl(α), the sum extending over all standard walks from 0 to 0. H(w)
is the sum extending over all primitive standard walks from 0 to 0.

(2) G(w∗) and H(w∗) are defined similarly, using w∗(α) in place of w(α).

Lemma 2.7. Let G = G(w), H = H(w). Then, in Λ[[z]]:

(1) G = 1 + H + H2 + · · ·

(2) H = Bz + CGAz2

Proof. Every standard walk from 0 to 0 of length > 0 is either primitive or uniquely a
concatenation of two or more primitive standard walks from 0 to 0. The multiplicative
property of w now gives (1). To prove (2) note that the primitive standard walk (0, 0) has
w = B. And a primitive standard walk from 0 to 0 of length l > 1 is a concatenation of
(0, 1), a standard walk, β, from 0 to 0 of length l− 2 and (0,−1). Then w(α) = Cw(β)A.
Since α → β gives a 1–1 correspondence between primitive standard walks of length l
from 0 to 0 and standard walks of length l − 2 from 0 to 0, we get the result.

Corollary 2.8. If G = G(w), then G − 1 − (BG)z − (CGAG)z2 = 0 in Λ[[z]].

Proof. By (1) of Lemma 2.7, (1 − H) · G = 1. Substituting H = Bz + CGAz2 gives the
result.

Theorem 2.9. Suppose that Λ = Ms(F ), F a field, so that G(w) may be viewed as an
s by s matrix with entries in F [[z]]. Then these matrix entries, ui,j, are algebraic over
F (z).

Proof. Let U = |Ui,j| be an s by s matrix of indeterminates over F , and pi,j be the (i, j)
entry in U − Is − (BU)z − (CUAU)z2. The pi,j are degree 2 polynomials in U1,1, . . . , Us,s

with coefficients in F [z]. By Corollary 2.8, pi,j(u1,1, . . . , us,s) = 0. Now pi,j = Ui,j −
δi,j −zfi,j(U1,1, . . . , Us,s, z) where the fi,j are polynomials with coefficients in F . It follows
that the Jacobian matrix of the pi,j with respect to the Ui,j , evaluated at (u1,1, . . . , us,s),
is congruent to Is2 mod z in the s2 by s2 matrix ring over F [[z]], and so is invertible.
Thus (u1,1, . . . , us,s) is an isolated component of the intersection of the hypersurfaces
pi,j(U1,1, . . . , Us,s) = 0, and so its co-ordinates, u1,1, . . . , us,s, are algebraic over F (z).
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Remark. We sketch a proof, based on the Nullstellensatz and Nakayama’s Lemma, of the
result from algebraic geometry used in the last sentence above. Suppose then that K ⊂ L
are fields, that f1, . . . , fn are in K[x1, . . . , xn], and that a1, . . . , an are in L. Suppose
further that each fi(a1, . . . , an) = 0, and that J(a1, . . . , an) 6= 0, where J is the Jacobian
determinant of the fi with respect to the xj. We shall show that each ai is algebraic
over K. We may assume that K is algebraically closed. The kernel of evaluation at
(a1, . . . , an) is a prime ideal, P , of K[x1, . . . , xn]. Each fi is in P and J is not in P .
By the Nullstellensatz, P ⊂ some m = (x1 − b1, . . . , xn − bn) with J(b1, . . . , bn) 6= 0.
Each fi is in m. Writing fi as a polynomial in x1 − b1, . . . , xn − bn, and using the fact
that J(b1, . . . , bn) 6= 0, we find that (P, m2) = m. Now P is prime, and it follows from
Nakayama’s Lemma that P = m. So ai = bi , and is in K.

Lemma 2.10. G(w∗)−1 − G(w)−1 = (B − D)z.

Proof. The proof of Lemma 2.7 (1) shows that G(w∗)−1 = 1 − H(w∗) with H(w∗) as in
Definition 2.6. So it suffices to show that H(w)−H(w∗) = (B−D)z. Now for a primitive
walk α of length > 1 from 0 to 0 one cannot have αi−1 = αi = 0, and so w(α) = w∗(α).
On the other hand, for the primitive walk (0, 0), w = B and w∗ = D. This gives the
lemma.

Combining Lemma 2.10 with Theorem 2.9 we get:

Theorem 2.11. If Λ = Ms(F ) the matrix entries of the s by s matrix G(w∗) are algebraic
over F (z).

Now let W = |wi,j| where wi+1,i = A, wi,i+1 = C, w1,1 = D, wi,i = B for i > 1, and
all the other wi,j = 0. In view of Theorem 2.11 the proof of Theorem I will be complete
once we show that G(W ) = G(w∗) where w∗ is the weight function of Definition 2.3. The
key to this is:

Lemma 2.12. For k ≥ 1 let u
(n)
k be

∑

w∗(α), the sum extending over all standard walks
of length n from k − 1 to 0. Then:

(1) u
(0)
k = 1 or 0 according as k = 1 or k > 1.

(2) u
(n+1)
1 = Du

(n)
1 + Cu

(n)
2 .

(3) If k > 1, u
(n+1)
k = Au

(n)
k−1 + Bu

(n)
k + Cu

(n)
k+1.

Lemma 2.12 has the following immediate corollaries, with the first proved by induction
on n.

Corollary 2.13. The first column vector in W n is (u
(n)
1 , u

(n)
2 , . . ..

Corollary 2.14. The (1, 1) coefficient of W n is
∑

w∗(α), the sum extending over all
standard walks of length n from 0 to 0. So G(W ) = G(w∗).
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It remains to prove Lemma 2.12. (1) is evident. Let α be a standard walk of length n
from 0 or 1 to 0. Then β = (0, α0, . . . , αn) is a standard walk of length n + 1 from 0 to 0,
and w∗(β) is Dw∗(α) in the first case and Cw∗(α) in the second. Also each standard walk
β of length n + 1 from 0 to 0 arises in this way from some α; explicitly α = (β1, . . . , βn).
Summing over β we get (2). Similarly, suppose that k > 1 and that α is a standard walk
of length n from k− 2, k− 1 or k to 0. Then β = (k− 1, α0, . . . , αn) is a standard walk of
length n + 1 from k− 1 to 0 and w∗(β) = Aw∗(α) in the first case, Bw∗(α) in the second,
and Cw∗(α) in the third. Also, each standard walk β of length n + 1 arises from such an
α; explicitly α = (β1, . . . , βn). Summing over β we get (3), completing the proof.

Remark 2.15. To calculate the matrix entries of G(W ) explicitly as algebraic functions
of z by the method of Theorem 2.9 involves solving a system of s2 quadratic equations in
s2 variables. This isn’t practical when s > 2; in the next section we give a different proof
of Theorem 2.9 that is often better adapted to explicit calculations.

3 A partial fraction proof of Theorem 2.9

Theorem 3.1.
∑

w(α)xα0, the sum extending over all length n walks (not necessarily
standard) with finish 0, is the element (Ax + B + Cx−1)n of Λ[x, x−1].

Proof. Denote the sum by fn. Since f0 = 1 it’s enough to show that fn+1 = (Ax + B +

Cx−1)fn. Let v
(n)
k be the coefficient of xk in fn. Then v

(n)
k =

∑

w(α), the sum extending
over all length n walks from k to 0. The proof of (3) of Lemma 2.12, using all walks rather

than all standard walks, shows that v
(n+1)
k = Av

(n)
k−1 + Bv

(n)
k + Cv

(n)
k+1 for all k in Z, giving

the result.

Definition 3.2.

M0(w) =
∑

w(α)zl(α), the sum extending over all 0 to 0 walks.

M−1(w) is the sum extending over all −1 to 0 (or 0 to 1) walks.

M1 is the sum extending over all 1 to 0 (or 0 to −1) walks.

We’ll generally omit the w and just write M0, M−1 or M1.

Corollary 3.3. Suppose that i = 0, −1 or 1. Then Mi is the coefficient of xi in the
element

∑∞
0 (Ax + B + Cx−1)nzn of Λ[x, x−1][[z]].

Definition 3.4. J0 = J0(w) is
∑

w(α)zl(α), the sum extending over all primitive 0 to 0
walks.

Theorem 3.5.

(1) M0 = 1 + J0 + J2
0 + · · · .

(2) G(w) = M0 − M1M
−1
0 M−1.
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Proof. (1) follows from the multiplicative property of w, as in the proof of Lemma 2.7.
So M−1

0 = 1 − J0, and (2) asserts that G(w) = M0 + M1J0M−1 − M1M−1. If α is a walk
from 0 to 0 let r(α) be the number of ways of writing α as a concatenation of a walk
from 0 to −1 and a walk from −1 to 0. Also let r1(α) be the number of ways of writing
α as a concatenation of a walk from 0 to −1, a primitive walk from −1 to −1 and a walk
from −1 to 0. The multiplicative property of w shows that M0 + M1J0M−1 − M1M−1 =
∑

w(α)(1 + r1(α) − r(α))zl(α), the sum extending over all walks from 0 to 0. If α is
standard, r1(α) = r(α) = 0. If α is not standard there is an i with αi = −1. Let
i1 < i2 < · · · < ir be those i with αi = −1. One sees immediately that r(α) = r and that
r1(α) = r − 1. So M0 + M1J0M−1 − M1M−1 is the sum over the standard walks from 0
to 0 of w(α)zl(α), and this is precisely G(w).

Suppose now that Λ = Ms(F ), F a field, so that M0, M1 and M−1 may be viewed as
s by s matrices with entries in F [[z]]. Theorem 3.5, (2), will give a new proof of Theorem
2.9 once we show that these matrix entries are algebraic over F (z). The facts about the
matrix entries of M0, M1 and M−1 follow from a standard partial fraction decomposition
argument—we’ll give our own version.

The algebraic closure of the field of fractions of F [[z]] is a valued field with value group
Q. Let Ω be the completion of this field and ord : Ω → Q∪{∞} be the ord function in Ω.
Let Ω′ consist of formal power series

∑∞
−∞ aix

i with ai ∈ Ω and ord ai → ∞ as |i| → ∞.
Ω′ has an obvious multiplication and is an overring of F [x, x−1][[z]]. l0, l1 and l−1 are the
Ω-linear maps Ω′ → Ω taking

∑

aix
i to a0, a1 and a−1. Note that F (z), the algebraic

closure of F (z), imbeds in Ω.

Lemma 3.6. Suppose λ ∈ F (z) with ord λ 6= 0. Then the element x−λ of Ω′ is invertible,
and for all k ≥ 1, (x − λ)−k =

∑∞
−∞ aix

i in Ω′ with the ai in F (z). In particular, l0, l1
and l−1 take each (x − λ)−k to an element of F (z).

Proof. If ord λ > 0, x − λ = x(1 − λx−1) has inverse x−1(1 + λx−1 + λ2x−2 + · · · ), while
if ord λ < 0, x − λ = −λ(1 − λ−1x) has inverse −λ−1(1 + λ−1x + λ−2x2 + · · · ).

Lemma 3.7. Let U1 and U2 be elements of F [z, x]. Suppose that U2 ≡ xs mod z for
some s. Then U2 has an inverse in F [x, x−1][[z]] and the coefficients of x0, x1 and x−1 in
the element U1U

−1
2 of F [x, x−1][[z]] all lie in F (z).

Proof. Write U2 as xs(1− zp) with p in F [x, x−1, z]. Then x−s(1 + zp + z2p2 + · · · ) is the
desired inverse of U2. If λ in Ω has ord 0 then 1 − zp(λ, λ−1, z) has ord 0 and cannot be
0. So when we factor U2 in F (z)[x] as q · Π(x − λi)

ci with q in F [z] and λi in F (z), no
ord (λi) can be 0. View U1U

−1
2 as an element of F (z)(x). As such it is an F (z) linear

combination of powers of x and powers of the (x− λi)
−1. Since l0, l1 and l−1 are Ω-linear

they are F (z)-linear. Lemma 3.6 then tells us that U1U
−1
2 , viewed as an element of Ω′, is

mapped by each of l0, l1 and l−1 to an element of F (z). This completes the proof.

Lemma 3.8. Let A, B and C be in Ms(F ) and u ∈ F [x, x−1][[z]] be an entry in the
matrix (Is − z(Ax + B + Cx−1))

−1
. Then the coefficients of x0, x1 and x−1 in u all lie in

F (z).
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Proof. u may be written as U1/U2 where U1 and U2 are in F [z, x] and U2 =
det (xIs − z(Ax2 + Bx + C)). Then U2 ≡ xs mod z, and we apply Lemma 3.7.

Corollary 3.9. If Λ = Ms(F ), F a field, then the matrix entries of M0, M1 and M−1 are
algebraic over F (z). (So by Theorem 3.5 the same is true of the matrix entries of G(w).)

Proof. (Is − z(Ax + B + Cx−1))
−1

=
∑∞

0 (Ax + B + Cx−1)nzn, and we combine Lemma
3.8 with Corollary 3.3.

4 Examples

Example 4.1. For i, j positive integers define vi,j by:

(1) vi,j = 1 if i − j ∈ {−1, 0, 1}.

(2) vi,j = 1 if j = i + 3 and i is odd.

(3) All other vi,j are 0.

We calculate G(V ) where V = |vi,j|. If we take s = 2, (1) and (2) in the corollary to
Theorem I are satisfied, and D = B = ( 1 1

1 1 ), A = ( 0 1
0 0 ), C = ( 0 1

1 0 ). Let G = G(w) =
G(w∗). G is a 2 by 2 matrix ( g1 g2

g3 g4
) with entries in F [[z]], and g1 = G(V ). By Corollary

2.8, CGAGz2 + BGz − G + I2 = 0. Two of the four equations this gives are:

z2g1g3 + z(g1 + g3) − g3 = 0

z2g2
3 + z(g1 + g3) − g1 + 1 = 0

Solving the first equation for g3 and substituting in the second we find that G(V ) = g1 is
a root of:

(z5 − z4)x3 + (3z4 − 4z3 + 2z2)x2 + (2z3 − 4z2 + 3z − 1)x + (z2 − 2z + 1) = 0.

Example 4.2. For i, j positive integers define vi,j by:

(1) vi,j = 1 if i − j ∈ {−1, 0, 1}.

(2) vi,j = 1 if j = i + 3 and i is even.

(3) All other vi,j are 0.

We calculate G(V ) where V = |vi,j|. Since v2,5 = 1, condition (1) of the corollary to
Theorem I is not met when s = 2, and we instead take s = 4.

Now

D = B =

(

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

)

A =

(

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)

and C =

(

0 0 0 0
1 0 0 0
0 0 0 0
1 0 1 0

)

.
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Let the entries in the first column of the 4 by 4 matrix G = G(w) be a, b, c and d.
Examining the entries in the first column of the matrix equation G = BGz+CGAGz2+I4

we see:

a = (a + b)z + 1

b = (a + b + c)z + bdz2

c = (b + c + d)z

d = (c + d)z + d(a + c)z2

Using Maple to eliminate b, c, and d from this system we find that a = G(V ∗) is a
root of:

(z2) · (z − 1)3 · (3z2 + 3z − 2) · x3

+(z − 1)2 · (9z4 + 6z3 − 11z2 + 5z − 1) · x2

+(2z − 1) · (5z4 − 13z2 + 9z − 2) · x
+(2z − 1)2 · (z2 + 2z − 1) = 0.

Example 4.3. For i, j positive integers define vi,j by:

(1) vi,j = 1 if i − j ∈ {−1, 1}.

(2) vi,j = 1 if i − j ∈ {−3, 3} and i ≡ 2 (mod 3).

(3) All other vi,j are 0.

We calculate G(V ) where V = |vi,j|. Take s = 3. Then:

A =
(

0 0 1
0 1 0
0 0 0

)

B = D =
(

0 1 0
1 0 1
0 1 0

)

C =
(

0 0 0
0 1 0
1 0 0

)

.

The determinant of the matrix xI3 − z(Ax2 + Bx + C) is −x2(zx2 + (3z2 − 1)x + z).
The splitting field of this polynomial over F (z) is the extension of F (z) generated by√

1 − 10z2 + 9z4. The arguments of section 3 show that M0, M1 and M−1 have entries in
this extension field. It’s not hard to write down these matrices explicitly using the partial-
fraction decomposition argument. Theorem 3.5 and a Maple calculation then show that
the (1, 1) entry in G(w) is 4/(3 + z2 +

√
1 − 10z2 + 9z4). Since D = B, G(w∗) = G(w),

and this (1, 1) entry is the desired G(V ).

5 More algebraic generating functions

Definition 5.1. Suppose that Λ = Ms(F ), F a field, and that A, B, C, D are in Λ. Then
L ⊂ the field of fractions of F [[z]] is the extension field of F (z) generated by the matrix
entries of the M0, M1 and M−1 of Definition 3.2.
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Remark 5.2. As we’ve seen L contains the matrix entries of G(w) and G(w∗) and is
finite over F (z). Indeed the proofs of Lemmas 3.7, 3.8 and Corollary 3.9 show that L ⊂
a splitting field over F (z) of the polynomial det |xIs − z(Ax2 + Bx + C)|. One can say
a bit more. The above polynomial splits into linear factors in Ω[x], and one may view
its splitting field as a subfield of the valued field Ω. By examining the partial-fraction
decomposition one finds that L is fixed elementwise by each automorphism of the splitting
field that is the identity on F (z) and permutes the roots that have positive ord among
themselves.

The goal of this section is to show that some generating functions related to G(w)
also have their matrix entries in L. These results are used in [3] to show the algebraicity
(under a conjecture) of certain Hilbert-Kunz series and Hilbert-Kunz multiplicities; see
Theorems 3.1 and 3.4 of that note.

Now let u
(n)
k be as in Lemma 2.12 where k is a positive integer. By definition, G∗(w) =

∑

u
(n)
1 zn.

Lemma 5.3.
∑

n u
(n)
k+1z

n = G(w)(Az)
∑

n u
(n)
k zn.

Proof. A standard walk from k to 0 can be written in just one way as the concatenation of
a standard walk from k to k, the walk (k, k− 1) and a standard walk from k− 1 to 0.

Corollary 5.4. Fix k ≥ 1. The generating function arising from the (k, 1) entries of the
matrices W n has its matrix entries in L.

Proof. Corollary 2.13 shows that this generating function is
∑

n u
(n)
k zn, and we use Lemma

5.3 and induction.

Definition 5.5. G∗
r =

∑
(

α0

r

)

w∗(α)zl(α), the sum extending over all standard walks fin-
ishing at 0.

Evidently G∗
0 =

∑∞
k=0

∑∞
n=0 u

(n)
k+1z

n. By Lemma 5.3, this is

(

1 + G(w)Az + (G(w)Az)2 + · · ·
)

G(w∗).

So:

Lemma 5.6. (1 − G(w)Az)G∗
0 = G(w∗).

A variant of this is:

Lemma 5.7. (1 − G(w)Az)G∗
r+1 = G(w)(Az)G∗

r.

Proof. We introduce new weight functions w|t and w∗|t as follows. Replace Λ, A and C
by Λ[[t]], A(1+ t) and C(1+ t)−1, and let w|t and w∗|t be the new w and w∗ that arise. If
α = (α0, . . . , αl) is a walk from k to 0 then there are k = α0 more steps of size −1 in the
walk than there are steps of size 1. It follows that w|t(α) and w∗|t(α) are (1+t)α0w(α) and
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(1 + t)α0w∗(α). In particular, G(w|t) = G(w) and G(w∗|t) = G(w∗). Applying Lemma
5.6 in this new situation we find:

((1 − G(w)Az) − G(w)Azt)

(

∞
∑

k=0

∞
∑

n=0

(1 + t)ku
(n)
k+1z

n

)

= G(w∗).

In particular, the coefficient of tr+1 in the left-hand side of the above equation is 0.
Evaluating this coefficient we get the lemma.

Theorem 5.8. Let a1, a2, . . . be elements of F . Suppose there is a polynomial function
whose value at j is aj for sufficiently large j. Let Rn =

∑∞
1 aku

(n)
k . Then all the matrix

entries of
∑

Rnzn lie in L.

Proof. Corollary 5.4 shows that the generating function arising from any single (j, 1)
entry has matrix entries in L. So we may assume that j → aj is a polynomial function.
Since any polynomial function is an F -linear combination of the functions j →

(

j−1
r

)

,

r = 0, 1, 2, . . . we may assume aj =
(

j−1
r

)

. But then
∑

Rnzn is G∗
r, and we use Lemmas

5.6, 5.7 and induction.

Corollary 5.9. Suppose V = |vi,j|, i, j ≥ 1 is a matrix with entries in F satisfying:

(1) vi,j = 0 whenever i ≤ s and j > 2s or j ≤ s and i > 2s.

(2) vi+s,j+s = vi,j whenever i + j ≥ s + 2.

(3) The initial 2s by 2s block in V is ( D C
A B ).

Suppose further that a1, a2, . . . are in F and that for each i, 1 ≤ i ≤ s, there is a
polynomial function agreeing with k → ai+sk for large k. Let v

(n)
i be the (i, 1) entry in V n.

Then
∑

i,n v
(n)
i aiz

n is in L.

Proof. Construct W as in the proof of the corollary to Theorem I. As the first column of
W n is u

(n)
1 , u

(n)
2 , . . . it follows that v

(n)
i+sk is just the (i, 1) entry in the s by s matrix u

(n)
k+1.

Theorem 5.8 shows that for each i with 1 ≤ i ≤ s,
∑

k,n v
(n)
i+skai+skz

n is in L. Summing
over i we get the result.

The following results may seem artificial but they’re what we need for the applications
to Hilbert-Kunz theory in [3].

Lemma 5.10. Let Y be a finite dimensional vector space over F , T : Y → Y and
l : Y → F linear maps and y1, y2, . . . a sequence in Y . Let V and s be as in Corollary
5.9. Suppose that for each i, 1 ≤ i ≤ s, each co-ordinate of yi+sk with respect to a fixed
basis of Y is an eventually polynomial function of k. Define y(n) inductively by y(0) = 0,
y(n+1) = Ty(n) +

∑

v
(n)
i yi—see Corollary 5.9 for the definition of v

(n)
i . Then

∑

l
(

y(n)
)

zn

is in L.
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Proof. (I − zT )
∑

y(n)zn =
∑

i,n v
(n)
i yiz

n+1. By Corollary 5.9, all the co-ordinates of

(I − zT )
∑

y(n)zn with respect to a fixed basis of Y lie in L. Since det |I − zT | is a
non-zero element of F (z) ⊂ L, the same is true of the co-ordinates of

∑

y(n)zn, giving
the lemma.

Theorem 5.11. Suppose X is a vector space over F , Y is a finite dimensional subspace,
T : X → X is linear with T (Y ) ⊂ Y , and E1, E2, . . . lie in X. Suppose further that
T (Ej) =

∑

vi,jEi + yj, where V = |vi,j| is as in Lemma 5.10 and y1, y2, . . . is a sequence
in Y satisfying the condition of Lemma 5.10. Then if l : X → F is linear with each
l(Ei) = 0, the power series

∑∞
0 l (T n(E1)) zn is in L.

Proof. Define y(n) as in Lemma 5.10. Using the identity
∑

j vi,jv
(n)
j = v

(n+1)
i and induction

we find that T n(E1) =
∑

v
(n)
i Ei + y(n). So l (T n(E1)) = l(y(n)) and we apply Lemma

5.10.

The following example is closely related to our calculations in [2]. We explain how
this and similar examples relate to Hilbert-Kunz theory in [3].

Example 5.12. Suppose δ1 and δ2 are a basis of Y , that y1 = 6δ1 and that yk = (8k −
2)δ1 + δ2, k > 1. Suppose further that T (δ1) = 16δ1, T (δ2) = 4δ1 + 4δ2, T (E1) =
E1 + E2 + y1, and that T (Ek) = Ek−1 + Ek+1 + yk for k > 1. Suppose l : X → F takes δ1

to 1, and δ2 and each Ek to 0. We shall calculate the power series S =
∑

l (T n(E1)) zn

explicitly. (Theorem 2.4 of [3] and the observation following it arise from our formula for
S.)

In the above situation, v1,1 = vi,i+1 = vi+1,i = 1 and all other vi,j are 0. So we can

take s = 1, A = C = D = 1 and B = 0. Since s = 1, v
(n)
k = u

(n)
k . It follows from this and

the definition of the yk that
∑

k,n v
(n)
k ykz

n+1 = z(8G∗
1 + 6G∗

0)δ1 + z(G∗
0 − G(w∗))δ2.

Now the matrix of T : Y → Y on the basis (δ1, δ2) is ( 16 4
0 4 ). It follows that the

matrix of I − zT is
(

1−16z −4z
0 1−4z

)

with inverse 1
(1−16z)(1−4z)

(

1−4z 4z
0 1−16z

)

. Since S is the

coefficient of δ1 in
∑

l(y(n))zn = (I − zT )−1 ·
∑

k,n v
(n)
k ykz

n+1, the last paragraph shows

that (1 − 16z)(1 − 4z)S = (z − 4z2)(8G∗
1 + 6G∗

0) + 4z2(G∗
0 − G(w∗)). It only remains to

calculate G(w∗), G∗
0 and G∗

1.
Lemma 2.7 and Corollary 2.8 show that H(w) = z2G(w), and z2G(w)2 − G(w) + 1 =

0. So G(w) and H(w) are 1−
√

1−4z2

2z2 and 1−
√

1−4z2

2
. Lemma 2.10 then shows G(w∗) =

1
2z(1−2z)

(−1 + 2z +
√

1 − 4z2). Making use of Lemmas 5.6 and 5.7 we find that G∗
0 and

G∗
1 are 1

1−2z
and 1

2(1−2z)2
(−1 + 2z +

√
1 − 4z2). A brief calculation then gives the explicit

formula:

(1 − 16z)(1 − 4z)(1 − 2z)2S = 4z(1 − 2z)2 + (2z − 12z2)
√

1 − 4z2.
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