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Abstract

We consider the number σ(w) of positions that do not start a square in binary
words w. Letting σ(n) denote the maximum of σ(w) for length |w| = n, we show
that lim σ(n)/n = 15/31.

1 Square-free positions and strong words

Every binary word with at least 4 letters contains a square. A.S. Fraenkel and J. Simp-
son [2, 1] studied the number of distinct squares in binary word; see also Ilie [4], where it
was shown that a binary word can contain at most 2n−Θ(log n) distinct squares. It has
been conjectured that n is an upper bound in this case.

On the other hand, in an impressive paper [5] G. Kucherov, P. Ochem and M. Rao
proved that the minimum number of occurrences of squares in binary words is asymptoti-
cally equal to 0.55080 . . . times the length of the word. Later Ochem and Rao [7] showed
that this constant is exactly 103/187.

In the present paper we count the minimum number of positions in binary words
that starts a square, and we show that asymptotically this is 16/31 = 0.516 . . .. For our
convenience, we state the result in the dual case, i.e., we count the maximum number of
positions that are square-free. Related question for borders of cyclic words was considered
by T. Harju and D. Nowotka [3].
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Several parts of the proofs are computer aided, both for searching the strong words
(the main concept in the proofs) as well as for checking their compatibilities. We have
included the Mathematica code for the search of strong words.

We refer to Lothaire [6] for elementary definitions in combinatorics on words. Let
A = {a, b, c} be a ternary alphabet, and B = {0, 1} a binary alphabet. For a binary
word w = a1a2 · · ·an ∈ B∗ with ai ∈ B, we say that a position i ∈ {1, 2, . . . , n} starts a
square, if ai · · ·ai+j−1 = ai+j · · ·ai+2j−1 for some j such that i + 2j − 1 ≤ n. Otherwise,
the position i is square-free in w.

For r, s ≥ 1, let σw(r, s) denote the number of square-free positions i with r < i ≤ r+s
in the word w. In order to simplify the treatment, we shall write σw(u) instead of σw(r, s)
where w = xuv such that |x| = r and |u| = s. Hence while talking about σw(u) the
occurrence of the factor u in w will be implicitly, and without risk of confusion, assumed.
Also, let σ(w) = σw(w). For an integer n ≥ 1, let

σ(n) = max{σ(w) : w ∈ B∗, |w| = n} .

A word w is said to be strong if for all nonempty prefixes u of w,

σw(u) ≥ |u|/2 .

We notice that if w is a strong word, then so is its complement w̄ obtained from w by
interchanging the letters 0 and 1.

Example 1. The short strong words, beginning with 0, are listed in Table 1. As an
example consider the word w = 0100110001001 with |w| = 13. We have σ(w) = 8, and the
square-free positions are marked by dots in the following copy w = .0.10.01.100.0.10.0.1.
The ratio 8/13 is much bigger than the asymptotic bound 15/31 that will be proved in
the sequel. One can easily check that w is a strong word.

0 0110 010001 0100110 01001100 010011000
01 01000 010011 0100111 01001101 010011010

010 01001 011001 0110010 01001110 010011100
011 01100 0100010 0110011 010001100 010011101

0100 01101 0100011 01000110 010001101 0100011001

Table 1: The first 30 short strong words.

Using Mathematica (version 7.01.0), one can calculate σ(w) and the ratio σ(w)/|w|
using functions Sigma and SigmaRatio defined as

Sigma[Str_]:= StringLength[Str]-

Length[StringPosition[Str,x__ ~~x__,Overlaps -> True]] ,

SigmaRatio[Str_,j_]:= (j - Length[Select[StringPosition[Str,

x__ ~~x__, Overlaps -> True], #[[1]] < j + 1 &]])/j .
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For checking whether a word is strong, one can use

Strong[Str_] :=Module[{strong, i}, strong = True; i = 0;

While[strong && i < StringLength[Str], i = i + 1;

strong = (SigmaRatio[Str, i] >= 1/2)]; strong] .

A list of all strong words can be generated by the command

StrongList = {"0", "1"}; For[i = 1, i < Length[StrongList],

i++, If [Strong[StrongList[[i]] <> "0"], StrongList =

Append[StrongList, StrongList[[i]] <> "0"]];

If [Strong[StrongList[[i]] <> "1"], StrongList =

Append[StrongList, StrongList[[i]] <> "1"]]];

StrongList .

After a computer check, we have that there are only finitely many strong words, the
longest of which have length 37. More precisely, we have the following lemma.

Lemma 1. (1) There are 382 strong words the longest of which has length 37.
(2) If w is a strong word with |w| ≥ 8, then w begins with 0100 or its complement

1011.

The long strong words of length at least 27, starting with the letter 0, are in Table 2.

2 Decompositions

A min-factor m(w) of a binary word w is the shortest prefix u of w such that σw(u) <
|u|/2, if it exists. By the above observation, each binary word w with |w| ≥ 38
does have a (unique) min-factor. The min-decomposition of w is the factorization
w = w1w2 · · ·wrwr+1, where wi = m(wi · · ·wr+1) for i = 1, 2, . . . , r and the suffix wr+1

does not possess a min-factor. In particular, wr+1 is strong.
The following lemma will be crucial in the sequel.

Lemma 2. Assume that w = m(w)w′ for a suffix w′ with 010 or 101 a prefix of w′. Then
the min-factor m(w) is a strong word.

Proof. In order to show that m(w) is strong, consider the prefix p of length |m(w)| − 1.
Then

σw(p) = σw(m(w)) , (1)

since w′ begins with 010 or 101, and thus the last letter of m(w) starts a square in w.
By the definition of m(w), we have σw(m(w)) < |m(w)|/2 and σw(p) ≥ |p|/2. Hence,
combining these with (1), we obtain

(|m(w)| − 1)/2 ≤ σw(m(w)) < |m(w)|/2 ,
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length strong word
27 010011000100111011000100110

010011000100111011001011100
010011000100111011001011101
010011000100111011001110010
010011101100010011010001100
010011101100010011010001101

28 0100110001001110110001001100
0100110001001110110001001101
0100110001001110110010111001
0100111011000100110100011001

29 01001100010011101100010011000
01001100010011101100010011010
01001100010011101100101110010
01001100010011101100101110011
01001110110001001101000110010
01001110110001001101000110011

30 010011000100111011000100110001
010011000100111011000100110100
010011000100111011001011100110

31 0100110001001110110001001100011
0100110001001110110001001101000
0100110001001110110001001101001
0100110001001110110010111001100
0100110001001110110010111001101

32 01001100010011101100010011000110
01001100010011101100010011010001

33 010011000100111011000100110001101
010011000100111011000100110100010
010011000100111011000100110100011

34 0100110001001110110001001101000110
35 01001100010011101100010011010001100

01001100010011101100010011010001101
36 010011000100111011000100110100011001
37 0100110001001110110001001101000110010

0100110001001110110001001101000110011

Table 2: The long strong words.
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which implies that |m(w)| is odd and σw(m(w)) = (|m(w)| − 1)/2. Hence, since the last
letter of m(w) does not start a square in m(w), we have

σ(m(w)) ≥ σw(m(w)) + 1 = (|m(w)| + 1)/2 .

This completes the proof that m(w) is strong.

3 Asymptotic behaviour

In this section we consider the asymptotic behaviour of σ(n)/n, and prove the following
result as a consequence of Theorems 7 and 9.

Theorem 3. We have

lim
σ(n)

n
=

15

31
.

3.1 Upper bound

In the next lemmas, let
w = w1w2 · · ·wrwr+1 (2)

be a min-decomposition of w for r ≥ 2.

Lemma 4. Each min-factor wi, for i = 1, 2, . . . , r, is of odd length.

Proof. Assume that wi is a min-factor of even length n. Let v be the prefix of wi of length
n − 1. Then

σw(v) ≤ σw(wi) ≤
n

2
− 1 =

n − 2

2
<

n − 1

2
,

which contradicts with the definition of a min-factor.

Lemma 5. Let i < r. If |wi+1| ≥ 9 then wi is strong.

Proof. Since wi+1 is a min-factor, by the definitions, its prefix of length |wi+1| − 1 is a
strong word. Each strong word of length at least eight begins with 010 or 101, and thus
the claim follows from Lemma 2.

The next lemma relies on computations.

Lemma 6. If |wi| = 27 and |wi+1| ≥ 31 for i < r, then wi is one of the following two
strong words,

010011000100111011000100110 or 101100111011000100111011001 .

Theorem 7. We have

lim sup
σ(n)

n
≤

15

31
.
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Proof. Let w = w1w2 · · ·wrwr+1 be the min-decomposition of w. Recall that, for i ≤ r,
we have σw(wi) < |wi|/2, and that the prefix of length |wi|−1 is strong whenever |wi| > 1.
Also, by Lemma 4, |wi| is odd for each i ≤ r. We consider the factors

wi,i+k = wiwi+1 . . . wi+k ,

where i + k ≤ r. By symmetry, we can assume that in these considerations wi begins
with the letter 0. The other case is obtained by complementing the words in the following
considerations.

Claim. For all i ≤ r − 3, we have σw(wi,i+k)/|wi,i+k| ≤ 15/31 for some 0 ≤ k ≤ 2.

The claim leaves (some of the) suffixes wr−2wr−1wrwr+1 unconsidered. However, since
these suffixes are always bounded by length, the claim of the theorem follows.

For the present claim , we obtain the following facts aided by computer checks.
For each index j < r, if |wj+1| > 29, then the word p = 01001100010011 (or, in

the symmetric case, its complement p̄) is a prefix of wj+1. Indeed, if |wj+1| > 29, then
wj+1 ≥ 31 by Lemma 4, and its prefix of length 30 is strong. By Table 2, every strong
word of length 30 has the prefix p or p̄. By Lemma 2, wj is strong, and after a computer
check, we find that if |wj| ≥ 25 then wj must be one of the words in Table 3, where the
lengths of the words are at most 31. Therefore

if |wj+1| > 29, then |wj| ≤ 31 . (3)

Hence, by the definition of a min-factor, we have

σw(wj,j)/|wj,j| ≤ 15/31.

We also find by checking through the strong words of length 29, with the condition
that wj is a min-factor, that

if |wj| = 29 with j < r and σwj,j+1
(wj) ≥ 14, then |wj+1| ≤ 29 . (4)

Suppose then that |wi| > 31 for i ≤ r − 3, and that, for all k = 1, . . . , r − i,

σw(wi,i+k)

|wi,i+k|
>

15

31
. (A)

In particular, by (A) and Lemma 5, the factor wi is strong. Moreover, by (3), we have
|wi+1| ≤ 29. If |wi| = 33, then σw(wi,i+1)/|wi,i+1| ≤ (16 + 14)/(33 + 29) = 15/31, which
contradicts with the assumption (A). Hence, we have |wi| = 35 or 37.

First, let |wi| = 35. By the assumption (A), we have to have |wi+1| = 29 and
σw(wi+1) = 14. By (4), since i ≤ r − 2, also |wi+2| ≤ 29. But now,

σw(wi,i+2)

|wi,i+2|
≤

17 + 14 + 14

35 + 29 + 29
=

15

31
.
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Second, let |wi| = 37. Then, by (A), we have |wi+1| = 27 or 29. Since i ≤ r − 3,
the case |wi+1| = 29 leads to a contradiction. Namely, by (A) and (4), we must have
|wi+2| ≤ 29. If |wi+2| ≤ 27, then

σw(wi,i+2)

|wi,i+2|
≤

18 + 14 + 13

37 + 29 + 27
=

15

31

contradicts with (A). On the other hand, if |wi+2| = 29, then as above |wi+3| ≤ 29 and

σw(wi,i+3)

|wi,i+3|
≤

18 + 14 + 14 + 14

37 + 29 + 29 + 29
=

15

31
.

This is again a contradiction.
Hence, it follows that we have the factor wiwi+1 with |wi| = 37 and |wi+1| = 27. In

this case, the computer search finds that there is a unique solution for wi,

wi = 0100110001001110110001001101000110010

starting with 0, and wi+1 is one of the following two words of length 27,

wi+1 = 101100010011101100101110011 , (i1)

wi+1 = 101100010011101100101110010 . (i2)

These words differ from those in Lemma 6 which means |wi+2| ≤ 29, and

σw(wi,i+2)

|wi,i+2|
≤

18 + 13 + 14

37 + 27 + 29
=

15

31
.

Again, this is a contradiction, and the claim follows.

length strong word
25 0100110001001110110010111
25 1011001110110001001110110
25 1011001110110001001101000
25 1011001110110001001100011
27 101100111011000100111011001
31 0100110001001110110001001100011
31 0100110001001110110001001101000
31 1011001110110001001110110010111

Table 3: The set of strong words of length at least 25 preceding the word p =
01001100010011. Notice that as starting letters 0 and 1 are not symmetric, because
of the chosen p. Also, there are no words in this list of length 29.
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Example 2. In the previous proof for the unique min-factor wi with |wi| = 37 where
i = r − 2, the computer search states that wi+1 is equal to either of the following words

10110001001110110010111001101 ,

10110001001110110010111001100 .

The first one has no continuation, but for the second one, we have two candidates for
wi+2 to be a min-factor. These are

01001110110001001101000110010 ,

01001110110001001101000110011 .

3.2 Lower bound

For the lower bound we construct good words from square-free ternary words using the
following morphism. Let h : {α, β, ᾱ, β̄}∗ → {0, 1}∗ be the 31-uniform morphism defined
by

h(α) = 0100110001001110110001001101000 ,

h(β) = 0100110001001110110001001100011 ,

h(ᾱ) = 1011001110110001001110110010111 ,

h(β̄) = 1011001110110001001110110011100 .

We have σh(xy)(h(x)) = 15 = σ(h(x)) − 1 for all different x, y ∈ {α, β, ᾱ} except for
xy = βᾱ. Taking the complements, we have σh(xy)(h(x)) = 15 = σ(h(x)) − 1 for all
x, y ∈ {α, β̄, ᾱ} except for xy = β̄α.

Take then a square-free ternary word w on the alphabet {α, β, ᾱ} and change every
occurrence of βᾱ by β̄ᾱ. Denote the new square-free word on the alphabet {α, β, ᾱ, β̄}
by ŵ. We show that the words h(ŵ) satisfy σ(h(ŵ))/|h(ŵ)| > 15/31. Let us first prove
the following lemma.

Lemma 8. There are no squares u2 in h(ŵ) such that |u| ≥ 31.

Proof. Suppose on the contrary that there is a square u2 in h(ŵ) where |u| ≥ 31. Since
h(ŵ) consists of blocks h(α), h(β), h(ᾱ), h(β̄) of length 31, we can write

u = xvy = x′v′y′ , (5)

where x 6= ε is the prefix of the first u up to the beginning of a new block, v = h(r)
consists of full blocks, y is a prefix of the block following v such that |y| < 31 and x′v′y′

is the corresponding block decomposition for the second occurrence of u, denoted by u′

in the sequel. Note that x and x′ may be full blocks, and some or all of v, y, v′, y′ may
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be empty, and the corresponding elements in the two decompositions can be of different
length. Moreover,

h(z) = yx′ (6)

for some letter z ∈ {α, β, ᾱ, β̄}.
(1) Assume |x| ≥ 5. We notice that the word 01000 (resp. 00011, 10111, 11100) occurs

in h(ŵ) only as a suffix of h(α) (resp., h(β), h(ᾱ), h(β̄)). Since x is a prefix of u = u′ and
also a suffix of some block, we conclude that x′ = x, v′ = v and y′ = y. Hence, x′ = x
determines y and z uniquely, and the word xv(yx′)v is preceded by y. In other words,
(yx)v(yx′)v = h(zrzr) must occur in h(ŵ). By the block decomposition (5), this implies
that zrzr is a factor of ŵ, which contradicts with the square-freeness of ŵ.

(2) Assume |x| < 5. Since |u| ≥ 31, we have |vy| ≥ 27. Hence, v contains a prefix
01001100010 or its complement. We notice that 01001100010 (resp. 10110011101) occurs
in h(ŵ) only as a prefix of the block h(α) or h(β) (resp. h(ᾱ) or h(β̄)). Hence, we conclude
that in u′ we must have x′ = x, v′ = v and y′ = y.

If |y| ≥ 28, then y = y′ determines x′ and z uniquely and v(yx′)v(y′x′) = h(rzrz) is a
factor of h(ŵ). We obtain a contradiction as above.

On the other hand, if |y| < 28, then |x′| ≥ 4 by (6). A suffix x′ = x of any block with
length at least four determines the block uniquely. Hence, the word (yx)v(yx′)v = h(zrzr)
is a factor of ŵ. Again, this is a contradiction.

Now we are ready to prove the lower bound.

Theorem 9. We have

lim inf
σ(n)

n
≥

15

31
.

Proof. Let ŵ be as in the previous proof obtained from a square-free ternary word w.
Each square u2 in h(ŵ) satisfies |u| < 31, and thus u2 must occur inside h(xyz) for some
factor xyz ∈ {α, β, ᾱ, β̄}3 in ŵ. However, we verify by a computer check that

σh(xyz)(h(x)) = 15 (7)

for all factors xyz of ŵ. Hence, combining (7) with Lemma 8, we conclude that
σh(ŵ)(h(x)) = σ(h(x)) − 1 = 15 for every x ∈ {α, β, ᾱ, β̄}, which proves the claim.

Acknowledgement. Tomi Kärki acknowledges the support of Magnus Ehrnrooth Foun-
dation.
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