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Abstract

A generalized star-triangle transformation and a concept of triangle-duality have
been introduced recently in the physics literature to predict exact percolation thresh-
old values of several lattices. Conditions for the solution of bond percolation models
are investigated, and an infinite class of lattice graphs for which exact bond per-
colation thresholds may be rigorously determined as the solution of a polynomial
equation are identified. This class is naturally described in terms of hypergraphs,
leading to definitions of planar hypergraphs and self-dual planar hypergraphs. There
exist infinitely many self-dual planar 3-uniform hypergraphs, and, as a consequence,
there exist infinitely many real numbers a ∈ [0, 1] for which there are infinitely many
lattices that have bond percolation threshold equal to a.

1 Introduction

1.1 Bond Percolation

Percolation is a random model on infinite lattices, which serves as the simplest lattice
model example of a process exhibiting a phase transition. Even so, it provides some ex-
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tremely challenging problems. Its study provides intuition for more elaborate statistical
mechanics models. Due to its focus on clustering and connectivity phenomena, it is ap-
plied widely to problems such as magnetism and conductivity in materials, the spread
of epidemics, fluid flow in a random porous medium, and gelation in polymer systems.
Percolation models are studied extensively in both the mathematical and scientific lit-
erature. See Bollobás and Riordan [2], Grimmett [7], Hughes [8], and Kesten [10] for a
comprehensive discussion of mathematical percolation theory, Stauffer and Aharony [20]
for a physical science perspective, and Sahimi [15] for engineering science applications.

The bond percolation model may be described as follows. Consider an infinite con-
nected graph G. Each edge of G is randomly declared to be open with probability p,
and otherwise closed, independently of all other edges, where 0 ≤ p ≤ 1. (Note that the
Erdős-Renyi random graph model represents percolation on the complete graph.) The
corresponding parameterized family of product measures on configurations of edges is de-
noted by Pp. For each vertex v ∈ G, let C(v) be the open cluster containing v, i.e. the
connected component of the subgraph of open edges in G containing v. Let |C(v)| denote
the number of vertices in C(v). The percolation threshold of the bond percolation model
on G, denoted pc(G bond), is the unique real number such that

p > pc(G bond) =⇒ Pp(∃ v such that |C(v)| = ∞) > 0 (1)

and
p < pc(G bond) =⇒ Pp(∃ v such that |C(v)| = ∞) = 0. (2)

For over fifty years since the origins of percolation theory by Broadbent and Hammer-
sley [4], the derivation of percolation thresholds has been a challenging problem. Until
recently, exact solutions had been proved only for arbitrary trees [11] and a small num-
ber of periodic two-dimensional graphs [9, 10, 21, 22]. These results were obtained using
graph duality and a star-triangle transformation. Scullard [16] introduced a generalized
star-triangle transformation which allowed prediction of the exact site percolation thresh-
old for the so-called “martini” lattice. A triangle-triangle transformation and concept of
triangle-duality was introduced by Ziff [31] and Chayes and Lei [5], and further developed
by Ziff and Scullard [17, 32]. Triangle-duality allowed derivation of exact thresholds for
an additional collection of “martini-like” lattices and other lattice graphs.

In this article, we introduce a mathematical framework for unifying the concepts de-
veloped in the previous research. We examine these new derivations and identify and
explain conditions under which the results can be proved rigorously mathematically. For
this purpose, we describe a class of lattices solvable for the bond percolation threshold,
using the graph-theoretical concept of hypergraphs, and define planar hypergraphs and a
concept of self-duality for them. We discuss replacing each hyperedge in a self-dual planar
hypergraph by a planar graph called a “generator” to obtain a solvable lattice graph. For
the proof that it is solvable, we construct a dual generator and dual lattice, and apply the
generalized star-triangle transformation to derive the exact bond percolation threshold.
Certain technical conditions, such as planarity and periodicity are used to complete a
rigorous mathematical proof of the derivation. In section 9, we comment on the possible
extension of the method to site models and nonplanar lattices.
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Figure 1: Self-dual hypergraph arrangements illustrated in [32]. In the top row, we refer
to the left as the triangular arrangement, the right as the bow-tie arrangement. The third
example alternates rows of triangles and bow-ties.

1.2 The Triangle-Duality Construction

We first briefly and loosely describe the triangle-duality approach, in the context of bond
percolation, with a slightly different perspective: We consider constructing a lattice graph
rather than decomposing one. Consider an arrangement of non-overlapping triangular re-
gions in the plane, with triangles touching only at their vertices. For convenience, it
is sometimes desirable to represent the triangles as slightly concave, as illustrated in
Figure 1. Such an arrangement may be transformed into another arrangement via the
“triangle-triangle transformation,” in which each triangle is replaced by a “reversed trian-
gle” as shown in Figure 2. If the resulting (dual) triangular arrangement is equivalent to
the original arrangement, the arrangement is called “self-dual under the triangle-triangle
transformation” by Ziff and Scullard. If the triangular arrangement is self-dual, then a
lattice may be constructed by replacing each triangular region by a network of bonds
which has vertices at all three vertices of the triangle. Such a network will be called the
generator of the lattice. From such a generator, it may be possible to construct a dual
generator, which creates another lattice when replacing the triangles in the dual triangu-
lar arrangement. By solving an equation derived from the connection probabilities in the
generator and dual generator, a solution for the percolation threshold is obtained.
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Figure 2: Solid lines represent a 3-hyperedge with boundary vertices A, B, and C. Dashed
lines represent the “reversed” or dual hyperedge, with its boundary vertices A∗, B∗, and
C∗ labeled in the proper positions.

One goal of this article is to make explicit some assumptions which may have been
implicit in [16], [17], [31] and [32]. In the remainder of this article, we discuss conditions
which allow a valid exact solution for the bond percolation threshold in the framework
of 3-regular hypergraphs. Here we only note some remarks and cautions regarding a
few issues. (1) Planarity and graph duality play crucial roles in our reasoning, as in all
rigorous solutions for bond percolation thresholds of periodic lattices. Our results only
directly apply to planar hypergraphs and planar generators. There is some evidence of
wider applicability, which is being investigated. (2) Care must be taken when constructing
the dual hypergraph, with the reversed triangles connected in a precise manner in order
to create a proper dual structure. The reversed triangles need not be the same size or
shape as the original triangles, but may need to be distorted instead of merely reversed.
(3) To apply standard percolation theory results to prove that that solution is valid,
the resulting lattice graph must be periodic. However, Markström and Wierman [12]
have constructed examples of aperiodic models for which the bond percolation threshold
is exactly determined, using a periodic hypergraph into which a rotor gadget used as
generator and its reflection are placed in an aperiodic manner.

1.3 Equality of Percolation Thresholds

For lattices constructed by this method, the value of the bond percolation threshold is
determined by equations describing the probabilities of connections within the genera-
tor. Therefore, using the same generator in multiple self-dual triangular arrangements
produces multiple lattices with equal bond percolation thresholds. Ziff and Scullard
[32](Figures 1 and 6) illustrate three different self-dual arrangements. In section 7, we
show that there are infinitely many self-dual 3-uniform hypergraphs, so each generator
satisfying the appropriate conditions will generate an infinite set of lattices with equal
percolation thresholds. Previously, it was only known that there were infinitely many
lattices with bond percolation threshold equal to one-half, since Wierman [29] provided a
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construction for infinitely many periodic self-dual lattices. We also construct a sequence
of nested generators which must give unequal percolation thresholds, which implies that
there are infinitely many values a for which there are infinitely many lattices with bond
percolation threshold equal to a. The result also holds for site percolation thresholds, by
the bond-to-site transformation.

2 Background and Definitions

2.1 3-Uniform Hypergraphs

Given a set V of vertices, a hyperedge H is a subset of V . A hyperedge H is said to
be incident to each of its vertices. A k-hyperedge is a hyperedge containing exactly k

vertices. In order to neglect the detailed structure of our generators, at times we will view
a generator as a 3-hyperedge, and will represent it in the plane as a shaded triangular
region bounded by a slightly concave triangular boundary.

A hypergraph is a vertex set V together with a set of hyperedges of vertices in V .
A hypergraph containing only k-hyperedges is a k-uniform hypergraph. A hypergraph is
planar if it can be embedded in the plane with each hyperedge represented by a bounded
region enclosed by a simple closed curve with its vertices on the boundary, such that the
intersection of two hyperedges is a set of vertices in V .

In order to construct lattice graphs with exactly solvable bond percolation models,
we will consider infinite connected planar periodic 3-uniform hypergraphs. A planar
hypergraph H is periodic if there exists an embedding with a pair of basis vectors u

and v such that H is invariant under translation by any integer linear combination of u

and v, and such that every compact set of the plane is intersected by only finitely many
hyperedges.

If a hypergraph H is planar, we may construct a dual hypergraph H∗ as follows. Place
a vertex of H∗ in each face of H . For each hyperedge e of H , construct a hyperedge e∗

of H∗ consisting of the vertices in the faces surrounding e. Note that if the hyperedge is
a 3-hyperedge represented by a triangular region, and each of the boundary vertices is in
at least two hyperedges, then the dual hyperedge is a 3-hyperedge also, represented by a
“reversed triangle.”

Two hypergraphs are isomorphic if there is a one-to-one correspondence between their
vertex sets which preserves all hyperedges. A hypergraph is self-dual if it is isomorphic
to its dual. If the hypergraph is 3-uniform, this corresponds to the term triangle-dual
used by Ziff and Scullard. To illustrate, in Figure 1 we provide three examples of infinite
connected planar periodic self-dual 3-uniform hypergraphs mentioned in [32].

As a particular caution, note that the dual hypergraph is not obtained by simply
reversing the triangles in the original hypergraph. The reversed triangles must be con-
nected in a specific manner in order to create a proper dual structure. The way the
reversed triangles are connected in the empty faces of the original structure is important.
The reversed triangles do not need to be the same size or shape as the original triangles,
but may need to be distorted instead of simply reversed. An example of a hypergraph
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Figure 3: Top: A example of a hypergraph which is not self-dual, but appears to be if one
simply reverses each triangle. Middle: The dual of the hypergraph above. Bottom: A self-
dual hypergraph constructed by inserting additional 3-hyperedges in the top arrangement.
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which appears to be self-dual if one reverses each triangle, but is actually not self-dual, is
given in Figure 3.

3 Generators and Duality

A planar graph can be embedded in the plane so that edges meet only at their endpoints,
which divides the plane into regions bounded by edges, called “faces.” If the planar graph
is finite and connected, one of these faces is unbounded. A generator is a finite connected
planar graph embedded in the plane so that three vertices on the unbounded face are
designated as boundary vertices, which we denote as A, B, and C.

Given a generator G, we construct a dual generator G∗ by placing a vertex in each
bounded face of G, and three vertices A∗, B∗, and C∗ of G∗ in the unbounded face
of G, as follows: The boundary of the unbounded face can be decomposed into three
(possibly intersecting) paths, from A to B, B to C, and C to A. The unbounded face
may be partitioned into three unbounded regions by three non-intersecting polygonal
lines starting from A, B, and C. Place A∗ in the region containing the boundary path
connecting B and C, B∗ in the region containing the boundary path connecting A and
C, and C∗ in the region containing the boundary path connecting A and B. A∗, B∗, and
C∗ are the boundary vertices of G∗.

For each edge e of G, construct an edge e∗ of G∗ which crosses e and connects the
vertices in the faces on opposite sides of e. If e is on the boundary of the infinite face,
connect it to A∗ if e is on the boundary path between B and C, to B∗ if e is between A

and C, and connect it to C∗ if e is between A and B. (Note that it is possible for e∗ to
connect more than one of A∗, B∗, and C∗, for example, if there is a single edge incident
to A in G, so its dual edge connects B∗ and C∗.)

Note that G∗ is not the dual graph of G, which would have only one vertex in the
unbounded face. The three vertices A∗, B∗, and C∗ will correspond to separate faces of
the lattice LG generated from G.

Given a planar generator G and a connected periodic self-dual 3-uniform hypergraph
H, a dual pair of periodic lattices may be constructed as follows: Construct a lattice
graph LG,H by replacing each hyperedge of H by a copy of the generator G, with the
boundary vertices of the generator corresponding to the vertices of the hyperedge, in such
a manner that the resulting lattice is periodic. This is always possible, by choosing the
embeddings of the generator in one period of the hypergraph, and extending the choice
periodically. (However, for a generator without sufficient symmetry, it may be possible
to embed the generator in hyperedges in a way that produces a non-periodic lattice, so
some care is needed.)

We now construct a lattice LG∗,H∗ as follows: Construct the embedding of the dual
hypergraph H∗ in the plane, in which every hyperedge of H is reversed. Replace each
hyperedge of H∗ by a copy of the dual generator G∗, embedded so that it is consistent
with the embedding of G, that is, in all hyperedges boundary vertex A∗ in G∗ is opposite
vertex A in G, B∗ is opposite B, and C∗ is opposite C, and each edge of G∗ crosses the
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appropriate edge of G. This results in a simultaneous embedding of LG∗,H∗ and LG,H. An
example of the construction for a particular generator is illustrated in Figure 4.

The constructions of the two lattices both produce a planar representation of the
resulting lattice. From the simultaneous embeddings of the two lattices, it is seen that
LG∗,H∗ is the dual lattice of LG,H, since there is a one-to-one correspondence between
vertices of one and faces of the other, and a one-to-one correspondence between edges,
which are paired by crossing. (Note that the position of the boundary vertices in LG∗,H∗

is completely determined by the positions of boundary vertices in LG,H. Rotations or
reflections of the generator G∗ for any hyperedge may not produce a dual pair of lattices.)

4 Reduction to a Single Equation

Consider a generator G and its dual generator G∗. In each case, denote the three boundary
vertices by A, B, and C listed counterclockwise around the triangle from the initial vertex.
Any configuration (i.e., designation of edges or vertices as open or closed) on G determines
a partition of the boundary vertices into clusters of vertices that are connected by open
edges. Each such “boundary partition” may be denoted by a sequence of vertices and
vertical bars, where vertices are in distinct open clusters if and only if they are separated
by a vertical bar. For example, AB|C indicates that, within G, the vertices A and B are
in the same open cluster, but C is in a separate cluster.

Given a planar embedding of the lattice LG,H and a planar embedding of LG∗,H∗ with
each edge crossing its dual edge, we may define coupled percolation models. Let each
edge of LG,H be open with probability p independently of all other edges, and define each
edge of LG∗,H∗ to be open if and only if its dual edge is open.

Suppose we have two bond percolation models on LG,H and LG∗,H∗ , with different edge
probability parameters p and q, each assigning probability to configurations on G and G∗,
respectively. The probability, denoted P G

p (π) or P G∗

q (π) respectively, for the partition π is
determined by summing the probabilities of all configurations that produce the partition
π of the boundary vertices.

The set of boundary partitions is a partially ordered set (poset). A partition π is a
refinement of σ, denoted π ≤ σ, if every cluster of π is contained entirely in a cluster of
σ. The set of boundary partitions ordered by refinement is a combinatorial lattice, called
the partition lattice.

Thus, we have two probability measures, P G
p and P G∗

q on the partition lattice, which
summarize probabilities of connections between the boundary vertices without explicitly
referring to the detailed structure of the generator and its dual. The remarkable fact that
allows exact bond percolation threshold values to be obtained is that it is possible to choose
the parameters p and q so that the two probability measures are exactly equal. (Note that
in cases with more boundary vertices, where the probability measures cannot be made
equal, the concept of stochastic ordering of probability measures may be used to determine
mathematically rigorous bounds for percolation thresholds, using the substitution method
[13, 14, 23, 25, 26, 27, 28].)
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Figure 4: The construction of lattices based on a specific generator. Top: The generator,
the duality relationship, and the dual generator. Middle: The lattices based on the
generator and the triangular hypergraph arrangement. Bottom: The lattices based on
the generator and the bow-tie hypergraph arrangement.
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By the duality relationship between G and G∗, we have that for each configuration of
open and closed edges, the following five statements hold:

1. A, B, and C are connected by open paths if and only if A∗, B∗, and C∗ are in
separate closed components.

2. A and B are connected by an open path, but C is in a separate open component if
and only if A∗ and B∗ are connected by a closed path, but C∗ is in a separate closed
component.

3. A and C are connected by an open path, but B is in a separate closed component,
if and only if A∗ and C∗ are connected by a closed path, but B∗ is in a separate
closed component.

4. B and C are connected by an open path, but A is in a separate closed component,
if and only if B∗ and C∗ are connected by a closed path, but A∗ is in a separate
closed component.

5. A, B, and C are in separate open components if and only if A∗, B∗, and C∗ are
connected by closed paths.

While these statements are intuitively clear by drawing diagrams, the proofs of these
statements rely on duality. However, since the dual generator is not the dual graph of
the generator, some additional vertices and edges must be added to apply graph duality
results. Examples of such reasoning are given in Smythe and Wierman [19, pp. 8-9] and
Bollobás and Riordan [2, pp.55-56].

When considering the random configurations induced by a percolation model, the five
statements become statements of equality of events, which then have equal probabilities,
yielding

P G
p [ABC] = P G∗

1−p[A
∗|B∗|C∗], (3)

P G
p [AB|C] = P G∗

1−p[A
∗B∗|C∗], (4)

P G
p [AC|B] = P G∗

1−p[A
∗C∗|B∗], (5)

P G
p [A|BC] = P G∗

1−p[A
∗|B∗C∗], (6)

P G
p [A|B|C] = P G∗

1−p[A
∗B∗C∗]. (7)

Since p is still a free parameter, we may choose it to satisfy

P G
p [ABC] = P G∗

1−p[A
∗B∗C∗]. (8)

This equation always has a solution in [0,1] since the left side is an increasing polynomial
function of p while the right side is decreasing polynomial, both with values varying
between 0 and 1. With this choice of p, the four probabilities in the first and last equations
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are equal, and, in fact, the two probability measures are equal. Thus, it is equivalent to
solve the connectivity equation

P G
p [ABC] = P G

p [A|B|C], (9)

equating the probabilities of all boundary vertices connected and no boundary vertices
connected in the generator of the lattice. In the following, we denote the solution to this
polynomial equation by p0.

5 Exact Solution for the Bond Percolation Threshold

We now verify that the solution of equation (9) provides the exact value of the bond
percolation threshold. We state the result as the following theorem.

Theorem: Let G be a connected planar generator with three boundary vertices A, B,
and C, and let H be a connected periodic self-dual planar 3-uniform hypergraph. Suppose
that the lattice LG,H is periodic with (at least) one axis of reflection symmetry. Then the
bond percolation thresholds of LG,H and LG∗,H∗ satisfy

pc(LG,H) = p0 = 1 − pc(LG∗,H∗)

where p0 is the solution in [0,1] of the polynomial equation

P G
p (ABC) = P G

p (A|B|C).

Proof Sketch: We rely on relatively standard results in mathematical percolation theory.
Kesten [10] proved that for a dual pair of periodic planar lattices, L and L∗, with at least
one axis of reflection symmetry,

pc(L) + pc(L
∗) = 1 (10)

and that various definitions of the percolation threshold, denoted by pH , pT , and pS are
all equal for each lattice. (The result was actually stated for the more general setting of
site models, and applies to bond models by first applying the bond-to-site transformation
to obtain an equivalent site model.) To apply Kesten’s result to lattices constructed by
the method in this article, we use the pS concept of the percolation threshold.

For a periodic graph, the percolation threshold pS is defined in terms of the asymp-
totic behavior of probabilities that open clusters connect opposite sides of rectangles in
sequences of similar rectangles whose areas are increasing to infinity. In the following,
we give a brief general description which can be adapted to each of the lattices in our
construction, but avoiding some technicalities that are specific to each lattice.

Now let L = LG,H be a lattice constructed in this article, and let L∗ = LG∗,H∗ denote
its dual lattice. L may be embedded periodically in the plane such that the unit vectors
in the x- and y-axis directions are the basis vectors and the x-axis is an axis of symmetry.
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For each pair of positive integers, m and n, let Lm×n denote the graph containing all
edges of hyperedges of L that intersect the region [0, m] × [0, n]. We can specify sets of
vertices of Lm×n which we call its top, bottom, left, and right sides. We are interested
in the event that there is an open path which crosses Lm×n from left to right, or top to
bottom, which we denote by {open ↔ Lm×n}, or {open l Lm×n}, respectively. Similarly,
we consider also closed crossings. The percolation threshold pS is defined as

pS = sup{p : lim
n→∞

Pp[open l L3n×n] = 0 and lim
n→∞

Pp[open ↔ Ln×3n] = 0}. (11)

In the following, we will use square regions, noting that if lim supn→∞ Pp[open ↔
Ln×n] > 0, then lim supn→∞ Pp[open ↔ Ln×3n] > 0, and similarly for vertical crossings.
In either case, p > pS.

Now let L∗

n×m denote the graph corresponding to the dual hyperedges of the hyperedges
in Ln×m. For L∗

n×m, we can also specify sets of vertices of the lattices which we can call
the top, bottom, left, and right sides of these regions, and define similar crossing events,
in such a manner that duality yields

Pp0
[open ↔ in Ln×n] + Pp0

[closed l in L∗

n×n] = 1, (12)

which implies that

Pp0
[open ↔ in Ln×n] + P1−p0

[open l in L∗

n×n] = 1. (13)

We now replace generators of L∗ by generators of L. In the duality relationship,
each hyperedge in L∗ is obtained by rotating the corresponding hyperedge of L by 180o

degrees, so this replacement results in a copy of L reflected through some horizontal line.
However, the subgraph of L corresponding to the replacement of hyperedges in L∗

n×n may
not be isomorphic to Ln×n. For convenience, the following argument is written as if it is
isomorphic. (If not, by monotonicity, we may consider a rectangle which is slightly smaller
vertically and slightly larger horizontally, which is sufficient to obtain the conclusion.)

While replacing the hyperedges, by using the equality of connectivities at parameters
p0 in L and 1 − p0 in L∗, we have

Pp0
[open ↔ in Ln×n] + Pp0

[open l in Ln×n] = 1. (14)

As a consequence, either

lim sup
n→∞

Pp0
[open ↔ in Ln×n] ≥ 1

2
(15)

or

lim sup
n→∞

Pp0
[open l in Ln×n] ≥ 1

2
, (16)

(or both) so
pS(L) ≤ p0. (17)
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Reversing the roles of L and L∗, we also obtain

pS(L∗) ≤ 1 − p0. (18)

Therefore,

1 ≤ pc(L) + pc(L
∗) = pS(L) + pS(L∗) ≤ p0 + (1 − p0) = 1, (19)

so the percolation thresholds must equal their upper bounds, yielding

pc(L) = p0 (20)

and
pc(L

∗) = 1 − p0. (21)

6 Subdivided and Split Edges

There are two situations which can produce lattices which do not occur in natural physical
models. If the generator has a boundary vertex with only one incident edge, it is possible
for the resulting lattice to have two edges in series. If the generator has an edge which
is incident to two boundary vertices, it is possible for the resulting lattice to have double
edges, i.e., two edges between the same pair of vertices.

These problems cannot occur for some self-dual hypergraphs: In any hypergraph for
which each boundary vertex is shared by three or more hyperedges, such as the triangular
lattice arrangement, each boundary vertex has at least three incident edges, and thus
there are no edges in series. In any hypergraph in which any two hyperedges intersect
in at most one boundary vertex, such as the triangular arrangement, there cannot be
parallel edges.

The generators illustrated in Figures 4 and 8 do not produce subdivided or split edges
in any self-dual hypergraph arrangement. However, for other hypergraph arrangements,
such as the bow-tie hypergraph, there can be subdivided edges and split edges. If all
hyperedges have the same number of pendant boundary vertices involved in series edges
and the same number of adjacent boundary vertices involved in parallel edges, in a periodic
pattern, then the lattice can be transformed into a lattice without series or parallel edges
for which the bond percolation threshold can be exactly determined: (1) If two hyperedges
both have pendant vertices at the same boundary vertex, then consider each to have
probability

√
p of being open, which is equivalent to one edge with probability p. (2)

If two hyperedges have two boundary vertices in common and in both hyperedges these
boundary vertices are adjacent, then to get one edge with probability p, consider each
edge to be open with probability s which satisfies p = s2 +2s(1− s) = 1− (1− s)2, which
implies that s = 1−√

1 − p. Note that in both cases these edge probability functions are
increasing functions of the parameter p, which is sufficient for the reasoning of this article
to apply.
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Figure 5: A self-dual hypergraph.

7 Construction of Infinitely Many Non-Isomorphic

Self-Dual Planar Hypergraphs

In section 4, Ziff and Scullard [32] illustrate a third self-dual hypergraph, in addition to
the triangular lattice structure and bow-tie lattice structure. We provide another self-dual
hypergraph, which has not appeared previously, in Figure 5.

Ziff and Scullard [32] mention that many other self-dual arrangements can be con-
structed. In this section, we make make this comment more precise, by showing that
there are in fact infinitely many self-dual hypergraphs.

Note that the bond percolation threshold of a graph constructed from a generator and
a self-dual hypergraph is uniquely determined by the connectivity equation. By filling all
self-dual 3-uniform hypergraphs with the same generator, we construct infinitely many
planar lattices which have the same value for the bond percolation threshold.

We may construct self-dual hypergraphs using rows of similarly-oriented triangles and
rows of similarly-oriented bow-ties, as shown in Figure 6. To form an infinite periodic self-
dual hypergraph, we combine these into a periodic pattern. Consider forming a sequence
of rows which alternates between m rows of triangles and n rows of bow-ties, for any
m ≥ 1 and n ≥ 1. When constructing the dual hypergraph, each triangle is reflected
180 degrees, while the row of bow-ties is translated so the boundary vertices match up
with the triangle vertices. As a result, the dual hypergraph is isomorphic to the original
hypergraph reflected and translated. See Figure 6 for an illustration.

We may construct another infinite collection of self-dual hypergraphs similarly. At the
top of Figure 7, we show a row of triangles with the top of every third triangle moved to
the right. Each time a top vertex is moved to the right, it produces two hyperedges which
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Figure 6: Top: A row of upward-pointing triangles. Middle: A row of bow-ties. Bottom:
A periodic self-dual 3-regular hypergraph which alternates one row of bow-ties with two
rows of triangles.
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share two boundary vertices, as occurs in the bow-tie lattice structure. Consider forming
a sequence of rows which alternates between m rows of triangles and n rows of triangles
with tops moved, in a periodic manner. Again, the dual hypergraph is isomorphic to
the original hypergraph reflected and translated. See Figure 7, which illustrates this
construction. Note that an arrangement in which all rows have every other top moved,
the hypergraph is isomorphic to the bow-tie hypergraph.

Figure 7: Top: A row of triangles with every third top moved to the right. Bottom: A
self-dual hypergraph constructed by alternating rows of triangles and rows of triangles
with every other top moved to the right.

8 Infinitely-Many Threshold Values

Figure 8 shows a sequence of generator graphs that are nested so that each graph contains
every previous graph as a subgraph. Each generator can be embedded in infinitely many
self-dual hypergraphs, producing infinitely many lattices which have the same bond per-
colation threshold. (Note that the construction does not have single edges connecting the
boundary vertices, in order to avoid complications such as the lattice or its dual lattice
having split edges or subdivided edges.) By the strict subgraph relationships between the
generators, a result of Aizenmann and Grimmett [1] shows that the percolation thresholds
of the families of graphs for different generators are not equal. Therefore, we have estab-
lished that for infinitely many real numbers a there are infinitely many periodic lattice
graphs with bond percolation threshold equal to a.
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Figure 8: The first four graphs in an infinitely sequence of nested generators. Each
contains all previous graphs in the sequence as subgraphs.

Recall that by Fisher’s [6] bond-to-site transformation, the bond percolation model
on a lattice L is equivalent to the site percolation model on the covering lattice (in the
physics literature) or line graph (in the mathematical literature), so that their percolation
thresholds are equal. [Note that the result of the bond-to-site transformation is not always
planar, so two-dimensional site models use the concept of “matching lattice” rather than
dual lattice.] Thus, we have also shown that for infinitely many values a there are infinitely
many site percolation models with percolation threshold equal to a.

9 Concluding Remarks

We have provided sufficient conditions on the underlying lattice for correct application of
the methods of Ziff and Scullard for determining exact bond percolation thresholds. The
method applies if the lattice is constructed from an infinite connected planar periodic self-
dual 3-regular hypergraph with one axis of symmetry, using a generator which is a finite
connected planar graph with three boundary vertices. These conditions are naturally
stated in terms of planar hypergraphs, reflect the need for planarity of the lattice in order
to apply graph duality results, and reflect the need for technical conditions for validity of
the mathematical proofs.

In particular, note that sufficient conditions reflect the current state of knowledge
in mathematical percolation theory, requiring periodicity and an axis of symmetry. It
is plausible that the results may be valid in a larger context, where these conditions are
relaxed. As evidence for this, in a recent breakthrough, Bollobás and Riordan [2, 3] exactly
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determined the site percolation threshold in a certain continuum percolation model which
is not periodic or symmetric.

Ziff and Scullard also apply their approach to site percolation models and correlated
percolation models (either all open or all closed). The formalism allows correlated bonds
within each generator. As in the case of bond percolation, care must be taken to un-
derstand the conditions on the generator and the connections between generators that
produce a valid solution. Research on these issues is in progress.

Wierman [24] used the so-called “substitution method” with the star-triangle trans-
formation to show that, if they exist, the critical exponents are equal for the triangular
and hexagonal lattice bond percolation models, and that they are equal for the bond per-
colation models on the bow-tie and its dual lattice. Sedlock and Wierman [18] generalized
this result to the class of lattices identified in this article.
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