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Abstract

Let τ be a fixed lattice path (called in this context string) on the integer plane,
consisting of two kinds of steps. The Dyck path statistic “number of occurrences
of τ” has been studied by many authors, for particular strings only. In this paper,
arbitrary strings are considered. The associated generating function is evaluated
when τ is a Dyck prefix (or a Dyck suffix). Furthermore, the case when τ is neither
a Dyck prefix nor a Dyck suffix is considered, giving some partial results. Finally, the
statistic “number of occurrences of τ at height at least j” is considered, evaluating
the corresponding generating function when τ is either a Dyck prefix or a Dyck
suffix.

1 Introduction

Throughout this paper, a path is considered to be a lattice path on the integer plane,
consisting of steps u = (1, 1) (called rises) and d = (1,−1) (called falls). Since the
sequence of steps of a path is encoded by a word in {u, d}∗, we will make no distinction
between these two notions. The length |α| of a path α is the number of its steps. The
height of a point of a path is its y-coordinate.

A Dyck path is a path that starts and ends at the same height and lies weakly above
this height. It is convenient to consider that the starting point of a Dyck path is the
origin of a pair of axes; (see Fig. 1).

The set of Dyck paths of semilength n is denoted by Dn, and we set D =
⋃

n≥0 Dn,
where D0 = {ε} and ε is the empty path. It is well known that |Dn| = Cn, where
Cn = 1

n+1

(

2n

n

)

is the n-th Catalan number; (see sequence A000108 in [23]).
Every non-empty Dyck path α can be uniquely decomposed in the form α = uβdγ,

where β, γ ∈ D. This is the so called first return decomposition. If γ = ε, then α is a
prime Dyck path.
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Figure 1: The Dyck path uudduuuududddudd.

A path which is a prefix (resp. a suffix) of a Dyck path, is called Dyck prefix (resp.
Dyck suffix ). For example, the path uudduu (resp. udddudd) consisting of the first six
(resp. last seven) steps of the Dyck path of Fig. 1 is a Dyck prefix (resp. Dyck suffix).
In the literature, Dyck prefixes are also called ballot paths.

We define the depth (resp. height) of a path α to be the difference between the height
of the first (resp. last) point and the height of a lowest point of α. A path having depth
δ and height h is referred as a (δ, h)-path. For example, the path udduuuud which lies
between the second and the tenth point of the Dyck path of Fig. 1 is a (1, 3)-path. Clearly,
every Dyck prefix (resp. Dyck suffix) is a (0, h)-path (resp. (δ, 0)-path), whereas a Dyck
path is a (0, 0)-path.

Every (δ, h)-path α, with δ, h > 0, can be uniquely decomposed in the form α = α1α2,
where α1 is a prime Dyck suffix (i.e., a suffix of a prime Dyck path) of depth δ and α2 is
a Dyck prefix of height h; (see Fig. 2, where the semicircles represent Dyck paths). We
call this the leftmost lowest point decomposition of α.

α2α1

Figure 2: The leftmost lowest point decomposition of α = α1α2.

A path τ ∈ {u, d}∗, called in this context string, occurs in a path α if α = βτγ, for
some β, γ ∈ {u, d}∗. The number of occurrences of the string τ in α, is denoted by |α|τ .

For the study of the Dyck paths statistic Nτ : “number of occurrences of τ”, (with
respect to the semilength) we consider the bivariate generating function

F = F (x, y) =
∑

α∈D

x|α|uy|α|τ .

We will also need the generating function Ap (resp. Bs) of the set of all Dyck paths
having prefix p (resp. suffix s), as well as the generating function Γp,s of the set of all
Dyck paths having prefix p and suffix s at the same time. We denote, for simplicity, the
generating functions Auj , Bdi and Γuj ,di by Aj , Bi and Γj,i respectively.
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Given a string τ , the symmetric string of τ with respect to a vertical axis is called
the mirror string of τ and it is denoted by τ̄ . Clearly, the statistics Nτ and Nτ̄ are
equidistributed.

Many articles dealing with the occurrence of strings in Dyck paths have appeared
in the literature (e.g. see [1, 3, 5, 8, 12, 13, 14, 19, 20, 21, 24]). In particular, it has
been proved (see [8]) that the statistic Nτ follows the Narayana distribution (A001263 of
[23]), for every string τ of length 2, the statistic Nudu follows the Donaghey distribution
(see [24]) and the statistic Nduu follows the Touchard distribution (see [8]). A systematic
study of all strings with length up to 4 has been presented in [19], whereas some strings of
arbritrary length have been studied in [13, 14]. Strings in k-colored Motzkin paths have
been studied in [22], whereas strings in ballot paths have been studied in [15, 16].

So far, all results that appear in the literature involve particular strings. In this
paper, we consider arbitrary strings, obtaining general results on this subject, which yield
all known results as special cases. We will see that the statistic Nτ depends on some basic
characteristics of the string τ , namely its number of rises, height, depth and periodicity.
The importance of the notion of periodicity in words is well known, and it has been used
extensively in various string enumeration problems.

In Section 2, we summarize some general results on the periodicity of words, which
are used in the next sections.

In Section 3, we evaluate the generating function F when τ is a Dyck prefix (or
equivalently a Dyck suffix) and we give several applications of the above result.

The same problem is studied in Section 4 for an arbitrary string which is neither a
Dyck prefix nor a Dyck suffix. We give a complete answer for the case where the string
is non-periodic. We also examine the class of strings of the form dδp, where δ ∈ N

∗ and
p is a Dyck prefix.

In Section 5, we classify the occurrences of τ according to their height and we evaluate
the associated generating functions.

Finally, in Section 6, we unify the main results of Sections 3, 4 and 5.
We note that some of the results of this paper have been announced in the 7th Inter-

national Conference on Lattice Paths Combinatorics and Applications [11].

2 Periodic words

A non-empty word w = a1a2 · · ·an of length |w| = n, is called periodic if there exists a
positive integer ρ < |w|, such that ai+ρ = ai, for all i ∈ [n− ρ]. The number ρ is called a
period of w.

Equivalently, w is periodic iff there exist words λ, µ, with λ 6= ε, such that w = (λµ)kλ,
for some k ∈ N

∗. In this expression, the period ρ = |λµ| uniquely determines λ, µ, k.
A non-empty word v that is both a proper prefix and suffix of w, is called a border

of w. A word w is periodic iff it contains a border. More precisely, if ρ is a period of w,
then the prefix v of length |w| − ρ (i.e. v = (λµ)k−1λ) is a border of w. Conversely, if v
is a border of w, then |w| − |v| is a period of w, as it follows immediately from the next
result, which can be easily proved using induction.
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Lemma 1. Let w be a word and v any border of w. If k is the least positive integer such
that k|w| ≥ (k + 1)|v|, then there exist unique words λ, µ, with λ 6= ε, such that

w = (λµ)kλ and v = (λµ)k−1λ.

The borders of w are ordered with respect to their length. Clearly, the greatest border
of w corresponds to the smallest period of w.

If v is a border of w and v′ is a non-empty word with |v′| < |v|, then v′ is a border of
w iff v′ is a border of v.

If λ is the least border of w, then |w| ≥ 2|λ|, so that w can be written in the form
w = λµλ, where µ is a (possibly empty) word.

We also have the following result, the proof of which is easy and it is omitted.

Proposition 2. Let w be a periodic word and let ν be the greatest positive integer such
that there exist words λ, µ, with λ 6= ε, and w = (λµ)νλ. Then, for every border v of
λµλ, we have that |v| ≤ |λµ|.

From the above Proposition, it follows easily that, for ν ≥ 2, the words λ, µ in the
expression of w are unique. This expression is called the canonical form of w.

However, for ν = 1, the expression w = λµλ is not unique. For example, the word
w = u2du2 = u(udu)u has two different expressions. Since in this case w = λµλ, where
λ is the greatest border of w, the canonical form can be also extended in the case ν = 1,
assuming that λ is the greatest border of w.

In the sequel, we determine the set V of all borders of a periodic word. For this, we
need the following two Lemmas.

Lemma 3. For every periodic word w, words λ, µ, with λ 6= ε and ν ∈ N
∗, we have that

w = (λµ)νλ is the canonical form of w iff (λµ)ν−1λ is the greatest border of w (i.e., |λµ|
is the smallest period of w).

Lemma 4. For any positive integers ν, k ≥ 2 and any two words λ, µ, we have that
(λµ)ν−1λ is the greatest border of (λµ)νλ iff (λµ)k−1λ is the greatest border of (λµ)kλ.

Lemma 3 is an immediate consequence of Lemma 1, whereas the proof of Lemma 4 is
based on the observation that it is enough to show that (λµ)ν−1λ is the greatest border
of (λµ)νλ iff λµλ is the greatest border of λµλµλ, for ν ≥ 3.

Proposition 5. If w = (λµ)νλ is the canonical form of the periodic word w, then v is a
border of w iff it is either a border of λµλ or of the form vk = (λµ)kλ, k = 0, 1, . . . , ν− 1.

Proof. Clearly, it is enough to show that for ν ≥ 2 and for every border v of w with
|v| ≥ |v1|, there exists k ∈ [ν − 1], such that v = vk.

Let k be the greatest element of [ν− 1] such that |vk| ≤ |v|. Then |v| < |vk+1|, so that
v is a border of vk+1. Since, by Lemmas 3 and 4, vk is the greatest border of vk+1, we
deduce that v = vk.
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For every border v of a periodic word w, we denote by r(v) the complementary to v
suffix of w, i.e., w = vr(v).

Proposition 6. Let w = (λµ)νλ be the canonical form of the periodic word w. Then we
have that

i) for every border v of w, r(v) starts with µλ iff v = vk, for some k ∈ {0, 1, . . . , ν−1},

ii) for every two borders v, v′ of λµλ with |v| < |v′|, r(v) does not start with r(v′).

Proof. i) Clearly, r(vk) = (µλ)ν−k starts with µλ for every k ∈ {0, 1, . . . , ν − 1}. For the
converse, in view of Proposition 5, it is enough to show that if r(v) starts with µλ and
v is a border of λµλ, then v = λ. Indeed, we can easily check that vµλ is a border of
w, if ν ≥ 2, or vµλ = w, if ν = 1. Since |vµλ| > |λµ|, by Proposition 2 we deduce that
vµλ = λµλ, which implies that v = λ.

ii) If r(v) starts with r(v′), then it can be easily shown that vr(v′) is a border of w.
Clearly, since by Proposition 2 |v′| ≤ |µλ|, we obtain that

|r(v′)| = |(λµ)νλ| − |v′| ≥ (ν + 1)|λ| + ν|µ| − |µλ| = |vν−1|.

Then, |vr(v′)| > |vν−1|, which is a contradiction.

3 Counting Dyck prefixes

In this section, we consider the string τ being a Dyck prefix, and we evaluate the associated
generating function F .

Proposition 7. The generating function F which counts the occurrences of a Dyck prefix
τ , satisfies the equation

F = 1 + xF 2 + (y − 1)x|τ |uF |τ |u−|τ |d
(

F + (F − 1 − xF 2)
∑

v∈V

x−|v|uF |v|d−|v|u
)

,

where V is the set of all borders of τ .

Proof. Firstly, we write τ = wp, where p is a Dyck prefix and w = u, if τ does not return
to the x-axis, or w is a prime Dyck path, otherwise.

Using the first return decomposition α = uβdγ, we obtain that α has an occurrence of
τ which does not lie entirely inside β or γ, iff w = u and p is a prefix of β (resp. w = uβd
and p is a prefix of γ), when τ does not (resp. does) return to the x-axis. Thus, it follows
easily that

F = 1 + xF 2 + (y − 1)x|w|uF |w|u−|w|dAp. (3.1)

For the evaluation of Ap, we consider the following cases:
i) The string τ is non-periodic.
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A Dyck path α with prefix p can be decomposed as α = pβ, where

β = β0dβ1d · · ·βξ−1dβξ, ξ = |p|u − |p|d, β0, β1, . . . , βξ ∈ D.

Clearly, since τ is non-periodic, every occurrence of τ in α must lie entirely in β and
furthermore, since τ is a Dyck prefix, it must lie entirely in a single βi, for some i ∈ [ξ].
Thus,

Ap = x|p|uF |p|u−|p|d+1.

Substituting in relation (3.1), we obtain that

F = 1 + xF 2 + (y − 1)x|τ |uF |τ |u−|τ |d+1 (3.2)

and since in this case V = ∅, we deduce the required result.
ii) The string τ is periodic.
Let τ = λ(µλ)ν, ν ∈ N

∗, be the canonical form of the string τ .
It follows easily that |w| ≤ |λµ|, so that vν−1 is a suffix of p.
If α is a Dyck path with prefix p, then, since vν−1 is the greatest border of τ , every

occurrence of τ starting from some point of p in α, must start from a point of vν−1; (see
Fig. 3).

It follows that

Ap = x|p|u−|vν−1|uF |p|u−|vν−1|u−(|p|d−|vν−1|d)Avν−1
,

or equivalently
Ap = x−|w|uF |w|d−|w|uGAvν−1

, (3.3)

where G = x|λµ|uF |λµ|u−|λµ|d.

p

vν−1

β0
β1

β|vν−1 |u−|vν−1 |d

βξ

Figure 3: A Dyck path α with prefix p.

Let Ek be the generating function of the set Ek of all Dyck paths starting with λ(µλ)k

but not with λ(µλ)k+1, where k ∈ N
∗ and let E be the generating function of the set E

of all Dyck paths starting with µ2λ but not with µ2λµλ, where µ = µ1µ2 is the leftmost
lowest point decomposition of µ.

Every Dyck path β ∈ Ek, k ∈ N
∗, can be uniquely decomposed as follows:

β = λ(µλ)k−1µ1β0dβ1 · · ·dβξ,
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b

b

b

b

M
λ

µ1
µ2

λ
µ1
µ2

λ
µ1 β0

β1

βξ

Figure 4: A Dyck path β ∈ Ek, where β0 ∈ E .

where ξ = k(|(µλ)k−1µ1|u − |λ(µλ)k−1µ1|d), βi ∈ D, i ∈ [ξ] and β0 ∈ E ; (see Fig. 4).
Every occurrence of τ in β not lying entirely in some βi must start from a point

of λ(µλ)k−1. Any such point M should be an initial point of some λ in the expression
λ(µλ)k−1, (i.e., one of the bold vertices in Fig. 4) since otherwise the path v starting from
M and ending at the first on the right terminal point of some λ of λ(µλ)k−1 would be a
border of λµλ, while µλ would be a prefix of r(v), which contradicts Proposition 6.

Moreover, since β0 does not start with µ2λµλ, we deduce that, for k ≥ ν, among these
points M , an occurrence of τ can only start from the k − ν + 1 leftmost ones, while if
k < ν, no occurrence of τ starts before β0.

It follows that

Ek = xk|λµ|u−|µ2|uF k(|λµ|u−|λµ|d)−(|µ2|u−|µ2|d)y(k−ν+1)+E,

or equivalently
Ek = Gkx−|µ2|uF−(|µ2|u−|µ2|d)y(k−ν+1)+E, k ∈ N

∗. (3.4)

It follows that

Avν−1
=

∞
∑

k=ν−1

Ek = x−|µ2|uF−(|µ2|u−|µ2|d)

∞
∑

k=ν−1

Gkyk−ν+1E,

which gives that

Avν−1
=
x−|µ2|uF−(|µ2|u−|µ2|d)Gν−1E

1 − yG
(3.5)

and for ν ≥ 2

Av1
=

ν−2
∑

k=1

Ek + Avν−1
= x−|µ2|uF−(|µ2|u−|µ2|d)

(

ν−2
∑

k=1

Gk +
Gν−1

1 − yG

)

E,

which gives that

Av1
= x−|µ2|uF−(|µ2|u−|µ2|d)G(1 − yG) + (y − 1)Gν

(1 −G)(1 − yG)
E. (3.6)

From relations (3.1), (3.3) and (3.5), we obtain that

E = (F − 1 − xF 2)x|µ2|uF |µ2|u−|µ2|dG−ν 1 − yG

y − 1
. (3.7)
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In the following, we give another formula for the generating function E.
Every Dyck path β ∈ E can be uniquely decomposed as follows:

β = µ2λγ,

where γ = γ0dγ1 · · ·dγt, t = |µ2λ|u − |µ2λ|d, γi ∈ D, i = 0, 1, . . . , t and γ does not start
with µλ.

µ2λ

v
γ0

γ1

γρ−1
γρ

γt

r1(v)

Figure 5: A Dyck path β ∈ E containing an occurrence of τ which starts at some point
of the initial µ2λ.

Every occurrence of τ in β not lying entirely in some γi, must start with some v ∈ V ′ =
V \ {vi : i = 0, 1, . . . , ν − 1} (which is a suffix of µ2λ) and it occurs iff r(v) is a prefix of
γ i.e., if r1(v) = γ0dγ1 · · ·dγρ−1d and r2(v) is a prefix of γρ, where ρ = |r1(v)|d − |r1(v)|u.
Here, r(v) = r1(v)r2(v) is the leftmost lowest point decomposition of r(v); (see Fig. 5).

Furthermore, since by Proposition 6, γ can start with r(v) for at most one v ∈ V ′, it
follows that

E = x|µ2λ|u
(

F |µ2λ|u−|µ2λ|d+1 − x|µ1|uF |µ2λ|u−|µ2λ|d−(|µ1|d−|µ1|u)Aµ2λ

+ (y − 1)
∑

v∈V ′

x|r1(v)|uF |µ2λ|u−|µ2λ|d−(|r1(v)|d−|r1(v)|u)Ar2(v)

)

.
(3.8)

For ν ≥ 2, we have that

Aµ2λ = E + Aµ2v1
= E + x|µ2|uF |µ2|u−|µ2|dAv1

,

and, using relation (3.6), we deduce that

Aµ2λ =
1 − yG+ (y − 1)Gν

(1 −G)(1 − yG)
E. (3.9)

We note that, for ν = 1, relation (3.9) follows automatically from relation (3.5).
Furthermore, using similar ideas as before, we obtain that

Ar2(v) = x|r2(v)|u−|vν−1|uF |r2(v)|u−|r2(v)|d−(|vν−1|u−|vν−1|d)Avν−1

= x|λµ|u−|r1(v)|u−|v|u−|µ2|uF |λµ|u−|r1(v)|u−|v|u−|µ2|u−(|λµ|d−|r1(v)|d−|v|d−|µ2|d) Gν−1

1 − yG
E,

(3.10)
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for every v ∈ V ′.
From relations (3.8), (3.9) and (3.10), we deduce that

E = x|µ2λ|uF |µ2λ|u−|µ2λ|d+1 − 1 − yG+ (y − 1)Gν

(1 −G)(1 − yG)
GE

+(y − 1)x|λ|uF |λ|u−|λ|d
GνE

1 − yG

∑

v∈V ′

x−|v|uF |v|d−|v|u , (3.11)

If we set T =
∑

v∈V x
−|v|uF |v|d−|v|u , then we have that

∑

v∈V ′

x−|v|uF |v|d−|v|u = T − x|µ|uF |µ|u−|µ|d
G−ν − 1

1 −G
.

Then, by substituting in relation (3.11), we obtain after some simple manipulations
that

E

1 − yG
= x|µ2λ|uF |µ2λ|u−|µ2λ|d+1 + (y − 1)x|λ|uF |λ|u−|λ|d

TGνE

1 − yG

Finally, by substituting the above expression for E in relation (3.7), we easily obtain
the required result.

We note that the above result has been proved in [25], for non-periodic τ .

Applications

1. If τ = pξ, where p is a non-periodic Dyck prefix, and ξ ∈ N
∗, ξ ≥ 2, then V = {pi :

i ∈ [ξ − 1]} and
∑

v∈V

x−|v|uF |v|d−|v|u =
G1−ξ − 1

1 −G
,

where G = x|p|uF |p|u−|p|d. It follows from Proposition 7, that the associated gener-
ating function satisfies the equation

F = 1 + xF 2 + (y − 1)G
(

F + (GF − 1 − xF 2)
1 −Gξ−1

1 −G

)

. (3.12)

Examples

i) If τ = uξ, then G = xF , so that from equation (3.12) we deduce that the
associated generating function satisfies the equation

F = 1 + xF 2 + (y − 1)xF
(

F − 1 − (xF )ξ−1

1 − xF

)

.
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ii) If τ = (uσd)ξ, where σ ∈ D with |σ|u = r, then since the path uσd is non-
periodic and G = xr+1, substituting in (3.12), we deduce that the associated
generating function satisfies the equation

F = 1 + xF 2 + (y − 1)xr+1
(

F + (xr+1F − 1 − xF 2)
1 − x(r+1)(ξ−1)

1 − xr+1

)

.

2. If τ = puξ, where p is a non-periodic Dyck prefix, and ξ ∈ N
∗, then V = {ui : i ∈

[m]}, where m = min{ξ, k} and k is the length of the first ascent of p. It is easy to
check that

∑

v∈V

x−|v|uF |v|d−|v|u =
(xF )−m − 1

1 − xF
,

so that, from Proposition 7, it follows that the associated generating function satis-
fies the equation

F = 1 + xF 2 + (y − 1)x|τ |u−mF |τ |u−|τ |d−m
(

F − 1 − (xF )m

1 − xF

)

.

Example

If p = ukdν , where k, ν ∈ N
∗, with ν ≤ k, from the previous formula, we obtain that

the generating function which counts the occurrences of the string ukdνuξ satisfies
the equation

F = 1 + xF 2 + (y − 1)xMFM−ν
(

F − 1 − (xF )m

1 − xF

)

, (3.13)

where M = max{k, ξ} and m = min{k, ξ}.
We note that this result has been proved firstly in [13], for ν = ξ = 1 and it was
extended in [20], for ν = 1.

If k, ξ ≥ ν, then we can exchange the roles of k, ξ. It follows that the statistics
Nukdνuξ and Nuξdνuk are equidistributed. To illustrate this result bijectively, we will
construct an involution ϕ of D such that

|ϕ(α)|u = |α|u and Nukdνuξ(ϕ(α)) = Nuξdνuk(α), for every α ∈ D.
Indeed, firstly we define the involution ψ of the set B of all paths

β = uξ1dνuξ2 · · ·dνuξk−1dνuξk ,

where k ≥ 2 and ξi ≥ ν, i ∈ [k], by

ψ(β) = uξkdνuξk−1 · · ·dνuξ2dνuξ1 .

It is clear that every Dyck path α containing uνdνuν can be uniquely decomposed
as α = γ0β1γ1β2γ2 · · ·βℓγℓ, where βi is a maximal subpath of α in B and γi avoids
the string uνdνuν , i ∈ [ℓ]. It follows that the required involution is given by

ϕ(α) = γ0ψ(β1)γ1ψ(β2)γ2 · · ·ψ(βℓ)γℓ.
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Remark

For every Dyck suffix τ , applying Proposition 7 for the mirror string τ̄ , we obtain that
the generating function F which counts the occurrences of τ satisfies the equation

F = 1 + xF 2 + (y − 1)x|τ |dF |τ |d−|τ |u
(

F + (F − 1 − xF 2)
∑

v∈V

x−|v|dF |v|u−|v|d
)

, (3.14)

where V is the set of all borders of τ .
This result can be generalized for ballot paths. For this, we evaluate the associated

generating function G = G(x, y, z), where x, y, z count the number of rises, the number
of occurrences of τ and the height h(α) of a ballot path α respectively.

Indeed, every ballot path α with height h(α) = h is uniquely decomposed as

α = β0uβ1 · · ·uβh, βi ∈ D, 0 ≤ i ≤ h.

Since τ is a Dyck suffix, an occurrence of τ in α must be entirely contained in a single βi,
for some 0 ≤ i ≤ h. It follows that

G =

∞
∑

h=0

∑

α ballot path
h(α)=h

x|α|uy|α|τzh =

∞
∑

h=0

∑

βi∈D
0≤i≤h

xh+
Ph

i=0
|βi|uy

Ph
i=0

|βi|τzh

=

∞
∑

h=0

xhzh

h
∏

i=0

∑

βi∈D

x|βi|uy|βi|τ =

∞
∑

h=0

xhzhF h+1(x, y).

Thus,

G =
F (x, y)

1 − xzF (x, y)
,

where F satisfies relation (3.14).
Sullivan [18], using a different approach, provided a recursive formula for the evaluation

of the coefficients of G.

4 Counting strings with positive depth and height

Throughout this section, τ is a (δ, h)-string with δ, h > 0, i.e., τ is neither a Dyck prefix
nor a Dyck suffix. In this case, τ is uniquely decomposed as τ = sdp, where s is a
Dyck suffix of depth δ − 1 and p is a Dyck prefix of height h. Using the first return
decomposition, we deduce that

F = 1 + xF 2 + (y − 1)xBsAp. (4.1)

For the evaluation of the generating functions Bs, Ap in terms of F , we will use the
(Fibonacci-like) polynomials pi, qi, i ≥ −1, (see [10, p. 327]) defined by

pi(t) = pi−1(t) − xpi−2(t), p−1(t) =
1

x
, p0(t) = t, (4.2)
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(where x is considered as a parameter), and

qi(x) = qi−1(x) − xqi−2(x), q−1(x) = 0, q0(x) = 1. (4.3)

We note that

qi(x) =
√
xiUi(

1

2
√
x

), (4.4)

for i ≥ −1, where Ui(x) are the Chebyshev polynomials of the second kind (see sequence
A053117 in [23]).

It is easy to check that these polynomials satisfy the following identities:

pi(t) = xtpi−1(
t−1
xt

), (4.5)

(1 − xt)pi(t) − (t− 1 − xt2)qi(x) = xpi−1(t), (4.6)

pi−1(t)pi(t) − p2
i (t) − xp2

i−1(t) = xi−1(t− 1 − xt2), (4.7)

for every i ∈ N.
We first give the following result, which will be used in the sequel.

Lemma 8. For every (δ, h)-string τ , we have that

Bi = pi(F ), i ≤ min{h+ k, h+ 2} (4.8)

and
Γp,di = qi(x)Ap, i ≤ min{h+ k, h+ 2, |p|u − |p|d + t}, (4.9)

where p is a non-empty Dyck prefix and k (resp. t) is the number of all consecutive falls
in the end of τ (resp. p).

Proof. Using the bijection of Fig. 6, under the inequality restrictions of relations (4.8)
and (4.9) respectively, for i ≥ 2, we have that

Bi−1 −Bi = xBi−2 and Γp,di−1 − Γp,di = xΓp,di−2 ,

since, for i ≤ h+ k, the last peak of the Dyck path α does not belong to any occurrence
of τ , while for i ≤ h+ 2, its deletion does not result to a new occurrence of τ in α′.

α1

αi−2
αi−1

di−1

α

←→

α1

αi−2
αi−1

di−2

α′

Figure 6: The Dyck path α ending with exactly i − 1 falls is mapped to α′ ending with
(at least) i− 2 falls.

Furthermore, since B0 = F , B1 = F − 1 and Γp,d0 = Γp,d = Ap, the result follows
immediately from relations (4.2) and (4.3).
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We note that if we apply the previous Lemma for the mirror string τ̄ , it follows that

Aj = pj(F ), j ≤ min{δ + k′, δ + 2}, (4.10)

and
Γuj ,s = qj(x)Bs, j ≤ min{δ + k′, δ + 2, |s|d − |s|u + t′}, (4.11)

where s is a non-empty Dyck suffix and k′ (resp. t′) is the number of all consecutive rises
in the beginning of τ (resp. s).

In particular, we have that

Γj,i =

{

qi(x)Aj , i ≤ min{h + k, h+ 2, j}
qj(x)Bi, j ≤ min{δ + k′, δ + 2, i}.

(4.12)

In the following result we establish the equation of the generating function F , for a
non-periodic string.

Proposition 9. The generating function F which counts the occurrences of a non-periodic
(δ, h)-string τ , satisfies the equation

F = 1 + xF 2 + (y − 1)x|τ |u−h+1p
|h−δ|+1
m (F )

p
|h−δ|−1
m−1 (F )

,

where m = min{h, δ}.

Proof. Firstly, we write τ = sdp, where s = β0dβ1 · · ·dβδ−1, p = γhu · · · γ1uγ0 and βi, γj ∈
D, 0 ≤ i ≤ δ − 1, 0 ≤ j ≤ h.

Let bi = β0dβ1 · · ·dβi, 0 ≤ i ≤ δ − 1 and cj = γju · · · γ1uγ0, 0 ≤ j ≤ h. Since τ is
non-periodic, using the first return decomposition, we can easily show that

Acj
= x|cj |u−|cj−1|u

(

Acj−1
F + (y − 1)Γcj−1,sAp

)

, (4.13)

for every 0 ≤ j ≤ h, where c−1 = ε.
For every j ≤ δ, using the fact that τ is non-periodic, we can easily check that the

bijection of Fig. 7 preserves the number of occurrences of τ , so that

Acj
= x|cj |u−jAj , j ≤ m. (4.14)

γ j

γ1
γ0 α0

α1

α j

←→

α0
α1

α j

u j

Figure 7: The bijection between Dyck paths starting with cj and those starting with uj .
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αi

α1
α0 β0

β1

βi

←→

αi

α1
α0

di

Figure 8: The bijection between Dyck paths ending with bi and those ending with di.

Similarly, using the bijection of Fig. 8, we deduce that

Bbi
= x|bi|uBi, i ≤ m, and Γcj ,bi

= x|bi|uΓcj ,di, i ≤ j. (4.15)

Without loss of generality, we may assume that δ ≤ h, since, otherwise we replace τ
by its mirror string τ̄ . For δ ≤ j ≤ h, using relations (4.9), (4.13) and (4.15), we deduce
that

Acj
x−|cj |u

Acj−1
x−|cj−1|u

= F + (y − 1)x|s|uqδ−1(x)Ap.

It follows that

Ap = x|p|u−|cδ−1|uAcδ−1

(

Acδ
x−|cδ|u

Acδ−1
x−|cδ−1|u

)h−δ+1

= x|p|u−hp
h−δ+1
δ (F )

ph−δ
δ−1(F )

.

The last equality follows from relations (4.10) and (4.14).
Furthermore, since δ ≤ h, from relations (4.8) and (4.15), we obtain that

Bs = x|s|uBδ−1 = x|s|upδ−1(F ).

Therefore, after substituting the above expressions for Ap and Bs in relation (4.1), we
obtain the required result.

Example

The string τ = dνudνu2 · · ·dνu2ν , ν ∈ N
∗, is non-periodic with δ = ν(ν+1)

2
and h = ν(ν+3)

2
.

It follows from Proposition 9 that the associated generating function satisfies the equation

F = 1 + xF 2 + (y − 1)x
3ν2

−ν+2

2

pν+1
ν2+ν

2

(F )

pν−1
ν2+ν−2

2

(F )
.

The case of a periodic string seems very complex. We will examine some particular
cases where the polynomials pi are also used. Before that, in the next result we give
an expression of the generating function Ap, where p is a Dyck prefix, in terms of the
generating functions Ai, i ∈ N.
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Lemma 10. Let τ be a (δ, h)-string starting with a fall and let p be a Dyck prefix such
that |p| < |τ |. Then, the generating function Ap with respect to the string τ is given by

Ap = x|p|dA|p|u−|p|d +
∑

w∈Wp

x|lp(w)|d(Ajw
− xAjw−1 −Ajw+1),

where Wp is the set of all non-empty suffixes of p which are prefixes of τ , lp(w) is the
complementary to w prefix of p (i.e., p = lp(w)w) and jw = |lp(w)|u − |lp(w)|d.
Proof. We will use induction with respect to Mp = max{|w| : w ∈ Wp}.

If Mp = 0, then Wp = ∅ and the result follows immediately, since for every Dyck path
with prefix p we can replace that prefix with u|p|u−|p|d without affecting the number of
occurrences of τ in the path.

For Mp > 0, let q be the greatest element of Wp, i.e., |q| = Mp. We first assume
that p ends with a fall and we write q = q′d, p1 = uξq′ and p2 = uξq′u, where ξ =
|lp(q)|u − |lp(q)|d > 0. Clearly, p1, p2 are Dyck prefixes such that Mp1

= |q′| < |q| = Mp

and Mp2
< |q′u| = |q| = Mp,

Let W (resp. W ′) be the set of all elements w ∈ Wp1
such that wd (resp. wu) is a

prefix of τ . Clearly, the sets W and W ′ form a partition of Wp1
such that

Wp = {wd : w ∈ W} ∪ {d}, Wp2
= {wu : w ∈ W ′}

and

lp1
(w) =

{

lp1d(wd), w ∈ W
lp2

(wu), w ∈ W ′.

Using the induction hypothesis, we have that

Ap = x|lp(q)|dAp1d = x|lp(q)|d(Ap1
− Ap2

)

= x|lp(q)|d

(

x|p1|dA|p1|u−|p1|d +
∑

w∈Wp1

x|lp1
(w)|d(Ajw

− xAjw−1 −Ajw+1)

− x|p2|dA|p2|u−|p2|d −
∑

w∈Wp2

x|lp2
(w)|d(Ajw

− xAjw−1 −Ajw+1)

)

= x|lp(q)|d

(

x|q|d−1(A|p|u−|p|d+1 −A|p|u−|p|d+2) +
∑

w∈W

x|lp1
(w)|d(Ajw

− xAjw−1 − Ajw+1)

)

= x|p|dA|p|u−|p|d + x|p|d−1(A|p|u−|p|d+1 − xA|p|u−|p|d −A|p|u−|p|d+2)

+
∑

w∈W

x|lp(wd)|d(Ajw
− xAjw−1 − Ajw+1)

= x|p|dA|p|u−|p|d +
∑

w∈Wp

x|lp(w)|d(Ajw
− xAjw−1 −Ajw+1).

The proof of the result when p ends with a rise is similar, except when the height of p
is equal to 1, since, in this case, the path obtained by replacing the last rise of uξq with
a fall is a Dyck suffix, and the induction step cannot be applied.
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This particular case, where p = αu and α is a Dyck path, is treated below separately.
Clearly, in this case, every w ∈ Wα is a Dyck suffix of depth |w|d − |w|u ≤ δ. Further-

more, if the depth of w is less than δ, we have that

jw = |lα(w)|u − |lα(w)|d = |w|d − |w|u ≤ δ − 1,

so that, from relation (4.10), we deduce that

Ajw
− xAjw−1 − Ajw+1 = 0.

In fact, the above equality holds for every w ∈ Wα, such that wd is a prefix of τ ,
which yields that

∑

w∈Wα

x|lα(w)|d(Ajw
− xAjw−1 −Ajw+1) =

∑

w∈Wp

x|lp(w)|d(Ajw
− xAjw−1 − Ajw+1). (4.16)

Let q be the largest element of Wα. If |q|d − |q|u ≤ δ − 1, then every Dyck path with
prefix p has no occurrence of τ starting from a point of p, so that

Ap = x|α|u(F − 1) = x|p|dA|p|u−|p|d.

Since in this case the sums of relation (4.16) are equal to 0, we obtain the required result.
Finally, if |q|d − |q|u = δ, then qu ∈ Wp, so that Mα = |q| < |qu| = Mp. Then, since

Ap = Aα − x|α|d , using the induction hypothesis and relation (4.16), we obtain again the
required result.

In the next Proposition we restrict ourselves to the string τ = dδp, where p is a Dyck
prefix.

Proposition 11. Let F be the generating function which counts the occurrences of the
string dδp, where p is a Dyck prefix of height h. Then, we have that

i) if δ ≤ min{h+ k, h+ 3}, then

F = 1 + xF 2 + (y − 1)x|τ |u−h+1

(

pδ(F )

pδ−1(F )

)h−δ

(

pδ(F )pδ−1(F ) + (F − 1 − xF 2)xδ−1
∑

v∈V

x−|v|d

(

pδ(F )

pδ−1(F )

)|v|d−|v|u
)

, (4.17)

ii) if h+ k + 1 ≤ δ and V = {di : i ∈ [k]}, then

F = 1 + xF 2 + (y − 1)x|τ |d−δ+1

(

ph(F )

ph−1(F )

)δ−h

(

ph(F )ph−1(F ) + (F − 1 − xF 2)xh−1
∑

v∈V

x−|v|u

(

ph(F )

ph−1(F )

)|v|u−|v|d
)

, (4.18)
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where V is the set of all borders of τ and k is the number of all consecutive falls in the
end of τ .

Proof. i) Let δ ≤ min{h + k, h+ 3}. Then, using the first return decomposition of Dyck
paths and relation (4.12), we obtain that

Aj = x(Aj−1F + (y − 1)Γj−1,δ−1Ap) = xAj−1(F + (y − 1)qδ−1(x)Ap), j ≥ δ. (4.19)

Using relation (4.10), it follows that

Aj = pδ−1(F )

(

pδ(F )

pδ−1(F )

)j−δ+1

, j ≥ δ − 1. (4.20)

Then, from Lemma 10, it follows that

Ap = x|τ |u−h
(

Ah +
∑

v∈V

x−|v|d(Ah+|v|d−|v|u − xAh+|v|d−|v|u−1 − Ah+|v|d−|v|u+1)
)

= x|τ |u−hpδ−1(F )
(

pδ(F )
pδ−1(F )

)h−δ

·
(

pδ(F )
pδ−1(F )

+
∑

v∈V

x−|v|d
(

pδ(F )
pδ−1(F )

)|v|d−|v|u
(

pδ(F )
pδ−1(F )

− x−
(

pδ(F )
pδ−1(F )

)2
)

)

.

Finally, since from relation (4.8) we have that Bδ−1 = pδ−1(F ), the required result
follows by substituting the expressions for Ap and Bs in relation (4.1) and by using
relation (4.7).

ii) Let h + k + 1 ≤ δ. Then, since we have also assumed that each border of τ is
of the form di, i ∈ [k], we deduce that the bijection of Fig. 9 preserves the number of
occurrences of τ . It follows that

Ap = x|τ |u−hAh (4.21)

and

Γp,di =

{

x|τ |u−hΓh,i + x|τ |u, h+ 1 ≤ i ≤ h+ k

x|τ |u−hΓh,i, i ≥ h+ k + 1.
(4.22)

For the justification of relation (4.22), notice also that di is a suffix of α iff di is a
suffix of α′, except when α = pdh and h+ 1 ≤ i ≤ h+ k; (see Fig. 9).

For the evaluation of Bδ−1, first notice that, using the first return decomposition of
Dyck paths, we obtain that

Bi = x
(

Bi−1 + FBi + (y − 1)Bδ−1Γp,di

)

, i ≥ 1. (4.23)

Then, for i ≥ h + k + 1, using relations (4.1), (4.10), (4.12), (4.21) and (4.22), we
deduce that

(

(1 − xF )ph(F ) − (F − 1 − xF 2)qh(x)
)

Bi = xph(F )Bi−1,
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γ1

γh+1

γh+k

αh+1

α1

dk

α

←→
αh+1

α1

α′

uh

Figure 9: The Dyck path α is mapped to α′ by substituting its prefix p = γ1u · · · γh+kudk

with uh.

or equivalently, using relation (4.6), that

Bi

Bi−1

=
ph(F )

ph−1(F )
.

This shows that

Bi = Bh+k

(

ph(F )

ph−1(F )

)i−h−k

, i ≥ h+ k. (4.24)

For the evaluation of Bi, for h+ 1 ≤ i ≤ h+ k, we proceed as before, obtaining that

ph−1(F )Bi − ph(F )Bi−1 = xh−1(F − 1 − xF 2).

By solving the above linear recurrence equation with initial condition Bh+1 = ph+1(F ),
and using relation (4.7), we obtain, after some simple manipulations, that

Bi = ph(F )






1 − x

p2
h−1(F )

ph(F )
·
1 −

(

ph(F )
ph−1(F )

)i−h

ph−1(F ) − ph(F )






,

for every h + 1 ≤ i ≤ h + k. Applying the previous equality for i = h + k and relation
(4.24) for i = δ − 1, we obtain that

Bδ−1 =
pδ−h−k

h (F )

pδ−h−k−1
h−1 (F )






1 − x

ph−1(F )

ph(F )
·
1 −

(

ph(F )
ph−1(F )

)k

1 − ph(F )
ph−1(F )







which, after some simple manipulations and using relation (4.7), yields that

Bδ−1 =
pδ−h

h (F )

pδ−h−1
h−1 (F )

(

ph(F )ph−1(F ) + (F − 1 − xF 2)xh−1
∑

v∈V

x−|v|u

(

ph(F )

ph−1(F )

)|v|u−|v|d
)

.

Finally, since from relations (4.10) and (4.21) we have that Ap = x|τ |d−δph(F ), the
required result follows, after substituting the expressions for Ap and Bs in relation (4.1).
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Example

Let τ = dξuνdk, where ξ, ν ∈ N
∗, k ∈ N and let F be the associated generating function.

If ν ≤ k, then, by the equidistribution of the statistics Ndξuνdk and Nukdνuξ , it follows
that F is given by relation (3.13).

If ν > k, by applying Proposition 9, we obtain that

F = 1 + xF 2 + (y − 1)xk−m+1
pν−M+1

ξ (F )

pν−M−1
ξ−1 (F )



1 − x
pξ(F )

pξ−1(F )
·
1 −

(

x
pξ−1(F )

pξ(F )

)m

1 − x
pξ−1(F )

pξ(F )



 , (4.25)

for ξ ≤ min{ν, ν − k + 3}, m = min{ξ, k} and M = max{ξ, k}, and

F = 1 + xF 2 + (y − 1)xk+1p
ξ−ν+1
ν−k (F )

p
ξ−ν−1
ν−k (F )






1 − x

pν−k−1(F )

pν−k(F )
·
1 −

(

pν−k(F )

pν−k−1(F )

)k

1 − pν−k(F )

pν−k−1(F )






, (4.26)

for ξ ≥ ν + 1.
We do not know the equation of the generating function F when ν > k and ν−k+4 ≤

ξ ≤ ν.

5 Occurrences at height at least j

The occurrence of strings at a specified height was introduced for certain strings in [12]
and it has been studied extensively for arbitrary strings in [19]. It was shown that the
generating function which counts the occurrences of a string τ at height j can be expressed
via the Chebyshev polynomials of the second kind and the generating function which
counts the low occurrences of τ ; (see Proposition 1 in [19]).

In this section, we study the occurrences of strings at height greater or equal to a given
j ∈ N. We say that the string τ occurs at height at least j in a Dyck path, if the minimum
height of the points of τ in this occurrence is greater or equal to j. For example, the Dyck
path of Fig. 1 has four occurrences of the string ud at height at least 1 (two at height 1
and two at height 3).

An occurrence of the string τ at height at least 1 is usually referred as a high occurrence
of τ . It is known that the statistics “number of high (ud)r’s” and “number of (du)r’s” are
equidistributed for every r ∈ N

∗ (for r = 1, see [6] and [8]).
We denote with Fj = Fj(x, y) the generating function which counts the occurrences

of the string τ at height at least j. Clearly, F0 = F (resp. F1) is the generating function
which counts all (resp. the high) occurrences of the string τ . Using the first return
decomposition, we can easily deduce that

Fj =
1

1 − xFj−1

, j ∈ N
∗.

Furthermore, following the same procedure used in [19], and relation (4.4), we can
express the generating function Fj in terms of F :
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Proposition 12. For every string τ , the generating function Fj is given by

Fj =
qj−1(x)

qj(x)
+

xj

q2
j (x)

(

1

F
− x

qj−1(x)

qj(x)

) .

In the following result, an alternative way for the evaluation of Fj (without the use of
F ), when τ is a Dyck prefix, is presented.

Proposition 13. The generating function Fj for a Dyck prefix τ satisfies the equation

Fj = 1 + xF 2
j +(y − 1)x|τ |d−j+1

(

pj(Fj)

pj−1(Fj)

)|τ |u−|τ |d

(

pj(Fj)pj−1(Fj) +
(

Fj − 1 − xF 2
j

)

xj−1
∑

v∈V

x−|v|d

(

pj(Fj)

pj−1(Fj)

)|v|d−|v|u
)

,

where V is the set of all borders of τ .

For the proof of the above formula, we first show, using identity (4.5), that

pj(Fj)

pj−1(Fj)
= xF and

pj(Fj)pj−1(Fj)

Fj − 1 − xF 2
j

x1−j =
F

F − 1 − xF 2
,

for every j ∈ N, and then we substitute in the formula of Proposition 7.

Example

If τ = uξdνuk, where ξ, ν ∈ N
∗, k ∈ N with k < ν ≤ ξ, then V = {ui : i ∈ [k]}, for k > 0,

and V = ∅, for k = 0. From Proposition 13, using identity (4.7) and after some simple
manipulations, we deduce that

Fj = 1 + xF 2
j + (y − 1)xν−j+1

p
ξ−ν+1
j (Fj)

p
ξ−ν−1
j−1 (Fj)






1 − x

pj−1(Fj)

pj(Fj)

1 −
(

pj(Fj)

pj−1(Fj)

)k

1 − pj(Fj)

pj−1(Fj)






.

Furthermore, if ν < ξ, applying the above relation for j = ν − k and using relation
(4.26), we deduce that the statistics “number of dξuνdk’s” and “number of uξdνuk’s at
height at least ν − k” are equidistributed.

This remains true if ν = ξ and k = 0. In fact, using the mirror string uνdξ, when
ν > ξ, we deduce thar the statistics “number of dξuν ’s” and “number of uνdξ’s at height
at least m”, where m = min{ξ, ν} are equidistributed.

We remark that the analogous equation for Fj, when τ is a Dyck suffix, follows by
applying Proposition 13 for the mirror string τ̄ .
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6 Unification

All the equations of the generating function F obtained in this paper, for various strings,
can be put under the same roof. For this, we consider the rational functions

Ri(t) =
pi(t)

xpi−1(t)
, i ∈ N

and the equations

Ri(F ) = 1 + xR2
i (F )+(y − 1)x|τ |uR

|τ |u−|τ |d
i (F )

(

Ri(F ) +
(

Ri(F ) − 1 − xR2
i (F )

)

∑

v∈V

x−|v|uR
|v|d−|v|u
i (F )

)

, (6.1)

Ri(F ) = 1 + xR2
i (F )+(y − 1)x|τ |dR

|τ |d−|τ |u
i (F )

(

Ri(F ) +
(

Ri(F ) − 1 − xR2
i (F )

)

∑

v∈V

x−|v|dR
|v|u−|v|d
i (F )

)

. (6.2)

If τ is a Dyck prefix (resp. Dyck suffix), then F satisfies equation (6.1) (resp. (6.2)),
for i = 0.

If τ is a non-periodic (δ, h)-string, then F satisfies equation (6.1) (resp. (6.2)), if h ≥ δ

(resp. h ≤ δ), for i = min{h, δ}.
If τ = dδp, where p is a Dyck prefix of height h, then, under the corresponding

inequality conditions of Proposition 11, F satisfies either of the equations (6.1), (6.2), for
i = δ, h respectively.

Finally, notice that the generating function Fj for a Dyck prefix (resp. Dyck suffix)
satisfies equation (6.1) (resp. (6.2)), for i = j.
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