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wiener@cs.bme.hu

Submitted: Aug 4, 2009; Accepted: Apr 5, 2011; Published: Apr 14, 2011

Mathematics Subject Classification: 05C10, 05C38, 05C45

Abstract

We present a cubic planar hypohamiltonian graph on 70 vertices, improving the

best known bound of 94 by Thomassen and derive some consequences concerning

longest paths and cycles of planar 3-connected graphs. We also show that cubic

planar hypohamiltonian graphs on n vertices exist for every even number n ≥ 86

and that cubic planar hypotraceable graphs exist on n vertices for every even number

n ≥ 356, settling an open question of Holton and Sheehan.

1 Introduction

Hamiltonian properties of planar cubic graphs have been investigated extensively since
Tait’s attempt to prove the four color conjecture based on the proposition that every
3-connected planar cubic graph has a Hamiltonian cycle. This proposition was disproved
by Tutte [17] in 1946. However, until 1968, when Grinberg [4] proved a simple, yet very
useful theorem, such graphs were quite difficult to find.
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Theorem 1.1. (Grinberg, 1968)
Suppose a plane graph has a Hamiltonian cycle, such that there are fi i-gons in the exterior
of the Hamiltonian cycle and f ′

i i-gons in the interior of the Hamiltonian cycle. Then

∑

i

(i − 2)(fi − f ′

i) = 0. (1)

The theorem can be used to create non-hamiltonian planar cubic graphs: suppose for
example that all but one faces of a plane graph have degree congruent to 2 modulo 3,
then (1) clearly cannot hold, so the graph cannot be Hamiltonian. Since 1968, several
non-hamiltonian 3-connected planar cubic graphs have been found, the smallest of them is
the Barnette-Bosák-Lederberg graph on 38 vertices [2], [10], see also [5]. In 1986, Holton
and McKay [7] (extending the results of many researchers) showed that there exists no
3-connected planar non-hamiltonian cubic graph on fewer vertices.

A graph G is hypohamiltonian (resp. hypotraceable) if it is not Hamiltonian (resp.
traceable) but every vertex-deleted subgraph of G is Hamiltonian (resp. traceable). The
study of hypohamiltonian graphs started with the paper of Sousselier [9] in 1963 and since
then hypohamiltonian graphs were extensively studied by many authors, see for example
the survey by Holton and Sheehan [8] and the papers [12], [13], [14], [15], [16], [3], [21].

Chvátal [3] raised the question in 1973 whether there exists a cubic planar hypohamil-
tonian graph. This was answered by Thomassen [16], who found a sequence of such graphs
on 94+4m vertices for every integer m ≥ 0 in 1981. However, the question whether there
exist smaller cubic hypohamiltonian graphs and whether there exists a positive integer N ,
such that for every integer n ≥ N there exists a cubic planar hypohamiltonian graph on n

vertices remained open (see [8]). From the results of Aldred et al. [1] follows that there is
no cubic planar hypohamiltonian graph on 42 or fewer vertices. Here we present a cubic
planar hypohamiltonian graph on 70 vertices. Using the method of Thomassen for creat-
ing an n+4 vertex cubic hypohamiltonian graph from an n vertex cubic hypohamiltonian
graph [16] this also shows that cubic planar hypohamiltonian graphs on 70 + 4m vertices
exist for every even integer m ≥ 0. Since 70 ≡ 94 (mod 4), this is not enough to answer
the second open question, however we also give a cubic planar hypohamiltonian graph on
88 vertices, which shows that cubic planar hypohamiltonian graphs on n vertices exist
for every even number n ≥ 86. Using our graphs on 70 and 88 vertices and another con-
struction method of Thomassen [12], we can also show that a cubic planar hypotraceable
graph exists on 340 vertices and on n vertices for every even number n ≥ 356.

T. Zamfirescu [21] denoted the smallest number of vertices of a planar k-connected

graph, in which every j vertices are omitted by some longest cycle (path) by C
j

k (P j

k ).

The best known bounds on the numbers C2

3
and P 2

3
are also improved using our 70-vertex

graph.

We will refer to an edge between vertices a and b as edge (a, b) and a cycle through
the vertices a1, a2, . . . , ak as cycle (a1, a2, . . . , ak). We use the shorthand notation G − v

for the graph obtained from G by deleting the vertex v.
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2 Cubic planar hypohamiltonian graphs on 70 and

88 vertices

In this section we present our cubic planar hypohamiltonian graphs on 70 and 88 vertices.
It is worth mentioning that there exists no cubic planar hypohamiltonian graph on 42 or
fewer vertices, by the results of Aldred et al. [1]. They showed that every 3-connected,
cyclically 4-connected cubic planar graph has at least 42 vertices and presented all such
graphs on exactly 42 vertices. Since hypohamiltonian graphs are easily seen to be 3-
connected and cyclically 4-connected, they must have at least 42 vertices in the cubic
case. Moreover, all 42-vertex graphs presented in [1] have exactly one face with a degree
not congruent to 2 modulo 3, and it is easy to see that cubic graphs with this property
cannot be hypohamiltonian, as was observed by Thomassen [12]. The size of the smallest
cubic planar hypohamiltonian graph is therefore at least 44 and at most 70. The next
claims (that are extensions of the observation of Thomassen) may help to obtain a better
lower bound. Let us denote the number of edges of a face T by d(T ) and for the sake of
simplicity let us call a face F an i-face (i = 0, 1, 2), if d(F ) ≡ i (mod 3) and call the 0-
and 1-faces together non-2-faces.

Claim 2.1. A cubic planar hypohamiltonian graph has at least three non-2-faces.

Proof. Let D be an arbitrary cubic planar hypohamiltonian graph. If D has only 2-faces,
then the deletion of any vertex gives a graph D′ with exactly one non-2-face, so D′ is not
Hamiltonian, a contradiction. D cannot have exactly one non-2-face by the observation
of Thomassen [12]. So let us assume that D has two non-2-faces A and B. It is easy to
see that both A and B should be 0-faces, because the deletion of a vertex that is in one
1-face and two 2-faces gives a graph with exactly one non-2-face. Now the deletion of a
vertex not in any of the 0-faces, but adjacent to a vertex that is in exactly one of the
0-faces gives a graph with exactly three 0-faces, of which two have two common edges.
These cannot be on the same side of a Hamiltonian cycle, therefore (1) cannot be satisfied,
which finishes the proof. 2

The following claim can be proved similarly.

Claim 2.2. If a cubic planar hypohamiltonian graph has exactly three non-2-faces, then
the three non-2-faces do not have a common vertex, moreover two 1-faces or a 1-face and
a 0-face cannot be adjacent.

Now let us turn our attention to the cubic planar hypohamiltonian graphs G and H

that can be seen in Figure 1 and Figure 2, respectively.

Theorem 2.3. G and H are cubic planar hypohamiltonian graphs.

Proof. Both G and H are obviously cubic and planar. Both have one face of degree 4,
and four faces of degree 7, such that the face of degree 4 is adjacent to all faces of degree
7 and the degrees of the other faces are congruent to 2 modulo 3. By Proposition 2.1. of
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Figure 1: The cubic planar hypohamiltonian graph G on 70 vertices

Figure 2: The cubic planar hypohamiltonian graph H on 88 vertices
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[16], G and H are non-hamiltonian (the proof is quite easy using Grinberg’s theorem: in
order to satisfy (1) modulo 3, a Hamiltonian cycle should separate one of the five faces of
degree 4 or 7 from the others, which is impossible in the case of G and H).

Now it remains to show that every vertex-deleted subgraph of G and H is Hamiltonian.
Since G is centrally symmetric, we have to check 35 cases. H has more symmetries, thus
we have to check only 14 cases. The Hamiltonian cycles of the vertex-deleted subgraphs
of G and H are presented in the last section, on Figures 3, 4, 5 and on Figure 6. 2

3 Corollaries

The most important corollary is the existence of cubic planar hypohamiltonian graphs on
n vertices for every even number n ≥ 86. This settles an open question in [8].

Corollary 3.1. There exists a cubic planar hypohamiltonian graph on n vertices for every
even number n ≥ 86.

Proof. The proof is quite obvious using a method of Thomassen [16]. Let T be a cubic
planar hypohamiltonian graph on n vertices having a 4-cycle (a, b, c, d). The graph T ′ ob-
tained from T by deleting the edges (a, b) and (c, d) and adding a new 4-cycle (a′, b′, c′, d′)
and the edges (a, a′), (b, b′), (c, c′), (d, d′) to T . Now it is easy to see that T ′ is also a
cubic planar hypohamiltonian graph on n + 4 vertices having a 4-cycle. By applying this
operation iteratively on the graphs G and H we obtain cubic planar hypohamiltonian
graphs on n vertices for every even number n ≥ 86. 2

Using another construction of Thomassen [14] a similar corollary for hypotraceable
graphs can also be proved.

Corollary 3.2. There exists a cubic planar hypotraceable graph on 340 vertices and on n

vertices for every even number n ≥ 356.

Proof. We use a construction of Thomassen [14]. Let T1, T2, T3, T4, T5 be cubic planar
hypohamiltonian graphs and let xi and yi be adjacent vertices of Ti (i = 1, 2, 3, 4, 5). Let
furthermore the neighbours of xi (resp. yi), other than yi (resp. xi) be ai and bi (resp.
ci and di). Consider the disjoint union of the graphs Ti − {xi, yi} and add to this graph
the edges (c1, a2), (c2, a3), (c3, a4), (c4, a5), (c5, a1) and the edges (d1, b2), (d2, b3), (d3, b4),
(d4, b5), (d5, b1). Now the resulting graph T is easily seen to be planar and cubic and by
Lemma 3.1. of [14], it is also hypotraceable. If we choose each Ti to be isomorphic with
G, then we obtain a cubic planar hypotraceable graph on 340 vertices. To obtain a cubic
planar hypotraceable graph on 2k vertices for any k ≥ 178 we just have to change T1 in
this construction to a cubic planar hypohamiltonian graph on 2k − 270 vertices (such a
graph exists by Corollary 3.1, since 2k − 270 ≥ 86). 2

The next corollaries concern planar 3-connected graphs, in which every two vertices or
edges are omitted by some longest cycle or path. First we improve a theorem of Schauerte
and C. Zamfirescu. In [11] they showed (using a computer) that for any pair of edges e, f
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there exists a longest cycle in Thomassen’s 94-vertex cubic planar hypohamiltonian graph
[16] avoiding e and f . Using this observation and a method of T. Zamfirescu [21] they
proved that there exists a cubic planar 3-connected graph on 8742 vertices, such that any
pair of vertices is missed by a longest cycle.
The same property can also be checked easily for graph G by a computer, i.e. using a
software like Mathematica or Maple.

Proposition 3.3. Let e and f be arbitrary edges of G. Then there exists a longest cycle
in G that does not contain e and f .

Corollary 3.4. There exists a cubic planar 3-connected graph on 4830 vertices, such that
any pair of vertices is missed by a longest cycle.

Proof. We create a graph with the desired properties using a method of T. Zamfirescu
[21]. Consider the 70-vertex cubic planar hypohamiltonian graph G, and let V (G) =
{a1, a2, . . . , a70}. Let furthermore G′ be the graph obtained from G by the deletion of a70

and assume that the neighbours of a70 are a1, a2, and a3 in G. Now consider the graph
Z consisting of 70 copies of G′: G′

1
, G′

2
, . . . , G′

70
, such that we draw an edge between two

copies G′

i and G′

j if and only if ai and aj are adjacent in G. These additional edges are
always drawn between two vertices having degree 2 in the copies (that is, copies of a1, a2,
or a3). It is easy to see that Z is a cubic planar 3-connected graph on 69 · 70 = 4830
vertices. By Theorem 2.3, Proposition 3.3, and a theorem of T. Zamfirescu [21], any pair
of vertices is missed by a longest cycle in Z. For completeness’ sake we reformulate here
the proof of Zamfirescu. Since G is hypohamiltonian, it is easy to see that the longest
cycle of Z has length 68 · 69 = 4692 (one copy and one vertex of every other copy must
be avoided, otherwise G would be Hamiltonian, and a cycle of length 4692 is easy to find
using the hypohamiltonicity of G). If the two vertices x and y we would like to avoid by a
longest cycle are in the same copy, then simply consider a longest cycle avoiding this copy
completely. Thus we may assume that x and y are in different copies. It is easy to see that
there is a Hamiltonian path between two of the vertices a1, a2, a3 in every vertex-deleted
subgraph of G′. Let x′ (y′) be that copy of a1, a2, or a3 that is not the endvertex of such
a Hamiltonian path if we delete x (y). Now let us delete x, y, and one vertex from every
other copy of G′ from Z. Let us delete furthermore the additional edges incident to x′ and
y′. By Theorem 2.3 and Proposition 3.3 there is a cycle of length 4692 in the remaining
graph, which proves the corollary. 2

The following definition is due to T. Zamfirescu [20].

Definition 3.5. C
j

k (resp. P
j

k ) is the smallest number of vertices of a planar k-connected
graph, in which every j vertices are omitted by some longest cycle (resp. path).

T. Zamfirescu gave several bounds on these numbers in [21], of which the upper bounds

on C2

3
and P 2

3
were improved in [6] (see also [18]), [22], and [19]. The currently known

best upper bounds are C2

3
≤ 3701, P 2

3
≤ 14694. Using our graph G we can derive even

better bounds. For the proof we use the same method of T. Zamfirescu [21] as was used
in [6], [22], and [19].
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Corollary 3.6. C2

3
≤ 2765, P 2

3
≤ 10902.

Proof. The method is similar to the one used in Corollary 3.4. Let Γ be the planar
hypohamiltonian graph on 42 vertices given in [19]. The graph Γ′ is obtained by deleting
any vertex of degree 3 from Γ. Now consider the graph Y consisting of 70 copies of Γ′:
Γ′

1
, Γ′

2
, . . . , Γ′

70
, such that we draw an edge between two copies Γ′

i and Γ′

j if and only if ai

and aj are adjacent in G. These additional edges are always drawn between two vertices
that are copies of the neighbours of the deleted vertex. It is easy to see that Y is a planar
3-connected graph on 41 · 70 = 2870 vertices. From the hypohamiltonicity of Γ and G,
Proposition 3.3, and the mentioned theorem of Zamfirescu [21], any pair of vertices is
missed by a longest cycle in Y . None of these properties are lost if we now contract the
additional edges of Y (see [21]), obtaining a graph on 41 · 70− 105 = 2765 vertices, which
proves the first upper bound.
The second bound is proved similarly. First we take four copies of G′ and an additional
edge between any two copies (these edges are drawn between copies of a1, a2, or a3 again).
Denote the graph obtained in this way by X. Now we execute the same procedure as
above, but this time we put the copies of Γ′ into the graph X and then contract the
additional edges to obtain a 3-connected planar graph, where every pair of vertices is
missed by a longest path in 69 · 4 · 41 − ((105 − 3) · 4 + 6) = 10902 vertices (see [21]). 2

4 Hamiltonian cycles of the vertex-deleted subgraphs

of G and H

In this section we present the Hamiltonian cycles of the vertex-deleted subgraphs of G

and H . G is centrally symmetric, so we have to check 35 cases (Figures 3, 4, and 5). H

has more symmetries, thus we have to check 14 cases (Figure 6).

Figure 3: Hamiltonian cycles of the vertex-deleted subgraphs of G
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Figure 4: Hamiltonian cycles of the vertex-deleted subgraphs of G (continued)
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Figure 5: Hamiltonian cycles of the vertex-deleted subgraphs of G (continued)

Figure 6: Hamiltonian cycles of the vertex-deleted subgraphs of H
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