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Abstract

In this paper we consider an oriented version of adjacency graphs of triangu-
lations of bordered surfaces with marked points. We develop an algorithm that
determines whether a given oriented graph is an oriented adjacency graph of a
triangulation. If a given oriented graph corresponds to many triangulations, our
algorithm finds all of them. As a corollary we find out that there are only finitely
many oriented connected graphs with non-unique associated triangulations. We
also discuss a new algorithm which determines whether a given quiver is of finite
mutation type. This algorithm is linear in the number of nodes and is more effective
than the previously known one (see [1]).
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1 Introduction

In this paper we consider the properties of triangulations of surfaces with marked points.
We start with the following definitions from [2]:

Definition 1. Let S be a connected oriented 2-dimensional Riemann surface with bound-
ary. Fix a non-empty finite set M of marked points in the closure of S such that every
connected component of the boundary has at least one marked point. We call (S, M) a
bordered surface with marked points if (S, M) is none of the following:

• a sphere with one or two marked points in the interior of S.

• a disk with one marked point on the boundary, no more than one marked point in
the interior.

• a disk with two marked points on the boundary, no marked point in the interior.

• a triangle with no marked points in the interior.

Definition 2. A (simple) arc γ in (S, M) is a curve in S such that:

• the endpoints of γ are marked points in M ;
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• γ does not intersect itself, except that its endpoints may coincide;

• except for the endpoints, γ is disjoint from M and from the boundary of S;

• γ is not contractible into M or onto the boundary of S.

Definition 3. A maximal collection of distinct pairwise arcs that do not intersect in the
interior of S is called an ideal triangulation. The arcs of a triangulation cut the surface S

into ideal triangles. The three sides of an ideal triangle do not have to be distinct, i.e., we
allow self-folded triangles. We also allow for a possibility that two triangles share more
than one side.

Definition 4. A quiver is defined as a finite oriented multi-graph without loops and
2-cycles.

Triangulations of surfaces provide a basic tool for study of surface geometry and topol-
ogy. An important reference for us is [2] where the authors construct a cluster algebra
associated with triangulations of a bordered surface with marked points. Moreover, they
describe a distinguishing combinatorial property of such cluster algebra. Namely, ex-
change quiver of such cluster algebra is block decomposable. An exchange quiver is an
oriented adjacency graph derived from the signed adjacency matrix associated to an ideal
triangulation, defined as follows:

Definition 5. We associate to each ideal triangulation T the (generalized) signed adja-
cency matrix B = B(T ) that reflects the combinatorics of T . The rows and columns of
B(T ) are naturally labeled by the arcs in T . For notational convenience, we arbitrarily
label these arcs by the numbers 1, . . . , n, so that the rows and columns of B(T ) are num-
bered from 1 to n as customary, with the understanding that this numbering of rows and
columns is temporary rather than intrinsic. For an arc (labeled) i, let πT (i) denote (the
label of) the arc defined as follows: if there is a self-folded ideal triangle in T folded along
i, then πT (i) is its remaining side (the enclosing loop); if there is no such triangle, set
πT (i) = i. For each ideal triangle △ in T which is not self-folded, define the n× n integer
matrix B△ = (b△ij ) by settings:

b
△

ij =






1 if △ has sides labeled πT (i) and πT (j)

with πT (j) following πT (i) in the clockwise order;

−1 if the same holds, with the counter-clockwise order;

0 otherwise.

The matrix B = B(T ) = (bij) is then defined by

B =
∑

△

B△

The sum is taken over all ideal triangles △ in T which are not self-folded. The n × n

matrix B is skew-symmetric, and all its entries bij are equal to 0, 1,−1, 2, or −2.
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Definition 6. Let G be a quiver, B(G) = (bij) is the skew-symmetric matrix whose rows
and columns are labeled by the vertices of G, and whose entry bij is equal to the number
of edges going from i to j minus the number of edges going from j to i.

Definition 7. Suppose B is a signed adjacency matrix associated to an ideal triangulation
of a bordered surface with marked points (S, M), and G is a quiver. If B(G) = B, we say
G is the oriented adjacency graph associated to (S, M).

The notion of Block decomposition (see Definition 8) plays an important role in deter-
mining the mutation class of a quiver. In [2], the authors prove that the mutation class
of an adjacency matrix associated to a triangulation of a bordered surface with marked
points is finite (Corollary 12.2 in [2]). It is also proved in [2] that an integer matrix B is
an adjacency matrix of an ideal triangulation of a bordered surface with marked points if
and only if B = B(G) for some block-decomposable graph G.

In this paper, we provide a combinatorial algorithm that determines if a given graph
is block-decomposable. Moreover, if a graph G is block-decomposable, the algorithm can
also find all possible bordered surfaces with marked points associated with G.
For a given graph G, we start the algorithm by examining the nodes of largest degree. Note
that by construction (see Definition 8), the degree of any node of a block-decomposable
graph does not exceed eight. We examine the nodes of degree eight one by one, and check
the neighborhoods (see Definition 9) of the examined node, denoted by o. The set of
decomposable neighborhoods of o we need to check (we denoted it by So, see remark 3) is
finite. If So is empty, the graph G is indecomposable and we terminate the algorithm. If o

is contained in a neighborhood N ∈ So, we simplify N in the following way: replace N by
a simpler neighborhood so that the degree of o decreases. We prove that all replacements
are consistent in the following sense: the original graph is block-decomposable if and
only if the new graph is. After the nodes of degree eight are exhausted, we proceed in
similar way to the nodes of degree seven, then, six, five and four. In each step, it is
necessary to examine if So of any node o is non-empty. It is possible that after a few steps
of simplification, we obtain several connected components. The same algorithm can be
applied to each component. Eventually the graph is reduced to one with nodes of degree
at most three. The decomposable neighborhoods of nodes of degree 3 are listed in Section
6. Finally, Theorem 1 gives a criterion that determines if a graph that contains only nodes
of degree at most three is decomposable.

Theorem 1. Assume that every node in G has degree less than or equal to 3. If each of
the nodes of degree three has a neighborhood as in one of the pictures listed in Figure 74
(up to the change of orientations of all edges), then G is decomposable. Otherwise, G is
indecomposable.

Furthermore, the algorithm also provides a list of connected neighborhoods that are
associated to non-unique triangulations, see the following theorem:

Theorem 2. If G is a connected decomposable graph, it can only be one of the graphs
from Figure 78, up to the change of orientations of all edges. Moreover, G has finitely
many possible decompositions.
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I:Spike II:Triangle IIIa:Infork IIIb:Outfork IV:Diamond V:Square

Table 1: Blocks

The algorithm also helps to retrieve the triangulations and surfaces that a decompos-
able graph G is associated with. We keep track of all neighborhoods that are simplified.
After all nodes of degree higher than three are exhausted, we decompose the graph into
blocks. Each elementary block is uniquely associated to a triangulation of a piece of sur-
face. Gluing elementary blocks corresponds to a gluing of associated triangulated pieces
of surfaces along arcs of triangulations (see [2]). Therefore, given a block decomposition,
we can recover a triangulated bounded surface associated with the given quiver.

2 Definitions

For convenience, an edge directed from node x to y will be denoted by −→xy; if an edge
connects node x and y, but the orientation is unknown or irrelevant, we denote the edge
by xy.

Definition 8. A block is a directed graph that is isomorphic to one of the graphs shown
in Table 1. They are categorized as one of the following: type I (spike), II (triangle), IIIa
(infork), IIIb (outfork), IV (diamond), and V (square). The nodes marked by unfilled
circles are called outlets or white nodes. The nodes marked by filled circles are called
dead ends or black nodes. A directed graph G is called block decomposable or simply
decomposable if it can be obtained from disjoint blocks as a result of the following gluing
rules: (See [2] for definition.)

1. Two white nodes of two different blocks can be identified. As a result, the graph
becomes a union of two parts, and the common node becomes black. A white node
can not be identified with another node of the same block, see Figures 2.

2. A black node can not be identified with any other node.

3. If an edge a := −→xy with two white nodes x, y is glued to another edge b := −→pq with
two white nodes p, q such that x is glued to p and y is glued to q, then a multi-edge
is formed, and the nodes x = p, y = q become black. (Figure 1)

4. If an edge a := −→xy with two white nodes x, y is glued to another edge b = −→qp such
that x is glued to p and y is glued to q, then both edges are removed after gluing,
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Example Decomposition A Decomposition B

Table 2: A quiver and its two decompositions

and the nodes x = p, y = q become black. We say that edges annihilate each other
(Figure 2).

x

y

p

q

Figure 1

x

y

p

q

Figure 2

For example, the example quiver in Table 2 can be constructed from an infork (IIIa)
and a spike (I) as in decomposition A, or from a spike (I), a triangle(II) and another
spike(I) as in decomposition B.

Remark 1. By design, a block-decomposable graph has no loop and all edge multiplicities
are 1 or 2. Therefore, a block-decomposable graph is a quiver.

Remark 2. Note that, the color of a vertex is not specified in the original graph, and is
determined only for vertices of blocks of a specified block decomposition. (There might be
several ways to decompose a graph. Hence, a vertex may have different colors in different
decompositions, see Figure 2.)

We will assume in the following discussion that G is a finite oriented multi-graph
without loops and 2-cycles.

Proposition 1. A graph G without isolated nodes is decomposable if and only if every
disjoint connected component is decomposable.

Proof. It suffices to show that annihilating an edge in a connected graph generates a
connected graph. Since we can only annihilate edges in a spike, triangle or diamond
block, before an edge is annihilated, both of its endpoints must be white. Denote these
two endpoints by x, y.
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• Suppose x, y are endpoints of a spike. Notice that the original graph must be a
single spike. If we annihilate the edge by gluing a triangle, x, y will be connected
via the third node of the triangle. If we annihilate the edge by gluing a diamond,
x, y will be connected via the remaining nodes of the diamond. If we annihilate
it by gluing a spike, the new graph will consist of only two nodes and no edge, a
contradiction.

• Suppose x, y are endpoints of a triangle. If we annihilate the edge xy by gluing a
spike or diamond, the remaining two edges of the triangle can not be annihilated,
and x, y will still be connected via the third node of the triangular block. If we
glue another triangle, there are two cases: In the first case, we can annihilate only
one edge, namely xy, and then x, y will still be connected via the third node. In
the second case, we can also annihilate the whole triangle when all three nodes are
white. In this case, the original graph is a single triangular block and the new graph
consists of three nodes. This is again a contradiction.

• Suppose x, y are endpoints of a diamond. Since none of the boundary edges can be
annihilated, after gluing a spike or triangle or another diamond to the edge xy, x, y

will still be connected.

According to the previous proposition, if G is decomposable, we may break connec-
tivity of a graph in only two trivial cases. In either case, the resulting graph contains
isolated nodes. On the other hand, in a decomposable graph, isolated nodes can only be
obtained in the above manner. Therefore, we can assume from now on that the graph is
connected.

The following definition is needed in our algorithm:

Definition 9. Suppose N is a subquiver of G with all its nodes colored white or black. If
there exists another quiver M with all its nodes colored white or black, such that G can
be obtained by gluing M to N by the rules in Definition 8, we say N is a colored subquiver
of G. A neighborhood of o is a colored subquiver of G that contains node o. We say
a colored subquiver N of G is decomposable if there exists another block-decomposable
graph G̃ that contains N as a colored subquiver. A colored subquiver N of G is said to be
indecomposable if any graph that contains N as a colored subquiver is indecomposable.
We say a colored subquiver N is decomposable as a subgraph if N can be obtained by
gluing elementary blocks according to the rules in Definition 8, and the color of nodes in
N resulted by gluing of blocks must be compatible with the original color of N .

Remark 3. First, note that if G is obtained by gluing a colored subquiver to a neighbor-
hood of o, no edge of the neighborhood can be annihilated. Secondly, for a given graph
G and a node o, the set of neighborhoods of o in G, denoted by No, forms a partially
ordered set by inclusion. We define three subsets of No as follows:

• Io is the set of all decomposable neighborhoods each of which contains all edges
incident to o.
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• Do is the set of all decomposable neighborhoods of o each of which is decomposable
as a subgraph.

• So = {N ⊂ Io ∩ Do | N is minimal}.

For example, consider the graph G in the first picture of Table 3. In the first picture,
note that as a quiver, G does not have color on any node, hence the first picture is not
considered as a neighborhood. Pictures A,B,C give some examples of neighborhoods of
node o. The neighborhood in picture A belongs to So. The neighborhood in picture B
does not belong to Io. The neighborhood in picture C does not belong to Do. Note that
although C as a graph can be obtained from gluing a spike and two triangles, the two
nodes on the top will be black, which is incompatible with the coloring in picture C.

b

b b

b b

b

o b

bc bc

b b

bc

o

bc

b b

b

o

b

b b

bc bc

o

G A B C

Table 3

For a given graph G and a target node o, if So is empty, the graph is indecomposable.

Remark 4. In our algorithm we only need to consider neighborhoods from So,

3 Simplification on Nodes of Degree Eight, Seven,

Six and Five

In this section we show when and how to replace the neighborhood of a certain node by
a consistent one which decreases the degree of this node. As a result, the nodes of degree
larger than four are consecutively eliminated. Notice that the highest degree of any node
in a block is 4. Hence the highest degree of any node in a decomposable graph G does
not exceed 8.

3.1 Nodes of Degree Eight

A node o of degree 8 in a decomposable graph G can only be obtained by gluing a
square with another square (see Figure 3). The result is a disjoint connected component.
Otherwise, G is indecomposable.
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o

Figure 3: Node of degree 8

3.2 Nodes of Degree Seven

If o is a node of degree 7 in a decomposable graph G, it must be obtained by gluing a
diamond to a square, see Figure 4. The neighborhood is replaced by the one in Figure 5.
The following lemma shows that this replacement is consistent.

Lemma 1. Suppose a neighborhood of the node o is as in Figure 5 and deg(o) = 3. If G

is decomposable, the neighborhood can only be decomposed into a triangle and a spike.

Proof. It is necessary to show that b, c, d form a triangular block in the decomposition
and that a comes from a spike block.

Assume there exists a decomposition. We then claim that the block containing b must
be a triangle. Suppose that the claim is false, and consider the following cases:

1. Suppose that b comes from a fork. Since both edges in a fork contain black endpoints,
they can not be annihilated. Thus, the fork containing b must also contain a or c.
However, the directions of a and c are not compatible with the directions of edges
in any fork block. Therefore, b can not be a part of a fork.

2. Suppose b comes from a square block. Since at least one endpoint of any edge in
a square block is black, none of the edges can be annihilated. Thus, the degree of
any corner node is 3, and the central node has degree at least 4. Since the degree
of node o is 3, it can only be one of the corner node in the square. Moreover,
since nodes x and p are not connected, they must both corner nodes on the same
diagonal. Therefore, node y must be the central node. Hence nodes y and p must
be connected, a contradiction, and so b can not come from a square.

3. Suppose that b comes from a diamond. If the diamond does not contain c or d,
then it is necessary to glue d and c together. Since the only white nodes are the
endpoints of the mid-edge, b must be the mid-edge of the diamond. Suppose the
diamond does not contain c. The edges a, d must be both contained in the diamond
since the degree of node o is 3. Hence nodes x, p must be connected, which is a
contradiction. Suppose the diamond does not contain d, then after gluing d to node
o, the degree of o must be at least 4. This again leads to a contradiction. So the
diamond must contain d and c. The directions of b, c suggest that both b, c are in
the upper or lower triangle of the diamond. This forces d to be contained in the
diamond. Notice that since the node x is not connected with p, the other half of
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the diamond is annihilated. This is again a contradiction, so the diamond can not
contain c. To conclude, b is not contained in a diamond block.

4. Suppose b comes from a spike, then a, d must come from the same block. Thus,
they form a fork, and so c can not be attached. This proves the claim.

Now, the only option is that b comes from a triangular block △1. If a also comes from
△1, the third edge in △1 should be annihilated by another edge, denoted by e. Moreover,
both e and c must be obtained from the same block. Taking into account direction of
edges, this block must be a triangle △2. Note that the third edge py of △2 is annihilated
by an edge f incident to the node y, so f and d must come from the same block. Again,
considering the directions of edges, this block must also be a triangle △3. Therefore, the
third edge of △3 must be a, which contradicts the assumption that a is an edge of block
△1. Hence a is not contained in △1 and this triangle is formed by b, c, d, which forces a

to be a spike block.

Remark 5. After the original neighborhood is replaced by the one in Figure 5, assume
the new graph is not decomposable. This means that if the lower triangle and spike
described in Lemma 1 are removed, the rest is not decomposable. Therefore, in the original
graph, after the original neighborhood of o is removed, the graph is indecomposable.
However, in this case, the neighborhood of o can only be obtained from gluing a square
and a diamond. Hence the original graph is non-decomposable. This proves that the
replacement is consistent. Moreover, all decompositions of the original graph are in 1-1
correspondence with decompositions of the new one.

o o

Figure 4: Node of Degree 7

b

bc bc

bc

b d

c

oa

p

x y

Figure 5

3.3 Nodes of Degree Six

If o is a node in G of degree 6, there are three cases:

1. One possible neighborhood in So comes from a triangle and a square block. (Figure
6) Then replace it by the one in Figure 7. Lemma 1 shows that this replacement is
consistent.

2. The second possible neighborhood in So comes from a fork block (infork or outfork)
and a square block. (Figure 8). Then the neighborhood is a disjoint connected
component, since otherwise the graph is indecomposable.
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o

Figure 6

bc bc

b

b

bc bc

o

x

yz

Figure 7

o o

Figure 8

3. The third possible neighborhood in So comes from two diamonds, as illustrated in
Figure 9. Note that in Figure 9A, if node p and node q are glued together, the result,
if decomposable, is a disjoint connected component, see Figure 10A. Otherwise, G is
indecomposable. If p, q are not glued together, the neighborhood is then replaced by
the graph in Figure 11. Lemma 1 shows that this replacement is consistent. On the
other hand, gluing nodes p, q together in Figure 9B, the mid-edges are annihilated,
as seen in Figure 10B. Hence, the degree of o must be 4. This contradicts the fact
that node o has degree 6. In this case, the neighborhood is replaced by Figure 11.

o
p q

o
p q

A B

Figure 9

A B

Figure 10

p q

Figure 11

Corollary 1. Suppose a neighborhood of o is given as in Figure 7 and deg(x) = deg(o) = 3.
Then this neighborhood can only be decomposed as a triangle plus a spike plus a triangle.

Proof. By Lemma 1, the lower part of Figure 7 can only be obtained from gluing a spike
and a triangle. For the upper part, the two edges incident to o must come from the same
block. Judging by their directions, the block can only be a triangle. Note that the third
edge of this triangle may be annihilated, as indicated by a dashed line in Figure 7.

Remark 6. By an argument similar to the one in remark 5, this replacement is consistent.
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3.4 Nodes of Degree Five

If node o has degree 5, there are three cases:

1. The first possible neighborhood in So comes from a spike and a square, see Figure
12. In this case, we replace it with the neighborhood in Figure 5. According to
Lemma 1, the replacement is consistent.

2. The second possible neighborhood in So comes from a fork and a diamond, see
Figure 13. Note that the direction of the fork and the diamond can change, so there
are 4 subcases. In all of these cases replace the neighborhoods by the one in Figure
15. The replacement is consistent due to Lemma 1 and remark 5.

3. The third possible neighborhood in So comes from a triangle and a diamond, see
Figure 14. In similarity with case 2, note that the orientation of both the triangle
and the diamond can also be reversed, and there are 4 possible neighborhoods in
this case. Up to a reversion of directions, the neighborhood is replaced by the one
in Figure 16. Lemma 1 and Corollary 1 ensure that this replacement is consistent.

Figure 12 Figure 13

o
p

Figure 14 Figure 15

o p

Figure 16

4 Simplification on Nodes of Degree Four

After the simplifications in the previous section are done, assume now that all nodes in
graph G have degrees at most four. In this section we shall denote the node in considera-
tion by o, and the nodes connected to it are called boundary nodes. Note that taking into
account the directions of edges incident to o, we can distinguish the following three cases:

A: 4 outward edges, or 4 inward edges.

B: 3 outward edges and 1 inward edge, or 3 inward edges and 1 outward edge.
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C: 2 outward edges and 2 inward edges.

We shall consider all the situations above case by case.

4.1 Four outward edges or four inward edges.

Without loss of generality, assume that there are four edges directed outwards. If the
graph is decomposable, So consists of only one neighborhood, and the neighborhood is
obtained by the gluing of two forks as in Figure 17.

o

= +

Figure 17

4.2 Three outward edges and one inward edge, or three inward

edges and one outward edge

Without loss of generality, assume that o is incident to three outward edges and one
inward edge.

Assume that there is only one node, distinct from o and incident to the incoming edge,
that has degree at least two. Denote this node by p:

1. The inward edge can not be obtained from a fork. To show this, we use contradiction.
Suppose the edge is contained in a fork block, so o must be the white node in this
block. Therefore, the other inward edge must be incident to o and can not be
annihilated. This contradicts the fact that there is only one inward edge incident
to o. Note that this argument is still true even if p has degree one.

2. Suppose the inward edge comes from a square. Since the degree of o is four, it must
be the center of the square and all four edges are contained in the same square. This
is impossible since none of the edges in a square can be annihilated and the central
node of a square is incident to at least two inward edges and two outward edges.

3. Assume the inward edge is a part of a triangular block. Suppose this triangle does
not contain any of the remaining three outward edges. Then the other edge of the
triangle which is incident to o is annihilated by another edge, denoted by e. In this
case, e and the remaining three outward edges must come from the same block.
It can only be a square with central node o. On the other hand, o is incident to
three outward edges and one inward edge, giving us a contradiction. Therefore,
the triangle must contain one of the outward edges, which forces the remaining two
outward edges to be in the same block. This block must be a fork, see Figure 18.
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4. Assume that the inward edge comes from a diamond. Node o must be a white node
in the diamond. Judging by the directions of the remaining edges, two of them must
be boundary edges of the same diamond, see Figure 19.

5. Suppose that the inward edge comes from a spike, then the remaining three out-
ward edges come from the same block. However there is no block that contains
three outward edges incident to the same node. Hence in this case, the graph is
indecomposable.

o

Figure 18

o wy

Figure 19

o

Figure 20

In Figure 18, replace the neighborhood with the one in Figure 7. According to Corollary
1 and remark 6, this replacement is consistent. Denote the new graph by G′ and the
original graph by G. G′ has one less node of degree 4. For Figure 19, lemmas 2 and 3
show that it has a consistent replacement.

Lemma 2. If y, w are not connected by an edge, Figure 21 has only one possible decom-
position, which is shown in Figure 22.

Proof. Consider the edge a. We claim that it comes from a spike block. To justify the
claim, we only need to rule out all other possibilities.

Suppose first that a comes from a fork. Then the other edge of the same fork can not
be annihilated since it has a black endpoint. Hence it must be edge b or c. Assume it is
b, then the degree of b must be one, a contradiction.

Suppose now that a comes from a square. Since the degree of o is 4, the node o must
be the center of the square, which means edges b, c, f are contained in the same square
block. This is a contradiction, since o must be at least incident to two outward edges and
two inward edges.

Suppose a is contained in a diamond. The degree of node o suggests that o is a white
node in the diamond block containing a. Since the boundary edges of a diamond can not

b

b

b

b b

p

d b
fy

e c
o

q

a
w

Figure 21

+

Figure 22

y w

Figure 23
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be annihilated, two of a, b, c, f must be boundary edges. Judging by the directions, the
boundary edges can only be {a, b}, {a, c} or {b, c}. If {a, b} are two boundary edges, then
d must be contained in the same diamond. This means that the node w must be connected
to the node y, which contradicts our assumption. The situation is similar if {a, c} are two
boundary edges. If {b, c} are two boundary edges of the diamond, a is the mid-edge of
the same diamond block. Therefore nodes p, q must be connected with node w, and they
must be black. However, edges d, e are incident to them, again a contradiction.
Finally, suppose a comes from a triangular block. If this triangle does not contain edge
f , the other edge of the same triangle which is incident to o must be annihilated by
another edge, denoted by h. So b, c, f, h come from the same block, which must be a
square. However, none of the edges in a square can be annihilated, which contradicts
the fact that h is annihilated. If the triangle contains f , then b, c must come from the
same block, which must be a fork or a diamond. If it is the latter, the mid-edge must
be annihilated. But o is already a black node once the triangle and diamond are glued
together, a contradiction. If it is a fork, the degree of p must be one. This is again a
contradiction.
To sum up, a must be a single spike, and b, c, f come from the same block. This forces
the block to be a diamond.

Lemma 3. If w is connected to y in Figure 21, then the decomposable graph must have
a disjoint connected component as shown in Figure 24.

Proof. According to the previous lemma, there are two possibilities. Either b,c,d,e,f form
a diamond and a, h come from two spikes, or a,b,d,f ,h form a diamond and e, c come from
two spikes. In either case, the neighborhood is a disjoint connected component. Figure
24 illustrates the first case. To see the second case, one only needs to change the labeling
of the edges in Figure 24.

Remark 7. The replacement of the graph in Figure 22 by the one in Figure 23 is consistent.

Assume now the node incident to the edge directed inwards has degree one.

1. Suppose that the inward edge comes from a spike. We show that the remaining three
edges can not come from one block, and this contradicts decomposability. Indeed,
there is no block that contains a node of degree 3, that is incident to three outward
edges.

the electronic journal of combinatorics 18 (2011), #P91 15



b

b b

b b

o

1 2

34

Figure 25

b

bc b

b b

o

1 2

34

a b

cd

Figure 26

2. Suppose the inward edge comes from a fork. Since the degree of o is four, o must be
the white node in the fork. Hence one of the remaining edges is contained in the same
fork. However, their directions are inconsistent with a fork, giving a contradiction.

3. The inward edge can not be obtained from a diamond since every node in a diamond
has degree at least 2.

4. The same argument shows that the inward edge does not come from a square.

5. If the inward edge is obtained from a triangle, then by arguments as in the proof
of Lemma 2, the triangle must contain one of the remaining outward edges. The
only possible decomposition is shown in Figure 20. The dashed edge can only be
annihilated by a spike, since otherwise the degree of the node will be greater than
one. In this case, the neighborhood is a disjoint connected component.

4.3 Two outward edges and two inward edges

Here we will distinguish cases by the number of boundary nodes of degree at least 2.
Denote the number of such nodes by n. For example, if n = 0, it is a 4-star.

4.3.1 n = 0

The neighborhood consisting of all four edges incident to o can be constructed from gluing
two forks, as shown in Figure 25. Also, it can be constructed from gluing two triangles,
each triangle with one edge annihilated. It must be a disjoint connected component,
otherwise G is indecomposable.

4.3.2 n = 1

Without loss of generality, assume the node 1 incident to an outward edge has degree at
least 2 (Figure 26). Then we have the following cases:

1. Edge a does not come from a fork since the degrees of both nodes 1 and o are at
least 2.

2. Suppose a comes from a diamond. Since the degrees of nodes 2,3,4 are all 1, they
can not be contained in the same diamond. So node o is a white node of the diamond
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before attaching edge b, c, d. Hence at least one boundary edge in the diamond must
be annihilated, which is impossible.

3. Suppose a comes from a square. If o is the central node of the square, edges b, c, d

must be contained in the same square. Hence the remaining 4 nodes must be corner
nodes. Thus, they all have degree 3. This is a contradiction since only node 1 has
degree more than one. So o is a corner node of the square. But then the degree of
node o must be three, which contradicts the fact that the degree of o is four.

4. If a comes from a spike block, b, c, d must come from the same block, which must
be a diamond. Hence, edge d is the mid-edge. However the degree of node 3 is 1,
which is impossible since no boundary edge in a diamond can be annihilated.

5. Assume that a comes from a triangle △. If the other edge of △ incident to o is not b

or c, that edge must be annihilated by another one denoted by e, as shown in Figure
27. Thus, b, c, d, e come from the same block, which can only be a square. But the
degrees of nodes 2,3,4 are all 1, which is impossible for nodes in a square block,
so either b or c is contained in the same triangle. Assume that it is b. Notice that
node 2 has degree 1. So the edge in △ that connects node 1 and 2 is annihilated by
another edge, denoted by f . If f comes from a spike, the degree of node 1 must be
1 after gluing, a contradiction. If f comes from a triangle or a diamond, the degree
of node 2 has degree at least 2 after gluing, also a contradiction.

To conclude, when n = 1, the graph is indecomposable.

4.3.3 n = 2

In this case, only two boundary nodes have degree at least 2.
Case 1. Assume that the edges incident to the boundary nodes of degree at least

2 have the same direction. Without loss of generality we assume that both are directed
outwards (nodes 1 and 4 in Figure 28 have degree at least 2.) First, suppose either a or
d is a single spike. The remaining three edges must come from the same block, which can
only be a diamond or a square. However, the degrees of nodes 2,3 are both 1, which is
impossible. Second, neither of the edges a or d can be obtained from a fork since both
of its two endpoints have degree at least 2. Third, suppose a comes from a diamond.
Then b, c must also be contained in the diamond. In this case, nodes 1 and 2 must be
connected. This means the degree of node 2 is at least 2, which leads to a contradiction.
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Next, suppose a or d comes from a square, then all four edges must be contained in the
same square. However, the degrees of node 2,3 are both one. This is again a contradiction.
Last of all, assume a, b come from the same triangular block and c, d come from another
triangular block. Since node 2 has degree 1, the third edge in the triangle containing
edges a, b is annihilated, as discussed in the case when n = 2, this is a contradiction. So
in this case, the graph is not decomposable. Case 2. Assume now that o is connected to
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the boundary nodes of degree at least 2 by two edges. Denote the edge directed inwards
by a and the one directed outwards by b (Figure 29).

1. For the same reason as in Case 1, neither a nor b comes from a spike block.

2. Neither a nor b comes from a fork since both endpoints have degrees at least 2.

3. Suppose a comes from a diamond. Since the degree of o is 4, it must be a white
node in the diamond. Since no boundary edge in a diamond can be annihilated,
b, c must be boundary edges in the same diamond. Then, nodes 1 and 3 must be
connected. But degree of node 3 is 1 and the boundary edge can not be annihilated,
which is a contradictions.

4. Suppose a comes from a square block. Since degree of o is 4, it must be the central
node of the square. Since none of the edges in a square can be annihilated, a, b, c, d

must all be contained in the same square. But the degrees of node 3,4 are one, a
contradiction.

5. Assume a comes from a triangle △ that does not contain b or c. The other edge
in this triangle that is incident to o must be annihilated by an edge denoted by e.
Hence edges b, c, d, e must be contained in a square block. However, none of the
edges in a square block can be annihilated. Therefore, the triangle must contain
either b or c. Using similar arguments as in section 4.3.2, c is not contained in
△, so a, b are contained in △. Then we replace the neighborhood consisting of all
four edges incident to o with the one in Figure 30. The replacement operation is
consistent by Corollary 1.
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4.3.4 n = 3

Without loss of generality, assume that the node 1 is incident to the edge directed outwards
(denoted by a), and that it has degree one, see Figure 31.

1. Suppose that a comes from a single spike. The remaining edges b, c, d must come
from the same block. The only possible situation is that they come from a diamond
(Figure 32). Since deg(1)=1, nodes 1,4 are not connected. We will show in Lemma
4 that this neighborhood consisting of the spike and the diamond can be replaced
by the one in Figure 33. This replacement is consistent according to Lemma 1.

2. Suppose that a comes from a fork. Since deg(o) = 4, o must be the white node
in the fork. Then d is also contained in the same fork. Hence, node 4 must have
degree one. This contradicts the fact that the degree of node 4 is at least two, so a

does not come from a fork.

3. Assume a comes from a triangle. According to the argument in section 4.2, this
triangle must contain edge b or c Assume that the triangle contains a, b. Since
the degree of node 1 is one and the degree of node 2 is at least two, we obtain a
contradiction by arguments from section 4.3.2.

4. Suppose that a comes from a diamond, then the degree of node 1 must be at least
2, which is a contradiction.

5. Suppose that a comes from a square block. This block must also contain edges
b, c, d since none of the edges in a square can be annihilated. Moreover, o is the
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central block of the square, which means node 1 must have degree 3. This is a
contradiction.
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4.3.5 n = 4

In this section, we assume all four boundary nodes have degree at least 2. (Figure 34).
We focus our discussion on edge a. By the symmetry of the neighborhood, we can carry
the same argument to any of the edges b, c, d.
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Figure 34

1. Edge a does not come from a fork since both of its endpoints have degrees at least
2.

2. Assume that a comes from a triangle. Similar to the argument in section 4.2, the
triangle must contain b or c. Assume b is contained in this triangle. Then c and d

must come from the same block.

• If c, d are contained in a diamond block, judging by their directions, one of edges
c, d (assume it is d) must be the mid-edge. Thus, besides c, there is another
boundary edge incident to o that comes from the same diamond. Hence, the
degree of o is at least 5, which contradicts our assumption.

• Assume c, d come from a triangle, as shown in Figure 35. We replace the
neighborhood in Figure 34 by the one in Figure 36.
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Figure 37

Remark 8. Notice that in order to perform a replacement, it is necessary to deter-
mine whether a, b or a, c are in the same triangle. This will be discussed later.

3. Suppose that a comes from a diamond. Since the degree of o is 4, it must be a white
node of the diamond. Judging by the directions of edges, there are three cases.

• a is the mid-edge and b, c are the boundary edges. We get a neighborhood as
shown in Figure 38. In this neighborhood, the degrees of nodes 2 and 3 are
both 2. We will discuss this case later in this section.

• a, d are the boundary edges and b or c is the mid-edge. We get a neighborhood
shown in Figure 39. In this neighborhood, the degrees of nodes 1 and 4 are
both 2.
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• a, d are the boundary edges, and the mid-edge is annihilated by another edge e.
So b, c, e come from the same block. It must be a diamond with mid-edge e, see
Figure 37. In this case, the neighborhood is a disjoint connected component.

4. If a comes from a spike, b, c, d must come from the same block. Hence, this block
must be a diamond, see Figure 32.
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5. Suppose a comes from a square, then a, b, c, f must all be contained in the same
square. Thus, node o must have a neighborhood that comes from a square with o as
its central node. Since the degree of o is 4, the neighborhood is a disjoint connected
component.
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Note that Figures 38, 39, 32 represent the same neighborhood except for edge labeling.
For the sake of convenience, we relabel the edges as in Figure 40. Note that the degree of
node 1 is at least 2. If node 1 is not connected to node 4, the only possible decomposition
is the one shown in Figure 41 (see Lemma 4). We apply the replacement as in Figure 23.
If nodes 1,4 are connected by an edge directed from 1 to 4, Lemma 5 shows that there
exists a decomposition in Figure 43. Thus, we can apply the replacement as in Figure
45. The following lemmas show that our choices of replacements for the neighborhood in
Figure 40 are consistent.

Lemma 4. In Figure 40, assume 4 is neither connected to 1 nor coincides with 1. Assume
further that nodes 1,2 and nodes 1,3 are disconnected. If the graph G is decomposable,
then the neighborhood in Figure 40 can be decomposed as in Figure 41.

+

Figure 41
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Proof. We have the following cases:

1. Suppose that a comes from a fork. Since the degree of o is 4, o must be the white
node in the fork. Thus, f is contained in the same fork. Then node 4 must have
degree 1, a contradiction.
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2. Suppose that a comes from a triangle, denoted by △. Then there are two cases:
Case 1: △ contains neither b nor c;
Case 2: △ contains either b or c

In case 1, consider node o in Figure 40. The other edge in △ that is incident to o

is annihilated by another edge, denoted by e. Hence b, c, f, e come from the same
block, which can only be a square block. However, none of the edges in a square can
be annihilated. Therefore, case 1 is impossible. In case 2, assume that △ contains b.
The third edge in △ is annihilated by another edge, denoted by λ (see Figure 42). λ

and d must come from the same block, which can only be a diamond or a triangle.
If it is a diamond, λ must be the mid-edge, so node 4 is black. However, edges f, e

need to be glued to 4, a contradiction, so both b, λ belong to a triangle. Since 4
is not connected to 1, the edge 14 in this triangle must be annihilated by another
edge h. So h, f, e come from the same block, which must be a diamond with h as
its mid-edge. This means that nodes o and 1 are connected by a boundary edge of
this diamond. Thus, the degree of o is at least 5, which contradicts the assumption
that deg(o) = 4.

3. Suppose that a comes from a diamond. Since the degree of o is 4, it must be a
white node in the diamond. Since the boundary edges can not be annihilated, and
judging by the directions of the edges, there are only two possible cases:

• a is the mid-edge and b, c are two boundary edges of the diamond.

• a, f are the boundary edges and one of b, c is the mid-edge.

In either case, 1,2 must be connected by a boundary edge and it can not be anni-
hilated, giving a contradiction.

4. Suppose that a comes from a square, then a, b, c, f must all be contained in the
same square. Thus, the neighborhood is the square. Moreover, nodes 1,2 must be
connected, a contradiction.

5. Suppose edge a comes from a spike. Then b, c, f come from the same block, which
forces the block to be a diamond, see Figure 41.

Lemma 5. In Figure 40, assume that 4 is connected to 1 by an edge directed from 1 to
4. If the graph is decomposable, nodes 1,2 and nodes 1,3 are disconnected. Then the
degree of 4 is 4 and the degree of 1 is 2. In this case, there is a decomposition as in
Figure 43. Also, it is possible to simplify the original graph G to G′ (Figure 45), and
G is decomposable if and only if G′ is decomposable. If the degree of node 3 is 2, there
is an alternative decomposition as in Figure 44. In this case, G is a disjoint connected
component.
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Proof. The argument differs from the previous one only in the place where a is assumed to
come from a triangle. Notice that 4 is connected to 1. If a, b comes from a triangular block
△, the edge 41 must come from another block. This block can be a triangle or a diamond.
In this case, e, f must both come from the other block, which can not be a diamond since
this will force the degree of node 4 to be 5. Recall that we already simplified all nodes of
a decomposable graph so that the degree of any node does not exceed 4. Thus, this block
containing e, f must be a triangle. (The corresponding decomposition is shown in Figure
43). In this case, if the degree of node 3 is at least 3, there is another edge incident to
it. The neighborhood can be replaced by the one in Figure 45. It is trivial that if G is
decomposable, so is G′. The converse statement follows from Lemma 1.

Remark 9. If node 4 coincides with node 1, we have a neighborhood as in Figure 46. In
this case, we need to examine nodes p, q.

• If both nodes have degree two, then there are two possible decompositions. Namely,
a diamond plus a spike or two triangles.

• If at least one of p, q has degree more than two, then it must come from gluing two
triangles.

If the node does not have either of the above two neighborhood, the graph is indecom-
posable.
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5 Distinguishing the Neighborhoods when n = 4

In the previous section, we have discussed all cases when a node with degree 4 is formed.
We also found necessary decompositions in all these cases. However, for a given graph
G, when n = 4, the question still remains when a node o of degree 4 has a neighborhood
contained in So, and which neighborhood it has. For example, in the situation when the
neighborhood may come from two triangles (see Figure 35), in order to choose proper
replacement, we must determine whether a, b or a, c are in the same triangle. In this
section, we focus on the case when deg(o) = 4 and n = 4. We want to use only the
information that can be directly derived from the graph:

• How is the node o connected to the boundary nodes? We want to check the direction
of the edges connecting node o and its boundary nodes.

• How are the boundary nodes connected to each other? We want to check if, and
how, some of the boundary nodes are connected to each other.

• If necessary, we want to check if there is any other node that is connected to the
boundary nodes, and how they are connected.

First of all, we examine the neighborhoods of o by checking how nodes 3,4 are con-
nected to node 1.

5.1 Node 1 is Connected to Nodes 2 and 3

Assume that nodes 1,4 are connected by an edge denoted by λ and nodes 1,3 are connected
by an edge denoted by γ. Let us consider directions of a, d, λ and a, c, γ. More exactly,
we check if λ is directed from node 1 to node 4 and if γ is directed from node 1 to 3 (see
Figure 47).
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cd

1 2

34

λ

γ

Figure 47

Suppose λ is directed from node 2 to node 1 and γ is directed from node 3 to 1, then
neither a, b, λ nor a, c, γ come from a triangle. Assume a comes from a spike, then b, c, d

come from the same block which must be a diamond. Hence, nodes 2,4 must be connected
and node 2 is a black node before λ is attached. In this case, node 1 must coincide with
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node 4. But the directions of λ, γ are prescribed by the decomposition. Hence, the graph
is indecomposable. If a comes from a diamond, the diamond must also contain b, c, λ, γ.
Again, their directions do not fit in a diamond block. To conclude, if a, b, λ or a, c, γ can
not form a triangular block, the graph is indecomposable.

Suppose a, b, λ have the same direction setup as a triangular block, and a, c, γ do not.
We claim that if the graph is decomposable, then a, b, λ must come from a triangular
block. Suppose the contrary. Notice that a, c, γ do not come from a triangular block.
Edge a comes either from a spike or from a diamond. In the first case, b, c, d come from
the same block which must be a diamond, and node 2 is connected only to nodes 4 and
o. Since node 2 is connected to 1, node 1 must coincide with node 4. But then the
direction of γ does not match the direction of the corresponding edge in a diamond. This
is a contradiction. If a comes from a diamond block, the block can contain b, c, λ, γ or
b, d, λ or c, d, γ. But none of these cases has the directions that match with a diamond
block. This again leads to a contradiction.

Suppose λ =
−→
12 and γ =

−→
13. If a comes from a spike, then λ, γ come from the same

block. This block can be a fork or a diamond. But the former is impossible since the
degree of node 2 is 2. If it is the latter, b, c must be boundary edges of this diamond.
Thus, the mid-edge must connect node 1 and o. This forces node 1 to coincide with
node 4, as shown in Figure 46. Suppose that a come from a diamond. There are two
possibilities. Either a, b, d come from the same diamond, or, a, b, c come from the same
diamond. If it is the former, node 1 is already black before γ is glued, which is impossible.
Suppose it is the latter. Notice that nodes 2,3 and 3,4 are disconnected unless node 1
coincide with node 4.

Lemma 6. Suppose there is an edge directed from node 1 to node 2 and an edge directed
from node 1 to node 3. Furthermore, assume that nodes 2,3 and node 3,4 are discon-
nected, and that both nodes 3 and 4 have degree 2. If the graph G is decomposable, then
there is a decomposition of G in which a, b, c, λ, γ come from the same diamond.

Proof. Suppose that the conclusion of the lemma is false.

1. If a comes from a spike, then b, c, d come from the same block which must be a
diamond. Thus, node 3 is a black node of the diamond and γ can not be attached,
a contradiction.

2. If a comes from a triangle, the block could contain either edges b, λ or edges c, γ.
In the former case, edges c, d come from the same triangle △. Since nodes 3,4
are disconnected the third edge of △ is annihilated by another edge, denoted by
τ . Hence τ, γ come from the same triangle, and node 1 is connected to 4. If G is
decomposable, the neighborhood is as in Figure 48. Moreover, the degree of node
1 is four and the degree of node 4 is two. Notice that the degree of node 2 is two,
hence the neighborhood is a disjoint connected component. In this case, it can also
be decomposed as a diamond containing a, b, c, λ, γ plus two spikes. In the latter
case, the triangle which contains a also contains c, γ. By the same argument as
above, if G is decomposable, the neighborhood of o is as in Figure 48. In this case,
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Figure 48

it is a disjoint connected component, and can be obtained by gluing two spikes 14, d
to a diamond that contains a, b, c, λ, γ.

3. Suppose a comes from a diamond. According to the assumption, a, b, c, λ, γ do not
come from the same diamond. Therefore, the diamond containing a must contain
b, d with b as its mid-edge. Then node 1 is black and γ can not be attached, so we
get a contradiction.

4. If a comes from a square, it must contain b, c, d, λ, γ. Moreover, nodes 2,4 and 3,4
must be connected, which again contradicts our assumption.

To conclude, under the given assumption, a, b, c, λ, γ come from the same diamond in one
of the decomposition of G.

Remark 10. If nodes 2,3 and nodes 3,4 are connected, and the degrees of nodes 2,3 are
both two, node 4 must coincide with node 1. In this case, the neighborhood is shown in
Figure 46.

Remark 11. In the above situation, if G is decomposable, we may have more than one
decomposition. However, according to the proof of the lemma, there are more than one
decomposition only when the neighborhood is a disjoint connected component. We list
all such disjoint connected components in Figure 78. If the whole graph coincides with
such a disjoint component from this list we know already all the possible decompositions
and we do not need to do simplifying replacements. On the other hand, if a decomposable
graph does not coincide with any of the graphs in Figure 78, then the decomposition is
unique.

Next, we examine the connectivity between node 4 and nodes 2,3.
Assume node 4 is connected to both nodes 3 and 2, see Figure 49. If nodes 3,4 are

connected by an edge directed from node 3 to node 4, relabel the indices of the nodes in
the following way: 4 → 1, 3 → 2, 2 → 3 and 1 → 4. Then apply the previous argument.
It is similar if nodes 2,4 are connected by an edge directed from node 2 to nodes 4. Hence,
without loss of generality, assume that edge 24 is directed from node 4 to 2 and edge 34
is directed from node 4 to 3. If none of the nodes in G (except for node o) is connected
to any of the nodes 1,2,3,4, then it is a disjoint connected component.

Suppose we can find a node x which does not coincide with o that is connected to
some of the nodes 1,2,3,4. We check if there is any node among 1,2,3,4 that is connected
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to x. Assume x is connected to only one of 1,2,3,4. Without loss of generality, assume
x is connected to 1 by an edge denoted by τ . (Notice that x may be connected to nodes
in the graph other than 1,2,3,4). In this case, if edges a, b come from the same triangle,
then edges c, d come from another triangle, denoted by △1. Moreover, τ, γ come from the
same block, which must be a triangle △2. Because x is only connected to one of the nodes
1,2,3,4, the third edge of △2 is annihilated by another edge, denoted by η. However,
node 3 is already black after gluing △2 to △1, a contradiction. Hence, edges a, c come
from the same triangle and b, d come from the same triangle. Therefore, edges τ and λ

come from the same block, which is impossible.
Assume that there is a node x which does not coincide o that is connected to only two

nodes of the nodes 1,2,3,4. Notice that x may be connected to nodes other than 1,2,3,4.
Up to a relabeling of indices, there are two possible situations: Either x is connected to
nodes 1,4 or to nodes 1,3.
First, suppose x is connected to nodes 1,4 by edges τ, η respectively. If a comes from
a spike, then τ, λ, γ come from the same block which is a diamond. Judging by the
directions of λ, γ, τ must be the mid-edge. Therefore, node x must coincide with node o.
This contradicts our assumption.
Suppose a comes from a diamond. Since the degrees of node 1 and o are at least 4, a must
be the mid-edge. Therefore, the diamond must contain λ, γ, b, d. Moreover, the degrees
of node 2,3 must be two, a contradiction.
We can also rule out the possibility that a comes from a square since both its endpoints
have degree 4. Thus, a must come from a triangle. Otherwise, G is indecomposable.
Suppose a, τ come from the same triangle, then the third edge of this block is annihilated
by another edge, denoted by δ. Hence δ, η, b, c, d come from the same block, which is
impossible. If a, b come from the same triangle, then c, d come from another triangle,
denoted by △1. Thus, τ, γ come from the same block, which must be a triangle, denoted
by △2. Notice that its third edge is annihilated since x is connected to only two of the
nodes 1,2,3,4. But this is impossible since node 3 is already black after gluing △1 to △2.
The similar argument shows that a, c can not come from the same triangle. Thus, the
graph is indecomposable when x is connected only to nodes 1,4.
Assume that x is connected to nodes 1,3 by edges τ, η respectively. If a, c come from
the same triangle, then b, d come from another triangle, denoted by △1. Thus, τ, λ come
from another block. This block can not be a diamond since λ must then be the mid-edge
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and the boundary edge x2 is annihilated, which is impossible. Hence this block must be
a triangle, denoted by △2. Since x is connected only to two of nodes 1, 2, 3, 4, the third
edge of △2 is annihilated. However, node 2 is already black after gluing △1 to △2. This
is a contradiction. Therefore if G is decomposable, a, b must come from the same triangle
and c, d from another triangle. Apply the corresponding replacement as in Figure 36.

Assume x is connected to at least three of the nodes 1,2,3,4. Up to an index relabeling,
there are two cases: either x is connected to nodes 1,2,3 or x is connected to nodes 1,3,4.
Suppose x is connected to nodes 1,3,4 by τ, ρ, η respectively. Assume that a, b come from
the same triangle, then c, d come from one triangle too. Thus, η, 24 come from the same
block, which must be a triangle, and so node x and node 2 must be connected according
to previous argument. The argument is similar when a and c come from the same triangle.
In both cases, node o is contained in a neighborhood in So which is a disjoint connected
component, see Figure 50. Otherwise, G is indecomposable.

Assume x is connected to nodes 1,2,3 by τ, ξ, ρ respectively. Assume that a, b come
from the same triangle, then c, d come from another triangle, denoted by △1. Therefore,
τ, γ, ρ must come from the same triangular block, denoted by △2. Notice that node x is
black after gluing △1 to △2, node x and node 4 must be connected by the third edge
of △2. Similarly, assume that a, c come from the same triangle, we will get the same
neighborhood (see Figure 50). In this case, the neighborhood is a disjoint connected
component, Otherwise, the graph is indecomposable.

Assume next that node 4 is connected only to one of nodes 2,3.
Suppose node 4 is connected to node 3. In this case, if edge 34 is directed towards node
4, then edges c, d,

−→
34 can not form a triangular block. This means edges b, d and edges a, c

must come from two triangles, otherwise the graph is indecomposable. By assumption,
nodes 2,4 are not connected, hence the edge with nodes 2,4 as its endpoints must be
annihilated by another edge, denoted by η. Hence, η, λ come from the same block which
must be a triangle. So node 4 is black before attaching edge

−→
34. This is a contradiction.

In this case, the graph is indecomposable.
If edge 34 is directed towards node 3, there are two possibilities: edges c, d,

−→
43 form a

triangular block or edges b, d come from a triangle △.
Suppose it is the latter case, the edge of △ that connects nodes 2,4 is annihilated by
another edge τ . This forces edges τ,

−→
43, λ to form a block, which is impossible. So edges
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c, d, 34 form a triangle. Otherwise, the graph is indecomposable. Hence, edges c, d,
−→
43

form a triangular block. We apply the same replacement as in Figure 36.
Finally, assume that nodes 3,4 and nodes 2,4 are disconnected. Then one edge of the

triangular block that contains edge d is annihilated by another edge, denoted by τ . If
a, b come from the same triangle, then τ connects nodes 3,4. Therefore, γ, τ must form a
triangle, which means that nodes 1,4 must be connected and nodes 2,3 are disconnected.
Similarly, if b, d come from a triangle, nodes 2,4 must be connected by τ , Thus, nodes 2,3
must be disconnected and nodes 1,4 are connected. (Figure 51). Notice that in picture
A, node 2 may have degree larger than two, and in picture B, node 3 may have degree
larger than 2. Thus, it suffices to examine the degrees of nodes 2,3 to determine whether
edges a, b or edges a, c come from a triangular block, and then apply the corresponding
replacement. To be more precise, if degree of node 2 is at least 3, node o is contained in
a neighborhood in So as shown in picture A; if the degree of node 3 is at least 3, node
o is contained in a neighborhood in So as shown in picture B; if both nodes 2,3 have
degree 2, either decomposition is possible, and the neighborhood is a disjoint connected
component.

5.2 Node 1 is Connected to Node 2 but Disconnected from

Node 3

Assume that nodes 1,2 are connected by an edge λ, but nodes 1,3 are not connected. If λ

is directed from node 2 to node 1, then a, b, λ do not form a triangular block. Moreover, a

does not come from a diamond. If a comes from a spike, b, c, d must come from a diamond
and node 4 is connected only to nodes 2,3. By assumption, nodes 1,2 are connected, node
1 must coincide with node 4. This means nodes 1,3 are connected, which contradicts our
assumption. Therefore, a must come from a triangle that does not contain b, λ, hence
the block must contain c. The third edge in that triangle is annihilated by another edge,
denoted by τ . Moreover, τ is directed from node 3 to node 1. Thus, τ, λ come from the
same block. However, there is no such block with such directions, so in this case the graph
is indecomposable.
Assume next that λ is directed from node 1 to node 2.
If a comes from a spike, b, c, d come from the same block, which must be a diamond. Since
nodes 1,2 are connected, node 1 must coincide with nodes 4. Therefore nodes 1,3 are
connected, a contradiction.
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Suppose a comes from a diamond. Note that the degree of node o is four, it must be one
endpoint of the mid-edge. Taking into consideration the directions of a, b, c, d, there are
three cases.

• a is the mid-edge of the diamond. In this case, node 2 must be contained in the
same diamond. Since node 2 is not an endpoint of the mid-edge, it must have degree
two, a contradiction.

• b is the mid-edge of the diamond. In this case, d must be contained in the diamond.
Therefore, nodes 3,4 are disconnected. Moreover, the degrees of nodes 1 and 4 are
both two.

• c is the mid-edge of the diamond. In this case d must be contained in the diamond,
and nodes 1,3 must be connected, a contradiction.

Lemma 7. Assume that nodes 1,2 are connected by edge λ directed from node 1 to node
2, nodes 1,3 are disconnected, nodes 2,4 are connected by an edge directed from node 4
to 2, and that the degrees of nodes 1,4 are two.

(1) If G is decomposable and nodes 2,3 are disconnected, then a comes from a diamond
containing a, b, d, λ and c comes from a spike.

(2) Assume nodes 2,3 are connected by an edge directed from node 2 to 3:

(a) If the degree of node 3 is two, then o is contained in a neighborhood in So, and
this neighborhood is a disjoint connected component.

(b) If the degree of node 3 is at least three, then the graph is not decomposable.

Proof. (1): Suppose nodes 2,3 are disconnected and the statement is false.
It is easy to rule out the possibility that a comes from a square or a fork.
If a comes from a spike, b, c, d comes from a diamond and node 2 is black. Thus, λ can
not be attached unless node 1 coincides with node 4. Thus the degree of node 1 is four.
This contradicts the assumption that degree of node 1 is 2. Suppose edge a comes from
a diamond. Since the statement is false, the diamond must contain a, b, c. Hence node 1
must be connected to node 3, which is a contradiction to our assumption.

If a, b come from a triangle, c, d also come from a triangle denoted by △. Thus, the
third edge of △ is annihilated by another edge, denoted by η. Hence η, 24 come from the
same block, which must be a triangle. Thus, node 2,3 must be connected, a contradiction.
If a, c come from a triangle, then the third edge of this triangle is annihilated by another
edge, again denoted by η. Hence η, λ must come from the same block, which must be a
triangle. Hence nodes 2,3 must be connected, a contradiction.

(2): Assume nodes 2,3 are connected by an edge directed from node 2 to 3. It suffices
to assume that a comes from a triangle or a diamond. Suppose a comes from a triangle,
by a previous argument, all nodes in this neighborhood must be black, which proves (a).
If a comes from a diamond, the degree of node 3 is three. The only possibility to obtain
a decomposition is to glue a triangle or diamond on nodes 2,3. In either case, the degree
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of node 2 is larger than 4. This contradicts our assumption in the section that the degree
of any node of G is at most 4. Hence the graph is indecomposable, and it proves (b).

Suppose node 1 or node 4 has degree at least three, then a does not come from a diamond.
Moreover, we can rule out the possibility that a comes from a square, since this will force
node 1 to be connected to node 3 with an edge

−→
13. Hence a must come from a triangle.

There are two cases: (1). edges a, b are in the same triangle; (2). edges a, c are in the
same triangle. In the first case, edges c, d are in the same triangle. In this case, apply the
same replacement as in Figure 36. In the second case, edges b, d are in the same triangle.
Denoted the triangle containing edges a, b by △. The edge in △ that connects nodes 1,3
is annihilated by another edge, denoted by λ. Thus, γ, λ come from the same block, and
it must be a triangle. This means that nodes 2,3 are connected. Moreover, in this case,
nodes 2,4 must be connected by an edge directed from node 4 to 2 and nodes 1,2,3 are
black. Notice that nothing has been glued to node 4 yet, this fact is used to distinguish
the second case.

Lemma 8. Suppose that graph G is decomposable and node 1 is connected to node 2 by
an oriented edge

−→
12. Assume further that nodes 1,3 are disconnected:

(a) Suppose nodes 2,4 and nodes 2,3 are connected. If the degree of node 4 is at least
3, then a, c come from one triangle and b, d come from another triangle. If degree
of node 1 is at least 3, then a, b come from the same triangle and c, d come from
the same triangle (Figure 52). If the degrees of both nodes 1 and 4 are 2, then o

is contained in a neighborhood in So, and this neighborhood is a disjoint connected
component.

(b) If nodes 2,4 or 2,3 are disconnected, then a, b come from one triangle, and c, d

come from another triangle.

Proof. According to the previous argument, it suffices to prove (a). Suppose nodes 2,4
and nodes 2,3 are connected. If a, b come from one triangle, then c, d come from another
triangle. Moreover, edges 24, 23 must come from the same block, which must be a triangle.
The third edge of this triangle annihilates 34. Therefore, node 4 have degree 2. so, if the
degree of node 4 is at least 3, a, c must come from one triangle. Otherwise, the graph is
indecomposable. The rest of part (a) follows from the previous argument.
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5.3 Node 1 is Disconnected from Nodes 2,3

Assume that neither nodes 1,2 nor nodes 1,3 are connected. Without loss of generality,
we can assume that neither nodes 3,4 nor nodes 2,4 are connected. Otherwise, we can
relabel the indices of boundary nodes and apply the previous argument.

Assume that a, b come from the same triangle. Then the third edge of it is annihilated
by another edge, denoted by λ. This edge λ can be a part of a spike, a triangle, or the
mid-edge of a diamond block. If it comes from a triangle or a diamond, nodes 1, 2 must
both be connected to another node x. Conversely, it is possible to determine whether a, b

or a, c come from the same triangle by considering nodes connecting some of the nodes
1,2,3,4.
Suppose none of the nodes 1,2,3,4 is connected to any other node except for o, then the
neighborhood is a disjoint connected component.
Assume that nodes 1,4 or 2,3 are both connected to the same node x. We also assume
that vertex x is distinct from nodes 1,2,3,4, and o. Without loss of generality, assume
nodes 1,4 are connected to x. Let α := 1x and β := 4x. If a, d come from the same block,
it must be a diamond. Hence b, c come from another diamond. Since the degree of o is
4, the mid-edges of these two diamonds annihilate each other. Then the neighborhood is
a disjoint connected component, see Figure 37. If we rule out this case, a, d must come
from two blocks. By the previous argument, neither a nor d comes from the a diamond.
Thus, they must come from triangular blocks. Moreover, the triangle that contains a

must contain c or b. Without loss of generality, assume c is contained in such triangle
△. Then the third side of △ is annihilated by another edge, denoted by τ . Similarly, b, d

come from another triangle △1. The third edge of △1 is annihilated by an edge denoted
by η. Then α, τ come from the same block, which must be a triangle. If node 3 and
x are not connected, the third edge of the triangle containing α, τ must be annihilated.
This is impossible since node 3 is already black. Therefore, in this case, the graph is
indecomposable. If nodes 3 and x are connected by an edge γ, then α, τ, γ form a triangle
if their directions match a triangle, otherwise, the graph is indecomposable. Notice that
β, η must come from the same block. Thus, it must be a triangle if their directions match,
otherwise, the graph is indecomposable. In this case, nodes x,2 must be connected, and
the neighborhood is a disjoint connected component, see Figure 53. In this case, there is
an alternative decomposition, see Figure 54.

Assume next that x is connected to nodes {1,2} (resp. {1,3},{3,4},{2,4}), we claim
that a, b (resp. a, c, c, d, b, d) come from one triangle, therefore c, d (resp. b, d, a, b, a, c)
must come from another triangle.

Assume that nodes 1,2 are connected to node x and that a, b do not come from the
same triangle in any decomposition of G. Denote α := 1x, β = 2x. Notice that from
the previous argument, a does not come from a spike, a fork, a diamond or a square. So
it must be contained in a triangular block △. If △ contains α, then the third edge is
annihilated by another edge, denoted by τ . Hence, τ, b, c, d come from the same block
which must be a square, also nodes o, x must be colored white in that block. This is
impossible, so △ does not contain α, and therefore must contain c. Then the third edge

the electronic journal of combinatorics 18 (2011), #P91 33



b

b b

b b

b

1 2

34

x o

α

β

Figure 53

1

4

1

4

2

3

2

3

x

x

o

o

Figure 54

must also be annihilated by another edge, again denoted by τ . In this case, τ, α must
come from the same block, which must be a triangle △1. If nodes 3 and x are connected,
we will get a neighborhood similar to the one in Figure 53. As we already know, there is
an alternative decomposition in which a, b come from the same triangle. If nodes 3 and
x are not connected, then the third edge of △1 is annihilated by another edge. However,
node 3 is already black after gluing △1. This means the third edge of △1 can not be
annihilated. This is a contradiction. Therefore, a, b come from the same triangle in a
decomposition of G. Otherwise, G is not decomposable.

Remark 12. If x is connected to nodes 1,2 and the graph is decomposable, either G has
a unique decomposition in which a, b comes from a triangular block and c, d comes from
another, or G is the graph as in Figure 53.

6 Simplification on Nodes of Degree Three

Assume the neighborhoods of nodes of degree at least 4 are all simplified, and every node
in the graph has degree at most 3. We focus on the nodes of degree 3.

6.1 All edges have the same direction.

Without loss of generality, assume that the edges are all directed outwards, (see Figure
55) Suppose one of them (denoted by a) comes from a triangle. Since deg(o)= 3, and
neither of the remaining two edges comes from the same triangle, the incoming edge
incident to o in the same triangle must be annihilated. Denote this edge as e. Then e

must be annihilated by an outward edge from another block. This block must contain the
remaining outward edges b and c. But no such block exists, a contradiction. Hence edge
a is not contained in a triangular block. By symmetry, none of the three edges comes
from a triangle.
If one of them comes from a fork, one of the remaining two edges must also belong to the
same fork. Thus, the third edge must come from a single spike. (Figure 56) Otherwise,
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the graph is indecomposable. Replace the neighborhood with Figure 57. By Lemma 1,
this replacement is consistent.
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Remark 13. In order to apply the replacement, we need to determine which two edges
come from a fork. This can be done by checking the degrees of boundary nodes. If one
of the boundary nodes has degree more than 1, the corresponding edge must come from
a spike and the remaining two edges form a fork. If all boundary nodes have degree 1,
we have a disjoint connected component and the decomposition is non-unique. If at least
two of the boundary nodes have degrees more than 1, the graph is indecomposable.

If one of the edges, denoted by a, comes from a diamond, denoted by ♦, then one of the
remaining nodes, denoted by b, must come from the same diamond. Thus the third edge
c is not contained in the same block. Since the degree of o is 3, the mid-edge in ♦ must be
annihilated by another edge, e say, directed away from o. Thus, c, e come from the same
block. Since the degree of o is 3, the block containing c, e must be a triangle. However,
the directions of these two edges do not match a triangle. This is a contradiction.

To conclude, if all three edges incident to a node are all directed inwards or outwards
and the graph is decomposable, the neighborhood must be obtained from gluing a fork
and a spike.

6.2 Two outward edges and one inward edge

Assume edge a is directed inwards with nodes 1 and o as endpoints, see Figure 58. If a

comes from a spike, the remaining two edges must come from a fork. If a comes from
a diamond ♦, the block must contain at least b or c since only the mid-edge can be
annihilated in a diamond. Assume b is contained in this block. The directions of a, b force
c to be contained in ♦, as shown in Figure 59. Since all nodes in G has degree at most 3,
this diamond must be a disjoint connected component. Otherwise, G is indecomposable.

Assume a comes from a triangle △, there are two cases:
Case 1: △ contains neither of b, c. Then b, c must come from a diamond or a fork. In
the latter, the remaining edge of △ that is incident to o must be annihilated. This forces
o to be a black node even before b, c are attached. This is a contradiction, so b, c come
from a diamond ♦. Notice that the mid-edge in ♦ should be annihilated by an edge of
△, as shown in Figure 60. Simplify the neighborhood by removing the diamond block
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and leaving the triangle △ containing a (see Figure 61).
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Case 2: △ contains one of b, c. Without loss of generality, assume it is b. Then c

must come from a spike.
Let us take a deeper look at Case 2. Assume that the third edge of △ is d. Then there

are two possibilities.

(a.) Edge d is annihilated in the graph.

(b.) Edge d is not annihilated in the graph (Figure 62).

Next, start with case a. There are three ways to annihilate d.
Case (a1): Edge d is annihilated by a single spike, see Figure 63. Then replace this
neighborhood by the one in Figure 64. By Lemma 1, this replacement is consistent.
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Case (a2): Edge d is annihilated by one edge of a triangle, see Figure 65. If p is
connected to o via edge c, then this graph forms a disjoint connected component (Figure
66). Otherwise, G is indecomposable. If c does not connect o with p, and there is nothing
else connected to p (deg(p) = 2). Then we replace the neighborhood in Figure 65 with
the one in Figure 64. If c does not connect p, and deg(p) = 3, as shown in Figure 67,
there are two cases:

bc
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Figure 66

• In Figure 67, suppose node 3 coincides with node x, edge px is directed from x

to p and deg(1) = 2, the neighborhood in Figure 67 coincides with Figure 60. In
this case, if graph G is decomposable, the neighborhood is a disjoint connected
component.

• Suppose node 3 does not coincide with node x. Then the neighborhood can replaced
by Figure 68. It is similar if edge px is directed from p to x. This replacement is
consistent by the previous lemma.
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Case (a3): Assume d is annihilated by the mid-edge of a diamond, see Figure 69.
Replace the neighborhood by the one in Figure 64 as well.

Next, let us discuss case b. If d is not annihilated, there are three subcases:
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(b1): Both nodes 1,2 have degree two. By Lemma 1, node o must be contained in a
neighborhood in So that come from a spike and a triangle.

(b2): One of the nodes 1,2 has degree two and the other one has degree three. Assume
the degree of node 2 is two, and the degree of node 1 is three. In this case, o is
contained in a neighborhood as shown in Figure 70.
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(b3): Both nodes 1,2 have degree three. In this case, we count the number of nodes that
are connected to nodes o and 1,2, denoted by n.

• Suppose n = 3, the only possible decomposable situation is given in Figure 71.
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• Suppose n = 2. One of the exterior nodes is connected to two of the nodes
o,1,2. Denote this node by x. If x is connected to nodes 1,2 (resp. o,1 or o,
2), then the other exterior node is connected to nodes o (resp. node 2 or node
1). In this case, edges x1, x2 (resp. xo, x1 or xo, x2 ) come from two spikes
and the degree of x must be two (see Figure 72).
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• Suppose n = 1. Notice that we assume that the degree of nodes o,1,2 are all
three. So there are two cases, as shown in Figure 73. Note that Figure 73A is
indecomposable, so the only decomposable neighborhood is Figure 73B.
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To sum up:
1. Every node in G has degree at most 3.
2. Consider all nodes of degree 3. If all of them fall into the decomposable categories
(Figure 74), then either the neighborhood forms a disjoint connected component that
can be easily decomposed, or we can apply the corresponding replacement. If graph G

contains any neighborhood (up to a reversion of edge directions) that is unlisted in Figure
74, the graph is not decomposable.

Remark 14. We can reverse the directions of all edges to get another 14 neighborhoods
in decomposable graph.

Remark 15. Note that the degree of node o is not increased in any replacement.

In some of the cases in Figure 74, the neighborhood of the target node o contains some
other nodes of degree 3. The algorithm covers the analysis of the neighborhood of these
nodes in the following manner:

• In picture 2 in Figure 74, node x has degree 3. Node x is contained in a neigh-
borhood in Sx that is isomorphic to the one in picture 2 by a complete reversion
of edge directions (node x mapped to node o). Node p in picture 4 is contained in
neighborhood in Sp isomorphic to the neighborhood of o in the same picture by a
reversion of edge directions. Similarly, a neighborhood of node p in picture 6 (resp.
node y in 9 and 10) is also isomorphic to a neighborhood of node o in picture 6
(resp, node o in picture 9 and 10).

• Node x in picture 5 of Figure 74 is contained in a neighborhood isomorphic to the
one in picture 4. To be more specific, the neighborhoods of x in picture 5 is the
neighborhood of o in picture 4.

• Picture 9 is a part of picture 10. Note the replacement for picture 9 is the same
as the replacement for picture 10. Therefore, whether node o in picture 9 or 10 is
examined first does not affect the result of the algorithm.
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Figure 74: All decomposable cases for degree 3
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6.3 Determine the Decomposition

In the previous section, we have found all possible neighborhoods in So for node o of
degree 3 in a decomposable graph. In this section, we want to determine if a node o is
contained in a neighborhood in So, and which neighborhood it is. This is done by checking
two things:

• The number of nodes (other than nodes 1,2,3 and o) that are connected to some of
the nodes 1,2,3. Denote this the number by n.

• The direction of edges connecting o, its boundary nodes and other nodes that are
connected to nodes 1,2,3

If all three edges incident to o have the same direction, the only possible neighborhood in
a decomposable graph comes from gluing a fork to a spike. Moreover, n is 0 or 1. If n = 1,
there is only one node that differs from o and is connected to nodes 1,2,3. Denote it by
x. If x is connected to node 1 (resp. node 2 or 3), then edge o1 (resp. o2 or o3)comes
from a spike and edges o2, o3 (resp. o1, o3 or o1, o2) come from a fork.
We focus on the case when the node o has one incoming and two outgoing edges. Note
that the remaining case is when there is one edge going away from node o and two edges
going towards node o. The latter case can be analyzed by reversing direction of all edges
and using the following argument.

Assume node 1 is incident to the inward edge. Denote edges o1, o2, o3 by a, b, c

respectively. By Figure 74, n ≤ 3.

Suppose n = 0. By the previous discussion, if the graph is decomposable, we can only
have neighborhoods as in Figure 75. After reversing all directions, we can get another
four possible cases.
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Next, suppose n = 1. Denote this node by x. Assume x is connected to all nodes
1,2,3. There are two cases:

• If deg(1) = 3, edges b, c must come from the same diamond and edge a comes from
a triangle. See Figure 76 for directions of edges. Note that it is exactly picture 4 in
Figure 74.

• If deg(1) = 2, the neighborhood is a disjoint connected component, there are two
possible decomposition: (1). a comes from a triangular block and b, c come from a
diamond; (2). a, b come from one triangular block, and edges 2p and 1p come from
another triangular block, and edges c and 3p come from two spikes.
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Suppose x is connected to exactly two of the nodes 1,2,3. There are three cases:

1. Suppose x is connected to nodes 1,2. x can only be contained in the neighborhoods
as shown in picture 4 or 5 in Figure 74. Edges a, b comes from the same triangle.
Similarly, if x is connected to nodes 1,3, edges a, c are in the same triangle.

2. Suppose x is connected to nodes 2,3. None of the pictures in Figure 74 contains
such a neighborhood. Hence the graph is indecomposable.

Assume x is connected to exactly one of the nodes 1,2,3. First, suppose x is connected
to node 1 which is an endpoint of an inward edge. Note that nodes 2 and 3 can not
be connected to node 1. Use the argument in the previous section. If the graph is
decomposable, we conclude the following:

• If nodes 1,2 are connected, edges a, b come from the same triangle and edge c comes
from a spike.

• If nodes 1,3 are connected, edges a, c come from the same triangle and edge b comes
from a spike.

• If nodes 2,3 are both disconnected from node 1, edges b, c come from the same fork
and edge a comes from a spike.

Suppose x is connected to node 2. If the graph is decomposable and node 1,2 are
connected, then a, b come from the same triangle. If nodes 1,2 are disconnected, then a, c

come from the same triangle. The criterion is similar if x is connected only to node 3.
Next, suppose n = 2, and denote these two corresponding nodes by x, y.

First, check if they are both connected to node 1. If it is this case, neither node 2 or 3 can
be connected to node 1. Moreover, according to the argument in the previous section, we
have two cases: (1). a comes from a spike and b, c come from a fork; (2). a comes from a
triangle. In the second case, x, y must both be connected to nodes 2 or 3 by edges with
compatible directions, and edges a, b (edges a, c) are in the same triangle, see Figure 74,
picture 5.
If x, y are not both connected to node 1, check if they are both connected to node 2.
If so, edges a, c can only be obtained from a triangle and b comes from a spike. Since
n = 2, there is no node other than o that is connected to node 1 or 3. Therefore, the
neighborhood is as in Figure 77. Note that node o is contained in a neighborhood listed
in picture 14 Figure 74. The argument is similar if x, y are both connected to node 3.
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Next suppose x, y are not connected to the same node. If the graph is decomposable,
there are the following cases:

• x is only connected to node 1 and y only to node 2. In this case, nodes 1,2 must be
connected and a, b come from the same triangle. It’s similar if x is only connected
to node 1 and y only to node 3.

• x is only connected to nodes 1,2 and y only to node 3. In this case, a, b come from
the same triangle. If nodes 1,2 are connected, node o is contained in a neighborhood
as shown in Figure 74, picture 13. If nodes 1,2 are disconnected, the neighborhood
is as shown in picture 8 (node p = x).

• x, y are connected to nodes 2,3 respectively. In addition, if nodes 1,2 are connected,
then edges a, b come from the same triangle. The neighborhood is as shown in picture
11. Similarly, if nodes 1,3 are connected, edges a, c come from the same triangle.
Notice that in this case, nodes 2 and 3 can not be connected to node 1 at the same
time, neither can they both be disconnected at the same time.

Last of all, suppose n = 3. Denote the three corresponding nodes by x, y, z. According
to the argument in the previous section, in this case, the graph G is decomposable only
if node 1 is connected to node 2 or 3, forming a triangle with the corresponding edges.
See Figure 71.

Theorem 1. Assume G is a connected quiver such that every node in G has degree less
than or equal to three. If each of the nodes of degree three has a neighborhood as in one
of the pictures listed in Figure 74 (up to a change of orientations of all edges), then G is
decomposable. Otherwise, G is indecomposable.

Proof. If G is either the graph in pictures 2 or the one in 6 in Figure 74, the result is
evident. Suppose G is neither the graph in picture 2 nor the one in picture 6. Apply
replacements to corresponding neighborhoods in Figure 74. Denote the new graph by G′.
Notice that according to Lemma 1, if G′ is decomposable, so is G. The replacements for
all neighborhoods in Figure 74 contain triangular blocks. Each node of degree three in
G′ has a neighborhood in the form of Figure 62 and is obtained from gluing a triangular
block to a spike. Remove all the triangles and the resulting graph is a disconnected union
of paths. Note that since all forks have been replaced in the previous steps, all the paths
are obtained by gluing of finitely many spikes in a unique way. Since the new graph has
a unique decomposition, so does the original graph.
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As an application of the algorithm we can classify all decomposable graphs with non-
unique decompositions:

Theorem 2. Any connected decomposable graph G with non-unique decompositions is
one of the graphs from Figure 78, up to the change of orientations of all edges in G.

b

b b

b b

Figure 78: Neighborhoods that Have Non-unique Decomposition

Corollary 2. Suppose G is a finite quiver with non-unique decompositions. If G does not
contain isolated nodes, then it only has finitely many possible decompositions.

Sketch of Proof: Recall that a disconnected decomposable graph G̃ can not be obtained
from gluing a block to a connected decomposable graph unless G̃ contains isolated nodes.
If a finite graph G has infinitely many different decompositions, it would mean that there
are infinitely many decompositions such that the edges in a large portion (not just one
edge) are annihilated and remaining part coincides with graph G. This means that G

contains isolated nodes in the portion where all edges are annihilated. �

Lemma 9. The decomposition algorithm is linear in the number of nodes in the graph.
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Proof. At each stage of simplification, the number of replacements that we need to apply
is no more than the number of nodes in the graph. Moreover, if the replacement is applied
to a neighborhood of a node, the degree of the considered node becomes three. Thus a
replacement reduces the degree of the considered node to three if it is larger than three
in the original graph. Moreover, any node of degree three in the replacement is obtained
by gluing a triangle to a spike, so we do not apply replacement again in the stage when
we consider nodes of degree three. This means replacement is applied at most once to the
same node. To conclude, the number of replacements is less than the number of nodes in
the graph.

In [2], Fomin, Shapiro and Thurston define an operation on quivers called mutation.
A quiver is said to have finite mutation type if its mutation class is finite. It was noticed
by P.Tumarkin that our algorithm provides a fast way to determine when a quiver of size
larger than 10 has finite mutation type (see [1] for details).

Theorem 3. There exists an algorithm which is linear in number of nodes to check if any
quiver has finite mutation type.

Proof. By the proposition in Section 2, we can assume that the given quiver G is con-
nected. In [1], the author proved that a quiver with finite mutation type is either decom-
posable or one of the 11 exceptional types whose size does not exceed 10 (see Theorem 6.1
in [1]). We apply our algorithm to check if G is decomposable. By the previous lemma,
the number of operations is linear in the number of nodes in G. If the algorithm shows
that G is indecomposable, and the size of G does not exceed 10, we further check if G

coincides with one of the 11 exceptional types in Theorem 6.1 [1]. The last step takes
only finite number of operations, this finishes the algorithm.
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