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Abstract

We give a short proof for J. Noonan’s result on the number of permutations

containing pattern 321 exactly once.

In this paper, we give a short proof for the result of Noonan [3] that the number
of permutations of length n containing exactly one occurence of pattern 321 is 3

n

(

2n

n−3

)

.
(To be precise, Noonan considered permutations avoiding patterns 123, but taking the
reversal of those, i.e. reading them right-to-left, we get an additional nice property.) This
fact was later re-proved by Noonan and Zeilberger [4] using generating functions.

A pattern is an equivalence class of sequences under order isomorphism. Two sequences
τ1 and τ2 over totally ordered alphabets are order-isomorphic if, for any pair of positions
i and j, we have τ1(i)�τ1(j) if and only if τ2(i)�τ2(j), where � is any one of <, =, >. We
say that a sequence σ contains a pattern τ if σ has a subsequence order-isomorphic to τ ,
otherwise we say that σ avoids τ .

Example 1 The sequence σ = 3614725 contains pattern τ = 321 since σ has a subse-
quence 642 order-isomorphic to 321.

Notation 2 The set of permutations in S
n

(i.e. of length n) avoiding pattern τ is denoted
S

n
(τ). The set of permutations in S

n
containing pattern τ exactly r times is denoted

S
n
(τ ; r).

In fact, in Example 1, 642 is the only occurrence of 321 in σ. In 1995, Noonan [3]
enumerated permutations of length n containing exactly one occurrence of pattern 321.

Theorem 3 (Noonan) |S
n
(321; 1)| =

3

n

(

2n

n − 3

)

.

the electronic journal of combinatorics 18(2) (2011), #P21 1



Figure 1: An injection f : S
n
(321; 1) → S

n+2(321). The “3” and “1” in the unique
occurrence of 321 are each replaced by two new points (in blue).

The proofs in [3, 4] enumerated a more general set of objects with additional restric-
tions and an auxiliary parameter. However, it was not apparent from those proofs why
the above result was so simple and compact. We will use the block decomposition method
of Mansour and Vainshtein [2] to make this much more apparent.

Proof Let π ∈ S
n

contain exactly one occurrence of pattern 321. Let (c, b, a), c > b > a,
be the unique occurrence of 321 in π at positions (j, k, ℓ), j < k < ℓ. Note that for
i < k, i 6= j, we must have π(i) < b, or else π will contain more than one occurrence of
321. Likewise, for i > k, i 6= ℓ, we must have π(i) > b. Thus it is easy to see (for example,
by exchanging values c and a at positions j and ℓ) that we must have k = b, so that b is
a fixed point of π. (This is the additional nice property we obtain by considering pattern
321 instead of 123.) Moreover, this implies that j < k = b < c and ℓ > k = b > a.

Define a map f : S
n
(321; 1) → S

n+2(321) as follows. Let π = π1cπ2bπ3aπ4. We will
replace each of the points (j, c) and (ℓ, a) on the permutation diagram of π with two points
as follows.

Let 0 < ǫ < 1 and let π̂ be a permutation of the set {1, 2, . . . , b − 1, b − ǫ, b, b + ǫ, b +
1, b + 2, . . . , n} obtained by replacing the point (j, c) with (j, b− ǫ) and (b + ǫ, c) and the
point (ℓ, a) with (b− ǫ, a) and (ℓ, b+ ǫ) on the permutation diagram of π. In other words,
let

π̂ = π1(b − ǫ)π2abcπ3(b + ǫ)π4

in one-line notation. Then π′ = π1(b − ǫ)π2a is a permutation of {1, 2, . . . , b − 1, b − ǫ},
π′′ = cπ3(b+ ǫ)π4 is a permutation of {b+ ǫ, b+1, b+2, . . . , n}, π̂ = π′bπ′′, and π′ < b < π
(i.e. every entry in π′ is less than b and every entry in π′′ is greater than b). Finally,
define f(π) to be the unique permutation in S

n+2 order-isomorphic to π̂.
For instance, in Example 1, we obtain f(3614725) = 341258967.
It is easy to see now that both π′ and π′′ avoid 321, so f(π) avoids 321 as well, i.e.

f(π) ∈ S
n+2(321). Moreover, f is clearly an injection. Furthermore, the only restrictions

on π′ (resp. π′′) other than 321-avoidance are that it is nonempty and its greatest (resp.
least) element is distinct from its rightmost (resp. leftmost) element. Thus, f is a bijection
from S

n
(321) onto its image, i.e. the subset of S

n+2(321) that consists of permutations
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(ρ′, b+1, ρ′′) such that 1 ≤ b ≤ n, ρ′ is a 321-avoiding permutation of {1, . . . , b} that does
not end on b, and ρ′′ is a 321-avoiding permutation of {b + 2, . . . , n + 2} that does not
start with b + 2.

It is known that |S
n
(321)| = C

n
, the nth Catalan number (see [1]). Let C = C(x) =

∑

∞

n=0 C
n
xn, then C = 1+xC2, so that C = (1−

√
1 − 4x)/(2x). Therefore, the generating

function for the number of nonempty 321-avoiding permutations whose greatest value is
not their rightmost value (or whose least value is not their leftmost value) is

C − 1 − xC = xC2 − xC = xC(C − 1) = xC(xC2) = x2C3.

We leave it as an exercise to the reader to “bijectify” the above identity (e.g. map π′ or π′′

onto a disjoint union of 2 special points and 3 objects enumerated by Catalan numbers).
Therefore, the generating function for the number of permutations containing pattern

321 exactly once is
x−2 · (x2C3)2 · x = x3C6,

and hence the number of such permutations is 3
n

(

2n

n−3

)

, as desired. The two factors of
x2C3 correspond to π′ and π′′, the factor of x−2 corresponds to the fact that |π|−|f(π)| =
n − (n + 2) = −2, and the factor of x corresponds to the fixed point (b, b) of π. �

It may be interesting to see if a similar strategy can be applied to give a nicer bijective
proof for |S

n
(321; 2)| = (59n2 + 117n + 100) (2n−2)!

(n−4)!(n+5)!
. It can also be easily modified to

give the distribution for the statistic of the number of fixed points on S
n
(321; 1), since

the map f preserves the number of fixed points.
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