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Abstract

The edges of the complete graph Kn are coloured so that no colour
appears more than dcne times, where c < 1/32 is a constant. We show
that if n is sufficiently large then there is a Hamiltonian cycle in which
each edge is a different colour, thereby proving a 1986 conjecture of
Hahn and Thomassen [7]. We prove a similar result for the com-
plete digraph with c < 1/64. We also show, by essentially the same
technique, that if t ≥ 3, c < (2t2(1 + t))−1, no colour appears more
than dcne times and t|n then the vertices can be partitioned into n/t
t−sets K1,K2, . . . , Kn/t such that the colours of the n(t− 1)/2 edges
contained in the Ki’s are distinct. The proof technique follows the
lines of Erdős and Spencer’s [2] modification of the Local Lemma [1].
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1 Introduction

Let the edges of the complete graph Kn be coloured so that no colour is used

more than k = k(n) times. We refer to this as a k-bounded colouring. We say

that a subset of the edges of Kn is multicoloured if each edge is of a different

colour. We say that the colouring is H-good if a multi-coloured Hamilton

cycle exists i.e., one with a multi-coloured edge-set. Clearly the colouring is

H-good if k = 1 and may not be if k ≥ n/2, since then we may only use n−1

colours. The main question we address here then is that of how fast can we

allow k to grow and still guarantee that a k-bounded colouring is H-good.

The problem is mentioned in Erdös, Nestril and Rödl [3]. There they mention

it as an Erdös - Stein problem and show that k can be any constant. Hahn

and Thomassen [7] were the next people to consider this problem and they

showed that k could grow as fast as n1/3 and conjectured that the growth

rate of k could in fact be linear. In unpublished work Rödl and Winkler

[9] in 1984 improved this to n1/2. Frieze and Reed [5] showed that there is

an absolute constant A such that if n is sufficiently large and k is at most

dn/(A lnn)e then any k-bounded colouring is H-good.

In this paper we remove the log n factor and prove the conjecture of [7].

Theorem 1 If n is sufficiently large and k is at most dcne, where c < 1/32

then any k-bounded colouring of Kn is H-good.

We can extend this to the directed case.

Theorem 2 If n is sufficiently large and k is at most dcne, where c < 1/64

then any k-bounded colouring of the edges of the complete digraph DKn is
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H-good.

As another wrinkle on this problem, we have

Theorem 3 Suppose the edges of Kn are coloured so that the graphs induced

by the edges of a single colour all have maximum degree at most cn, where

c < 1/32. Then there exists a Hamilton cycle in which each vertex is incident

with two edges of a distinct colours.

We prove Theorem’s 1, 2 and 3 as corollaries of the following.

Theorem 4 Let Γ be a graph whose vertex set is the edge set of Kn. Suppose

that Γ has maximum degree bounded above by cn, where c < 1/32. Then Kn

contains a Hamilton cycle H whose edge set is an independent subset in Γ.

We finally consider multi-coloured sets of cliques of size t. More precisely,

assume that t ≥ 3, t|n, and let K = K1,K2, . . . , Kn/t be a partition of [n] into

subsets of size n/t. We say that K is multi-coloured if the set of n(t− 1)/2

edges which have both endpoints in the same t-set is multi-coloured.

Theorem 5 If n is sufficiently large and k is at most dcne, c < (2t2(1+t))−1,

then in any k-bounded colouring of the edges of Kn there is multi-coloured

partition K.

2 Modification of the Lovàsz local lemma

Let A1, A2, . . . , AN denote events in some probability space. Using Ā to

denote the complement of an event A, we are as usual interested in showing

that Pr(
⋂n
i=1 Āi) > 0.
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Suppose that for each i there is a partition of [N ]\{i} into Xi and Yi. In the

usual version of the local lemma, Ai will be independent of the the events

in Xi. Here all of the events will be interdependent, but one can still apply

the methodology of the usual proof of the local lemma. We should point out

here that this idea is not our own, it is already in Erdős and Spencer [2].

We consider one of the terms in the expression

Pr

(
N⋂
i=1

Āi

)
=

N∏
i=1

Pr

Āi |
i−1⋂
j=1

Āj

 . (1)

We want to show that for 1 ≤ i ≤ N ,

Pr

Āi |
i−1⋂
j=1

Āj

 > 0. (2)

So, we try to prove by induction on |S|, S ⊆ [N ], that for i 6∈ S,

Pr

Ai |
⋂
j∈S

Āj

 ≤ α, (3)

for some suitable choice of α.

Now,

Pr

Ai | ⋂
j∈S

Āj

 =
Pr

(
Ai ∩

⋂
k∈S∩Yi Āk |

⋂
j∈S∩Xi Āj

)
Pr

(⋂
k∈S∩Yi Āk |

⋂
j∈S∩Xi Āj

)
≤

Pr
(
Ai |

⋂
j∈S∩Xi Āj

)
Pr

(⋂
k∈S∩Yi Āk |

⋂
j∈S∩Xi Āj

)
≤

Pr
(
Ai |

⋂
j∈S∩Xi Āj

)
1−∑k∈S∩Yi Pr

(
Ak |

⋂
j∈S∩Xi Āj

) (4)



the electronic journal of combinatorics 2 (1995), #R10 5

Let now

β = max{Pr(Ai |
⋂
j∈T

Āj) : i ∈ [N ], T ⊆ Xi}, (5)

and

m = max{|Yi| : i ∈ [N ]}. (6)

We will have to prove that given m, β we can choose 0 ≤ α < 1 such that

α(1−mα) ≥ β. (7)

Assume that (7) holds. If S ⊆ Xi then (5) and (7) will imply

Pr

Ai | ⋂
j∈S

Āj

 ≤ β

≤ α.

On the other hand if S 6⊆ Xi then we can apply the induction hypothesis to

Pr(Ak |
⋂
j∈S∩Xi Āj) in the numerator of (4) and obtain

Pr

Ai | ⋂
j∈S

Āj

 ≤ β

1−mα
≤ α,

by (7).

The base case of the induction, S = ∅, follows from considering T = ∅ in (5)

and using β ≤ α.

So the proof of (2) rests on proving that (7) holds. This is what we do for

Theorem 4. The proof of Theorem 5 is slightly different, in that we need to

partition A1, A2, . . . , AN into two types of event.

It may be useful to summarise the above discussion as a lemma in case it

can be used in other circumstances.
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Lemma 1 Let A1,A2, . . . , AN denote events in some probability space. Sup-

pose that for each i there is a partition of [N ] \ {i} into Xi and Yi. Let

m = max{|Yi| : i ∈ [N ]} and β = max{Pr(Ai |
⋂
j∈T Āj) : i ∈ [N ], T ⊆ Xi}.

If there exists 0 ≤ α < 1 such that α(1−mα) ≥ β then Pr(
⋂n
i=1 Āi) > 0.

3 Hamilton Cycles

3.1 Proof of Theorems 1 and 2

We show here that Theorems 1 and 2 are corollaries of Theorem 4. Assume

n is large and k ≤ cn, and an arbitrary k-bounded colouring of Kn is given.

To prove Theorem 1 we define Γ as follows. Two edges e, f of Kn correspond

to the endpoints of an edge of Γ if and only if they have the same colour.

Thus a set of vertices of Γ is independent if and only it corresponds to a

multicoloured set of edges of Kn. Clearly the maximum degree of Γ is at

most k − 1 and so we can apply Theorem 4 to obtain Theorem 1.

To prove Theorem 2 we need a slight change in the definition of Γ. Two edges

e = {e0, e1}, f = {f0, f1} of Kn define an edge of Γ if and only if the colours

of the four directed edges (e0, e1), (e1, e0), (f0, f1), (f1, f0) are not all distinct.

Thus a set S of vertices of Γ is independent if and only the set of edges

obtained by taking, each e = {e0, e1} ∈ S and replacing it by (e0, e1), (e1, e0)

(giving 2|S| directed edges) is multicoloured. Clearly the maximum degree

of Γ is at most 2(k − 1) and so we can apply Theorem 4 to obtain a slight

strengthening of Theorem 1 viz. there is a Hamilton cycle and its reversal

spanning a multicoloured set of directed edges.
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To prove Theorem 3 we let two edges e, f of Kn correspond to the endpoints

of an edge of Γ if and only if they have the same colour and are incident with

a common vertex.

3.2 Proof of Theorem 4

Let H be a Hamilton cycle chosen uniformly at random from the set of (n−
1)!/2 Hamilton cycles of Kn. Let {(ei, fi) : 1 ≤ i ≤ N} be an enumeration

of the edges of Γ. Let

Ai = {H : ei, fi are both edges of H}.

We will prove Theorem 1 by using the argument of Section 2 to show that

Pr
(⋂N

i=1 Āi

)
> 0. We use the notation of that section.

For 1 ≤ i ≤ N let

Yi = {j 6= i : (ej ∪ fj) ∩ (ei ∪ fi) 6= ∅}.

Thus j ∈ Yi if in Kn, one of ej, fj shares a vertex with one of ei, fi. Let

Xi = [N ] \ (Yi ∪ {i}). Clearly, |Yi| ≤ 4cn2 and so

m ≤ 4cn2.

We will show that

β ≤ 2

n2 − 15n+ 56
(8)

and Theorem 1 follows on choosing

α =
1

8c

(
1−

√
1− (32 + ε)c

)
n−2

and checking that (7) holds for ε > 0 sufficiently small and n sufficiently

large.
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[Now mα ≤ (1−
√

1− (32 + ε))/2 and so 1 −mα ≥ (1 +
√

1− (32 + ε))/2.

Thus α(1−mα) > (2 + ε/16)n−2.]

Equation (8) follows from the following Lemma:

Lemma 2 Let e, f be edges of Kn and X ⊆ E(Kn) be such that no edge

in X shares an endpoint with either e or f . Then we can find, for each

Hamilton cycle C containing both e and f and no edges of X, a set S(C) of

(n − 6)(n − 9)/2 Hamilton cycles containing neither e, f or any edge in X,

in such a way that if C 6= C ′ then S(C) ∩ S(C ′) = ∅.

Proof Let e0, e1 and f0, f1 be the endpoints of e and f respectively,

chosen so that e0 has the smallest index of e0, e1, f0, f1. Let

C = e0, e1 −→ f0, f1 −→ eo.

[It is possible that e1 = f0 here.]

Consider two disjoint edges x = (x0, x1), y = (y0, y1) of C sharing no endpoint

with e or f . There are at least (n − 6)(n − 9)/2 choices for x, y. There are

now two possibilities:

C = e0, e1 −→ x0, x1 −→ f0, f1 −→ y0, y1 −→ eo.

or

C = e0, e1 −→ f0, f1 −→ x0, x1 −→ y0, y1 −→ eo.

In the first case define:

Ĉx,y = e0, x0 −→ e1, y0 −→ f1, x1 −→ f0, y1 −→ eo.

In the second case define:
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Ĉx,y = e0, x1 −→ y0, f1 −→ x0, e1 −→ f0, y1 −→ eo.

In both cases we delete the edges e, f, x, y from C and add edges that are

incident with one of e0, e1, f0, f1, so that Ĉx,y does not contain an edge of X.

It is important to realise that in both cases the procedure is reversible in

that C can be reconstructed from Ĉx,y. We can recognise which case we are

in from the relative order of the e’s and f ’s and then identify the x’s and y’s

from their positions.

Thus taking S(C) = {Ĉx,y : x, y as above }, we obtain |S(C)| ≥ (n− 6)(n−
9)/2 and S(C) ∩ S(C ′) = ∅ for C 6= C ′. 2

To prove (8) we apply Lemma 2 with i ∈ [N ], {e, f} = {ei, fi} and X ⊆ Xi.

Let C denote the set of Hamilton cycles containing ei and fi. Then

Pr(Ai |
⋂
j∈X

Āj) =
∑
C∈C

Pr(H = C |
⋂
j∈X

Āj)

≤ 2

n2 − 15n+ 56

∑
C∈C

Pr(H ∈ {C} ∪ S(C) |
⋂
j∈X

Āj)

≤ 2

n2 − 15n+ 56
.

This completes the proof of Theorem 4.

4 Partition into cliques

Assume n is large and k ≤ cn, c < (2t2(1 + t))−1, and an arbitrary k-

bounded colouring of Kn is given. Let {(S1, T1), (S2, T2), . . . , (SN , TN )} be

an enumeration of the pairs of t-subsets of [n] such that for each 1 ≤ i ≤ N

either (a) Si = Ti and Si contains a pair of edges e, f of the same colour, or
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(b) Si ∩ Ti = ∅ and there are edges e, f of the same colour, e ⊆ Si, f ⊆ Ti.

In either case we say that (Si, Ti) contains e, f .

Let Ia = {i ∈ [N ] : Si = Ti} and Ib = [N ]\Ia. Now let K be chosen randomly

from the set of possible partitions and define the events

Ai = {Si and Ti are both members of K}.

Once again, we prove that Pr(
⋂n
i=1 Āi) > 0.

We now define Yi = {j 6= i : the following three conditions hold:

1. max{|Sj ∩ Si|, |Sj ∩ Ti| ≥ t− 1.

2. max{|Tj ∩ Si|, |Tj ∩ Ti| ≥ t− 1.

3. (Sj, Tj) contains a pair of identically coloured edges e, f which are not

contained in (Si, Ti)}.

Naturally, Xi = [N ] \ (Yi ∪ {i}).

We elaborate the argument of Section 2. We prove the existence of 0 <

αa, αb < 1 such that if S ⊆ [N ] and i ∈ Ix \ S, where x = a or b, then

Pr

Ai | ⋂
j∈S

Āj

 ≤ αx.

To do this, we define, for x = a or b,

βx = max{Pr(Ai |
⋂
j∈T

Āj) : i ∈ Ix, T ⊆ Xi}

and

mx = max{|Yi| : i ∈ Ix}.
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We will then, in analogy with (7), only need to show that for x = a or b,

αx(1−maαa −mbαb) ≥ βx. (9)

Consider first the case where i ∈ Ia. Then j ∈ Xi implies j ∈ Ia.

[|Sj ∩ Tj | ≥ |Sj ∩Si ∩Tj ∩Si| ≥ |Sj ∩Si|+ |Tj ∩Si| − |Si| ≥ 2(t− 1)− t > 0.]

Now

ma ≤ t

(
t− 1

2

)
k. (10)

Explanation: We choose Sj by (i) choosing x ∈ Si, (ii) e = {x1, x2} ⊆
Si \ {x} and then y 6∈ Si such that the colour of e is the same as that of

{x1, y} or {x2, y}. We then take Sj = (Si \ {x}) ∪ {y}.

We argue next that

βa ≤
1

t(n− t+ 1)
. (11)

Explanation: Given K ∈ Ai ∩
⋂
j∈T Āj , T ⊆ Xi, we can obtain t(n − t)

distinct partitions which are in Āi ∩
⋂
j∈T Āj as follows: Choose x ∈ Si and

y ∈ S, where S is another t-set of K. Replace Si by (Si ∪ {y}) \ {x} and S

by (S ∪ {x}) \ {y} to obtain K′. Note that given K′ we can re-construct K:

x is the unique element of Si which is in a set with elements not in Si and

y 6∈ Si is the unique such element which in a set with t− 1 members of Si.

Now let us consider the case i ∈ Ib. Now j ∈ Xi implies that j ∈ Ib. Also,

mb ≤ t2
(
t− 1

2

)
(t− 1)(n− t)k. (12)

Explanation: We choose Sj, Tj by (i) choosing x ∈ Si, y ∈ Ti, (ii) e =

{x1, x2} ⊆ Si \ {x}, (iii) z 6∈ Si, (iv) w ∈ Ti \ {y}, (v) v ∈ [n] such that the

colour of {v, w} is the same as that of e. Then take Sj = (Si \ {x}) ∪ {z}
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and Tj = (Ti \ {y}) ∪ {w}. There are some restrictions on the choices of

x, y, z, v, w which are ignored for the purposes of getting an upper bound.

Finally,

βb ≤
1

t2(n− 2t)(n− 3t) + 1
. (13)

Explanation: Given K ∈ Ai∩
⋂
j∈T Āj, T ⊆ Xi, we can obtain t2(n−2t)(n−

3t) distinct partitions which are in Āi ∩
⋂
j∈T Āj as follows: Choose x ∈ Si

and y ∈ Ti. Then choose x′, y′ 6∈ Si∪Ti in distinct subsets S, S ′ of K. Replace

Si by (Si ∪ {x′}) \ {x}, Ti by (Ti ∪ {y′}) \ {y}, S by (S ∪ {x}) \ {x′} and

T by (T ∪ {y}) \ {y′}. to obtain K′. Note once again, that given K′ we can

re-construct K.

With these values for ma,mb, βa, βb we can enforce (9) by choosing

αa = 2/t and αb = 2/t2.

This completes the proof of Theorem 5.

References

[1] N.Alon and J.H.Spencer, The probabilistic method, John Wiley and

Sons, New York, 1992.
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[6] W.Höeffding,Probability inequalities for sums of bounded random vari-

ables, Journal of the American Statistical Association 58 (1963) 13-30.

[7] G.Hahn and C.Thomassen, Path and cycle sub-Ramsey numbers and an

edge-colouring conjecture, Discrete Mathematics 62 (1986) 29-33.
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