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��������� Bijective proofs of the hook formulas for the number of ordinary standard
Young tableaux and for the number of shifted standard Young tableaux are given. They
are formulated in a uniform manner, and in fact prove q-analogues of the ordinary and
shifted hook formulas. The proofs proceed by combining the ordinary, respectively
shifted, Hillman–Grassl algorithm and Stanley’s (P, ω)-partition theorem with the in-
volution principle of Garsia and Milne.

1. Introduction. A few years ago there had been a lot of interest in finding a
bijective proof of Frame, Robinson and Thrall’s [1] hook formula for the number of
standard Young tableaux of a given shape. This resulted in the discovery of three
different such proofs [2, 10, 14], none of them is considered to be really satisfactory.
Closest to being satisfactory is probably the proof by Franzblau and Zeilberger [2].
However, while the description of their algorithm is fairly simple, it is rather dif-
ficult to show that it really works. Also, it does not portray the nice row-column
symmetry of the hooks. Remmel’s proof [10] is the most complicated. It uses the
involution principle of Garsia and Milne [3]. However, Remmel bases his proof on
“bijectivization” of recurrence relations, which is not the most direct route to attack
the problem. Finally, Zeilberger’s proof [14], translating the beautiful probabilistic
proof [6] by Greene, Nijenhuis and Wilf into a bijection, actually sets up a bijection
between larger sets than one desires.

So, it is still considered to be the case that the best proof of the hook formula is
to use the Hillman–Grassl algorithm [7] and Stanley’s (P,ω)-partition theorem [12],
and then to apply a limit argument (this is the non-bijective part). In view of this
it is somehow surprising that there are half-combinatorial proofs of the hook formula
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that were translated into bijective proofs, such as the Gessel–Viennot method [4, 5]
of nonintersecting lattice paths in Remmel’s proof [10], and the probabilistic proof
[6] by Greene, Nijenhuis and Wilf in Zeilberger’s proof [14], but that it was never
tried to translate what is still considered to be the best (but only half-combinatorial)
proof into a bijective proof. This omission is made up for in this paper. In fact, it
turns out to be pretty simple. Besides, this new bijective proof has two advantages.
First, it actually proves a natural q-analogue of the hook formula (see the Theorem
in section 4) which all the other proofs do not. Secondly, the same idea also works
to provide a bijective proof of the hook formula for the number of shifted standard
Young tableaux (and its q-analogue; see the Theorem in section 4). No bijective proof
for the shifted hook formula has been given before. On the other hand, our proofs
are still not satisfactory in that they involve the involution principle.

The outline of the paper is as follows. In the next section we review all relevant
definitions. Then, in section 3, we explain briefly what the Hillman–Grassl algorithm,
Stanley’s (P,ω)-partition theorem and the involution principle of Garsia and Milne are
about. Finally, in section 4 we state the two hook formulas and present our bijective
proofs of them, in a unified fashion. In section 5 we explain where the involutions of
section 4 come from.

2. Definitions. A partition of a positive integer n is a sequence λ = (λ1, λ2, . . . ,
λr) with λ1 + λ2 + · · · + λr = n and λ1 ≥ λ2 ≥ · · · ≥ λr > 0, for some r. The
components of λ are called the parts of λ. The integer n, the sum of all the parts of
λ, is called the norm of λ and is denoted by n(λ). The (ordinary) Ferrers diagram of
λ is an array of cells with r left-justified rows and λi cells in row i. Figure 1.a shows
the Ferrers diagram corresponding to (4, 3, 3, 1). If λ is a partition with distinct
parts then the shifted Ferrers diagram of λ is an array of cells with r rows, each row
indented by one cell to the right with respect to the previous row, and λi cells in row
i. Figure 1.b shows the shifted Ferrers diagram corresponding to (5, 4, 2, 1). We shall
frequently use the same symbols for things which may have an “ordinary” or “shifted”
interpretation. It will always be clear which interpretation is meant. In particular,
if a partition λ appears in the shifted context then it is always assumed that λ is a
partition with distinct parts.

The conjugate of a partition λ is the partition (λ′1, . . . , λ′λ1
) where λ′j is the length

of the j-th column in the ordinary Ferrers diagram of λ.

• • •
•
•

• • • •
•
• •

a. Ferrers diagram b. shifted Ferrers c. hook d. shifted hook
diagram

Figure 1
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We label the cell in the i-th row and j-th column of the ordinary, respectively
shifted, Ferrers diagram of λ by the pair (i, j). Also, if we write ρ ∈ λ we mean ‘ρ
is a cell of λ’. The hook of a cell ρ of the ordinary Ferrers diagram of λ is the set of
cells that are either in the same row as ρ and to the right of ρ, or in the same column
as ρ and below ρ, ρ included. The dots in Figure 1.c indicate the hook of the cell
(2, 1). The hook of a cell ρ of the shifted Ferrers diagram of λ again includes all cells
that are either in the same row as ρ and to the right of ρ, or in the same column as ρ
and below ρ, ρ included, but if this set contains a cell on the main diagonal, cell (j, j)
say, then also all the cells of the (j + 1)-st row belong to the hook of λ. The dots in
Figure 1.d indicate the hook of the cell (1, 2). The hook length hρ (in the ordinary,
respectively shifted sense) of a cell ρ of λ is the number of cells in the hook of ρ.

1 3 4 4

5 5 7

5 6 7

8

2 2 5 6 6

4 5 7 9

5 8

8

1 2 3 4

5 6 9

7 8 10

11

1 2 4 7 8

3 5 9 12

6 10

11

a. reverse plane b. shifted reverse c. standard Young d. shifted standard
partition plane partition tableau Young tableau

Figure 2

Given a partition λ = (λ1, λ2, . . . , λr), a reverse plane partition of shape λ (in the
ordinary or shifted sense) is a filling P of the cells of λ with nonnegative integers
such that the entries along rows and along columns are weakly increasing. Figure 2.a
displays an ordinary reverse plane partition of shape (4, 3, 3, 1), Figure 2.b displays a
shifted reverse plane partition of shape (5, 4, 2, 1). We write Pρ for the entry in cell
ρ of P . Also here, we call the sum of all the entries of a reverse plane partition P
the norm of P , and denote it by n(P ). Given a partition λ of n, a standard Young
tableau of shape λ (in the ordinary or shifted sense) is a reverse plane partition whose
set of entries is {1, 2, . . . , n}. Figure 2.c displays an ordinary standard Young tableau
of shape (4, 3, 3, 1), Figure 2.d displays a shifted standard Young tableau of shape
(5, 4, 2, 1).

11 10 9 8

7 6 5

4 3 2

1

12 11 10 9 8

7 6 5 4

3 2

1

Figure 3

For the rest of the paper we fix the following total order of the cells of an (ordinary
or shifted) Ferrers diagram λ. A cell ρ1 comes before cell ρ2 if ρ1 is in a lower row
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than ρ2 or if both are in the same row but ρ1 is to the right of ρ2. In other words,
to obtain the total order one starts with the right-most cell in the last row and reads
each row from right to left, beginning with the bottom row and continuing up to the
first row. We write #ρ for the number of the cell ρ in this total order. Figure 3
displays the values #ρ for the ordinary diagram (4, 3, 3, 1) and the shifted diagram
(5, 4, 2, 1).

Next we define a statistics on (ordinary or shifted) standard Young tableaux, which
is similar to charge (see [8; 9, p. 129] for the definition of charge). Given a standard
Young tableau Y with n entries, we define comaj(Y ) to be the sum

∑
(n− i), where

the sum is over all i that have the property that i + 1 is located strictly above i
in Y . For example, comaj(.) = 3 for the standard Young tableau in Figure 2.c and
comaj(.) = 9 + 6 + 1 = 16 for that in Figure 2.d.

We call an arbitrary filling of the cells of λ (ordinary or shifted) with nonnegative
integers a tabloid of shape λ. Also here, by n(T ) we mean the sum of all the entries of
T , and by Tρ we mean the entry in cell ρ of T . Furthermore, we define the hook weight
wh(T ) of a tabloid T of shape λ by

∑
ρ∈λ Tρ · hρ, where hρ has to be understood in

the ordinary or shifted sense, depending on whether the shape λ is understood in the
ordinary or shifted sense. Finally, we introduce some special tabloids to be used in
the course of the following bijections. We call a tabloid T of shape λ a (< h)-tabloid
if Tρ < hρ for all cells ρ ∈ λ, and we call T a (0–h)-tabloid if Tρ equals 0 or hρ, for
all cells ρ ∈ λ. Similarly, we call a tabloid T of shape λ a (< #)-tabloid if Tρ < #ρ
for all cells ρ ∈ λ, and we call T a (0–#)-tabloid if Tρ equals 0 or #ρ, for all cells
ρ ∈ λ. The sign sgn(T ) of a (0–h)-tabloid or (0–#)-tabloid is always defined to be
(−1)number of nonzero entries in T .

3. Preliminaries. In this section we briefly explain the basic ingredients of our
bijections in the next section: the ordinary and shifted Hillman–Grassl algorithm, a
bijection that comes from Stanley’s (P,ω)-partition theory, and the involution prin-
ciple of Garsia and Milne.

Let λ be a partition of n. The ordinary Hillman–Grassl algorithm [7] sets up
a bijection, HG say, between reverse plane partitions P of (ordinary) shape λ and
tabloids S = HG(P ) of (ordinary) shape λ, such that

(3.1) n(P ) = wh(S),

where the hook weight wh is read in the ordinary sense. Sagan’s shifted Hillman–
Grassl algorithm [11, sec. 3,4] does the same for reverse plane partitions of shifted
shape λ and tabloids of shifted shape λ, provided that the hook weight wh in (3.1) is
now read in the shifted sense.

The second bijection that we need is a bijection, SP say, between reverse plane
partitions P of shape λ (ordinary, respectively shifted) and pairs (Y, τ), where Y
is a standard Young tableau of shape λ (ordinary, respectively shifted), and τ is a
partition with at most n parts. It comes from [12, sec. 6]. Given the reverse plane
partition P , the standard Young tableaux Y is given by the numbering of the cells
of λ that is determined by reading the entries of P according to size, starting with
the smallest entry and going up to the largest entry, if two entries are equal the one
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in the higher row comes first, and if two equal entries are in the same row, the left
entry comes first. See the examples below. The partition τ is formed in the following
way. Consider the entries of P in the order just described. At the very beginning (i.e.
when considering the entry in cell (1, 1)), 0 is subtracted from the considered entry.
Suppose that we subtracted s from the entry considered last. Then we subtract s from
the next entry to be considered if it is located weakly below the previously considered
entry, otherwise we subtract s+ 1. The partition τ is the sequence of all the obtained
integers, in reverse order, and disregarding all 0’s. For example, under this mapping
the reverse plane partition in Figure 2.a is mapped to (Figure 2.c, 76665554431), and
the reverse plane partition in Figure 2.b is mapped to (Figure 2.d, 666544444422). It
is not difficult to check that this correspondence satisfies

(3.2) n(P ) = n(τ) + comaj(Y ).

Finally we recall the involution principle of Garsia and Milne [3] (see also [13,
sec. 4.6]). Let X be a finite set with a signed weight function w defined on it.
Furthermore, let XL and XR be subsets of X, both of which containing elements
with positive sign only. Suppose that there is a sign-reversing and weight-preserving
involution iL onX that fixes XL and a sign-reversing and weight-preserving involution
iR on X that fixes XR. Then there must be a weight-preserving bijection between
XL and XR. And such a bijection can be constructed explicitly by mapping x ∈ XL

to (iL ◦ iR)m(x) where m is the least integer such that (iL ◦ iR)m(x) is in XR.

4. The hook formulas and their bijective proofs. The hook formulas that
we are going to prove are the following.

Theorem. Let λ be a partition of n. Then, in the ordinary or shifted sense, there
holds

(4.1)
∑

Y a SYT of
shape λ

qcomaj(Y ) =
[n][n− 1] · · · [1]∏

ρ∈λ[hρ]
,

where by definition [k] := 1 + q + q2 + · · ·+ qk−1. (SYT is short for ‘standard Young
tableau’.)

Proof. Since the formula and all other things that are needed are stated uniformly
for the ordinary and shifted case, also the proof can be formulated uniformly, i.e. the
following can be read in the ordinary context or in the shifted context.

First we rewrite (4.1) in the form

(4.2) [n][n− 1] · · · [1] =
( ∑
Y a SYT of

shape λ

qcomaj(Y )

)∏
ρ∈λ

[hρ].

We prove (4.2) by setting up a bijection between the set OL of all (< #)-tabloids
T of shape λ, the generating function

∑
T q

n(T) for which being evidently the left-
hand side in (4.2), and the set OR of pairs (Y,U ′), where Y is a standard Young
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tableau of shape λ and U ′ is a (< h)-tabloid of shape λ, the generating function∑
(Y,U′) q

comaj(Y )qn(U ′) for which being evidently the right-hand side of (4.2). We do
this by using the involution principle. Hence, we have to say which choices we take
for the set X, the signed weight w, the subsets XL and XR, and the involutions iL
and iR. Of course, OL and OR should correspond to XL and XR, respectively, the
latter being subsets of the bigger set X, that has to be described next.

We define X to be the set of all triples (S, T, U), where S is an arbitrary tabloid
of shape λ, where T is a (< #)-tabloid of shape λ, and where U is a (0–h)-tabloid of
shape λ. The signed weight w on X is defined by

(4.3) w
(
(S, T, U )

)
= sgn(U ) qwh(S)+n(T )+n(U).

We define the set XL to be the subset of X consisting of all triples (0, T,0), where
0 denotes the filling of λ with 0 in each cell, and where T is an arbitrary (< #)-
tabloid of shape λ. Note in particular that the sign of w

(
(0, T,0)

)
for all these triples

is sgn(0) = 1, which is positive. Trivially, XL is in bijection with OL.
What the set XR is going to be is better explained in the course of the description

of the involution iR.
However, first we define the involution iL that fixes XL. Let (S, T, U) be a triple

in X that is not in XL, i.e. at least one of S and U is different from 0. Pick the least
cell ρ (in the total order of the cells defined in section 2) in λ such that Sρ 6= 0 or
Uρ 6= 0. If Uρ 6= 0, i.e. Uρ = hρ, then replace Uρ by 0, thus obtaining Ū , and add
1 to Sρ, thus obtaining S̄. If Uρ = 0 then replace Uρ by hρ, thus obtaining Ū , and
subtract 1 from Sρ, thus obtaining S̄. We define iL

(
(S, T, U)

)
to be (S̄, T, Ū). By

construction we have w
(
(S, T, U )

)
= −w

(
(S̄, T, Ū)

)
, as required. It is obvious that

iL is an involution on X\XL.
Next we define the involution iR. As promised before, the definition of the set XR

that is fixed by iR will naturally appear in the course of the definition of iR.
We partition the set X into two disjoint subsets X1 and X2. By definition, the set

X1 consists of all triples (S, T, U) where there exists a cell ρ in λ such that

(4.4) hρ ≤ Tρ + Uρ < #ρ.

The set X2 is defined to be the complement X\X1.
Now we define iR on the subset X1. Let (S, T, U) be a triple in X1, i.e. there

exists a cell ρ such that (4.4) is satisfied. We assume that ρ is the least such cell (in
the total order explained in section 2). If Uρ = 0 then we replace Uρ by hρ, thus
obtaining Ū , and we replace Tρ by Tρ − hρ, thus obtaining T̄ . If Uρ = hρ then we
replace Uρ by 0, thus obtaining Ū , and we replace Tρ by Tρ + hρ, thus obtaining T̄ .
We define iL

(
(S, T, U )

)
to be (S, T̄ , Ū). It is obvious that in both cases (S, T̄ , Ū ) is in

X1 again. Besides, there holds w
(
(S, T, U )

)
= −w

(
(S, T̄ , Ū )

)
, as required. Clearly,

iR thus defined on X1 is an involution on X1.
Next we consider the set X2. Instead of directly working with these triples, it

is more convenient to map them in an intermediate step by a sign-preserving and
weight-preserving bijection, ϕ say, to another set, X̄2 say. By definition, X̄2 is the
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set of all quadruples (Y, π, T ′, U ′), where Y is a standard Young tableau of shape λ,
π is a partition with all its parts being at most n, T ′ is a (0–#)-tabloid, and where
U ′ is a (< h)-tabloid. The signed weight on X̄2 is defined by

(4.5) w
(
(Y, π, T ′, U ′)

)
= sgn(T ′) qcomaj(Y )+n(π)+n(T ′)+n(U′).

The bijection between X2 and X̄2 is defined in the following way. Let (S, T, U ) be
an element of X2, i.e. for all cells ρ in λ the relation (4.4) does not hold. Denote
the image of (S, T, U ) under the mapping ϕ to be defined by (Y, π, T ′, U ′). The pair
(Y, π) is obtained by applying first the inverse of the Hillman–Grassl algorithm to
the tabloid S, thus obtaining a reverse plane partition P , then applying the map
SP explained in section 3 to this reverse plane partition, thus obtaining a pair (Y, τ)
consisting of a standard Young tableau Y and a partition τ with at most n parts,
and finally mapping the partition τ to its conjugate π, thus obtaining the pair (Y, π)
consisting of the standard Young tableau Y and a partition π all of whose parts are
at most n. Because of (3.1) and (3.2) we have

(4.6) wh(S) = n(P ) = comaj(Y ) + n(τ) = comaj(Y ) + n(π).

Now we turn to the construction of T ′ and U ′. T ′ and U ′ are obtained by doing the
following operation on T and U for each cell ρ in λ. If Uρ = 0, then, since (4.4) does
not hold, we must have Tρ < hρ. Then we replace Uρ by Tρ, and we replace Tρ by
0. If Uρ = hρ, then we must have Tρ + hρ = Tρ + Uρ ≥ #ρ. Then we replace Uρ by
Tρ + hρ −#ρ, and we replace Tρ by #ρ. It is immediate from the construction and
from (4.6) that this mapping from X2 to X̄2 is weight-preserving and sign-preserving.
Besides, because our particular total order of the cells implies hρ ≤ #ρ, the mapping
can be inverted, as is easily checked. Hence it is a bijection.

Now, finally, we are able to say what the set XR is. It is defined to be the inverse
image (under the mapping ϕ from X2 to X̄2 just described) of the set of all quadruples
(Y, ∅,0, U ′), where Y is a standard Young tableau of shape λ, ∅ denotes the empty
partition, and where U ′ is a (< h)-tabloid. Let us denote the latter subset of X̄2 by
ŌR. Observe that the sign of w

(
(Y, ∅,0, U ′)

)
for all quadruples in ŌR is sgn(0) = 1,

which is positive. Clearly, the set OR of right-hand side objects of (4.2) is in bijection
with ŌR, and, hence, with XR.

So all what remains is to define a sign-reversing and weight-preserving involution,
īR say, on X̄2 that fixes ŌR. This is because iR is then defined as it is on X1,
and on X2 by ϕ−1 ◦ īR ◦ ϕ. Let (Y, π, T ′, U ′) be an element of X̄2\ŌR, i.e. π is a
nonempty partition or T ′ is nonzero. Let i be the least (positive) integer such that
i occurs as a part in π or such that the cell ρ with #ρ = i has a nonzero entry in
T ′. If T ′ρ is nonzero, i.e. T ′ρ = #ρ = i, then we replace T ′ρ by 0, thus obtaining T̄ ′,
and we add one part of size i to π, thus obtaining π̄. If T ′ρ = 0, then we replace
T ′ρ by i = #ρ, thus obtaining T̄ ′, and we remove one part of size i from π, thus
obtaining π̄. We define īR

(
(Y, π, T ′, U ′)

)
to be (Y, π̄, T̄ ′, U ′). By construction we

have w
(
(Y, π, T ′, U ′)

)
= −w

(
(Y, π̄, T̄ ′, U ′)

)
, as required. It is easy to check that īR is

a sign-reversing and weight-preserving involution on X̄2\ŌR.
This completes the bijective proof(s) of the hook formula(s) (4.1). �
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5. The algebra behind. Here we explain where the operations iL, iR, ϕ of the
previous section come from.

First, it should be observed that the generating function
∑

sgn(U )qwh(S)+n(T )+n(U)

for all triples (S, T, U) in X is given by

(5.1)
∏
ρ∈λ

1
1− qhρ

n∏
i=1

[i]
∏
ρ∈λ

(1− qhρ).

Evidently, the involution iL just models combinatorially the cancellation of the two
products in (5.1). (What survives after the cancellation is the left-hand side of (4.2).)

Next we may rewrite (5.1) as

(5.2)
∏
ρ∈λ

1
1− qhρ

n∏
i=1

(1− qi)
∏
ρ∈λ

[hρ].

What the map iR on X1 and the subsequent transformation of (T,U) to (T ′, U ′) in
the mapping ϕ do, is exactly the combinatorial modelling of the transition from (5.1)
to (5.2).

Now, by the Hillman–Grassl algorithm(s) we know that the first product in (5.2)
is the generating function

∑
qn(P ) for all reverse plane partitions P of shape λ.

Moreover, by Stanley’s (P,ω)-partition theorem [12, Cor. 5.3+7.2] we know that the
same generating function can be written as

(5.3)

∑
Y a SYT of shape λ

qcomaj(Y )

n∏
i=1

(1− qi)
.

Substituting this into (5.2) gives that the generating function∑
sgn(U)qwh(S)+n(T )+n(U) for all triples (S, T, U ) in X can also be written as

(5.4)
∑

Y a SYT
of shape λ

qcomaj(Y )
n∏
i=1

1
(1− qi)

n∏
i=1

(1− qi)
∏
ρ∈λ

[hρ].

The transformation of S into (Y, π) in the mapping ϕ, of course, exactly models
combinatorially the transition from (5.2) to (5.4). Finally, it is evident that the map
īR on X̄2\ŌR just models combinatorially the cancellation of the second and third
factor in (5.4). (What survives after the cancellation is the right-hand side of (4.2).)
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