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Abstract

The essential set of a permutation was defined by Fulton as the set of
southeast corners of the diagram of the permutation. In this paper we determine
explicit formulas for the average size of the essential set in the two cases of
arbitrary permutations in Sn and 321-avoiding permutations in Sn. Vexillary
permutations are discussed too. We also prove that the generalized Catalan
numbers

(r+k−1
n

)
−
(r+k−1
n−2

)
count r × k-matrices dotted with n dots that are

extendable to 321-avoiding permutation matrices.
1991 Mathematics Subject Classification. primary 05A15; secondary
05E99, 14M15.

1 Introduction

There is an extensive theory, well presented by Macdonald [5], on the Schubert poly-
nomial of a permutation w. Important in this theory is the diagram of w, obtained
from the permutation matrix of w by shading, for every square (i, w(i)), all squares
to the east in row i and squares to the south in column w(i). In a ground-breaking
paper from 1992, Fulton [3] introduced the essential set of w as the set of southeast
corners of the diagram of w, which together with a rank function was used as a pow-
erful tool in Fulton’s algebraic treatment of Schubert polynomials and degeneracy
loci. However, we feel that the essential set as a combinatorial object is interesting
per se, deserving to be studied combinatorially. In another paper [2] we characterize
the essential sets that can arise from arbitrary permutations, as well as from certain
classes of permutations. The present paper is devoted to enumerative aspects.

Before treating the essential set though, we immediately take a detour. It is well-
known (Knuth [4]) that the Catalan number Cn =

(
2n
n

)
/(n + 1) =

(
2n−1
n

)
−
(

2n−1
n−2

)
counts 321-avoiding permutations in Sn. We prove the following generalization:(

r + k − 1

n

)
−
(
r + k − 1

n− 2

)
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is the number of rectangular r × k-matrices with n dots that are extendably 321-
avoiding, that is, that can be embedded in the northwest corner of a 321-avoiding
permutation matrix.

Coming then to the essential sets, we present two main results (and some minor
ones). First, the average size of the essential set of a permutation in Sn is(

n−1
3

)
+ 6

(
n
2

)
6n

∼ 1

36
n2.

Second, the average size of the essential set of a 321-avoiding permutation in Sn is

4n−2

Cn
∼
√
π

16
n3/2,

the proof of which relies on the result on extendably 321-avoiding matrices. Finally,
we discuss what can be said about the important vexillary permutations.

We thank Dan Laksov for drawing our attention to this problem.

2 Extendably 321-avoiding matrices

We say that w contains a 321-pattern if there are indices i1 < i2 < i3 such that
w(i1) > w(i2) > w(i3)). We say that w is 321-avoiding if it does not contain a
321-pattern. 321-avoiding permutations have been studied by several people (Knuth,
Billey-Jockusch-Stanley, Simion, Stanley, Fan, . . . ).

In this section we shall obtain a nice generalization of the fact that 321-avoiding
permutations are counted by Catalan numbers. We shall always regard permutations
as permutation matrices, and the generalization deals with rectangular matrices that
have at most one dot in each row and column.

First, the following very simple characterization of 321-avoiding permutation ma-
trices is essential: Let the upper triangle of a m×n-matrix denote the set of elements
(i, j) such that i < j; let the lower triangle be the complement, that is, the set of (i, j)
such that i ≥ j. Then a permutation matrix w is 321-avoiding if and only if there are
no pair of dots (i, j) and (i′, j′) in the same triangle such that i < i′ while j > j′. In
other words, in both triangles the dots come in a spread from northwest to southeast,
as illustrated in Figure 1. Clearly, this property is sufficient for being 321-avoiding.
For the converse, suppose we have a violation in, say, the lower triangle, so there are
dots at (i, j) and (i′, j′) where i′ > i ≥ j > j′. In the n − j columns east of (i, j)
there can be at most n− i− 1 ≤ n− j − 1 dots south of row i, so at least one dot is
located northeast of (i, j), completing a 321-pattern together with (i, j) and (i′, j′).

Now, let us consider any properly dotted r × k-matrix, containing n dots. It
is natural to say that such a matrix is 321-avoiding if it contains no triple (i1, j1),
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Figure 1: The permutation 3142576 is 321-avoiding: in the upper triangle, as well as
in the lower triangle, the dots come in a strictly falling spread.

(i2, j2), (i3, j3) of dots such that i1 < i2 < i3 while j1 > j2 > j3. If all dotless rows and
columns are omitted, we have a 321-avoiding permutation matrix of size n×n, and it
is known that there are Cn =

(
2n
n

)
/(n+1) such permutation matrices, see the remark

below Theorem 2.1. Hence, the number of r × k-matrices that are 321-avoidingly
dotted with n dots is simply

(
r
n

)(
k
n

)
Cn.

However, we will be interested only in such a dotted matrix if it is extendably
321-avoiding, by which we mean that it can be extended by southern rows and east-
ern columns, each containing exactly one dot, such that a 321-avoiding permutation
matrix is obtained. (If the original matrix contained n dots, then it must be extended
by r−n columns, so that all rows have dots, and k−n rows, so that all columns have
dots.) Shifting viewpoint, we can reformulate the definition: extendably 321-avoiding
matrices are the northeast submatrices of 321-avoiding permutation matrices.

Figure 2: An extendably 321-avoiding 4 × 5-matrix with three dots (indicated with
bold border), extended to a 321-avoiding permutation matrix.

We are now going to prove the following enumerative result:

Theorem 2.1 There are
(
r+k−1
n

)
−
(
r+k−1
n−2

)
extendably 321-avoiding r × k-matrices

with n dots.

Remark A simple manipulation gives that(
r + k − 1

n

)
−
(
r + k − 1

n − 2

)
=
r + k + 1− 2n

r + k + 1− n

(
r + k

n

)
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Observe that with r = k = n this formula specializes to the Catalan numbers Cn =(
2n
n

)
/(n + 1) counting ordinary 321-avoiding permutations. See Knuth [4, p. 64].

Several proofs of this are collected in Stanley [7, exerc. 17(p)]. 2

If M is an extendably 321-avoiding r × k-matrix with n dots (so n ≤ r, k), let
R(M) denote the set of i ∈ [1, r] such that there is a dot in row i in the lower triangle,
and let K(M) denote the set of j ∈ [2, k] such that there is a dot in column j in the
upper triangle.

Lemma 2.2 An extendably 321-avoiding dotted matrix M is determined by the pair
(R(M), K(M)).

Proof Recall the characterization of 321-avoiding permutation matrices as having
falling spreads in both the upper and lower triangles. Thus, when M is extended, no
new dot may be placed north of any dot in the upper triangle, so M must have no
such empty row. Hence, the first dot in the upper triangle (i.e. the dot with the lowest
column coordinate in K(M)) must have the lowest row coordinate not contained in
R(M), the next dot must have the next such coordinates etc. Analogously for the
lower triangle. 2

We obviously have |R(M)| + |K(M)| = n, since the terms count the dots in the
lower and upper triangles respectively. Since R(M) is a subset of [1, r] and K(M) is a

subset of [2, k], we can choose a pair (R(M), K(M)) of correct cardinality in
(
r+k−1
n

)
ways, explaining the first term of Theorem 2.1. However, not all such pairs are good
for determining an extendably 321-avoiding matrix. In order to prove Theorem 2.1
we must show that the number of bad pairs is

(
r+k−1
n−2

)
.

We shall use the following model to represent the pair (R,K): Distribute n chips
on one set of r squares indexed r1, r2, . . . , rr and one set of k − 1 squares indexed
k2,k3, . . . ,kk, such that there is a chip at ri if i ∈ R, and a chip at kj if j ∈ K.
A pair (R,K) is bad if the algorithm for retrieving the matrix (in the proof of the
lemma above) fails, that is, if it produces a dot in the lower triangle with column
coordinate in K (so that the dot should have been the upper triangle), or vice versa.

Suppose that there is a dot in the lower triangle at (i + 1, j + 1), i ≥ j, with
j + 1 ∈ K. This corresponds exactly to a chip at kj+1 and in total i chips at squares
r1, . . . , ri,k2, . . . ,kj. There are never more than one chip at each square. Since i ≥ j
there must be at least j chips at squares r1, . . . , rj,k2, . . . ,kj . It is then easy to see
that this implies that there must exist some least j such that there is a chip at kj+1

and exactly j chips at squares r1, . . . , rj,k2, . . . ,kj. This same situation must, by a
similar argument, occur also in the case of a dot in the upper triangle that should
have been in the lower triangle. Hence, bad chips distributions are characterized as
containing this situation.
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We shall now play the following game from the bad situation above: Place your
left hand above square rj and your right hand above square kj+1. The playing rule
is:

1. If there are chips in both current squares, they are picked up, one in each hand.

2. If both current squares are empty, each hand drops a chip in the squares.

3. If there is one chip in total in the two current squares, then nothing is done.

After each step, move both hands to the squares with index one less and repeat the
process.

Figure 3: The game played from a bad situation. The left squares are {r1, r2, r3, r4},
the right squares are {k2,k3,k4,k5}.

Since j was minimal for a bad situation, we know that there must be chips in
both squares rj and kj+1 so the first step will be of type 1. For the remaining j − 1
steps we know there are exactly j−1 chips on the squares; thus, for every pair that is
emptied, there will be an empty pair that is filled. Therefore, after playing up to r1

and k2, we will still have one chip left in each hand, and hence n−2 chips distributed
on the squares.

The process can be reversed; there are
(
r+k−1
n−2

)
possible distributions of n−2 chips

with at most one chip at each square. Take two additional chips, one in each hand,
and start playing the inverse game, which incidentally have the same rules but starts
at squares r1 and k2 and moves on to increasing indices. As soon as the hands are
emptied, the game stops. (This must happen before we run out of squares, thanks to
the condition that both r and k must be greater than or equal to n.) When the game
stops, say at squares rj and kj+1, we have obtained a chips distribution with a ’bad
situation’. Hence, we have obtained a bijection between such bad distributions and
the set of distributions of n− 2 chips. This completes the proof of Theorem 2.1. 2

3 Enumerative aspects of the essential set

The combinatorial object that we are studying is the essential set of a permuta-
tion, together with its rank function. They are defined as follows. First, let every
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permutation w ∈ Sn be represented by its dotted permutation matrix, regarded as
an n × n-collection of squares in the plane, where square (i, w(i)) has a dot for all
i ∈ [1, n], and all other squares are white, so there is exactly one dot in each row and
column.

We get the diagram of the permutation by shading the squares in each row from
the dot and eastwards, and shading the squares in each column from the dot and
southwards. The diagram is defined as the unshaded region after this operation. The
standard reference on diagrams and Schubert polynomials is Macdonald’s book [5].

We call a white square a white corner if it has no white neighbor neither to the
east nor to the south. In other words, the white corners are the southeast corners of
the components of the diagram. The essential set E(w) of a permutation w is defined
to be the set of white corners of the diagram of w.

For every white corner (i, j) of w, its rank is defined by

rw(i, j)
def
= #{ dots northwest of (i, j)} = #{(i′, j′) with dot : i′ ≤ i, j′ ≤ j}

A fundamental property of the ranked essential set of w is that it uniquely determines
w.

1

2 3

0

0 2

Figure 4: Diagram and ranked essential set of the permutation 4271635.

All concepts should be evident from Figure 4. Answering a question of Fulton, a
characterization of the class of ranked sets of squares that arise as essential sets of
permutations was given by Eriksson and Linusson [2]:

Theorem 3.1 (Eriksson and Linusson [2]) Let E ⊆ [1, n] × [1, n] be a set of
squares with rank function r(i, j). Add the squares (0, n) and (n, 0) to E both with
rank zero. E\{(0, n), (n, 0)} is the essential set of an n×n permutation matrix if and
only if:

C1. For each (i, j) ∈ E we have

1. r(i, j) ≥ 0 and
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2. rse(i, j) ≥ 0.

C2. For every pair (i, j), (i′, j′) ∈ E such that i ≥ i′, j ≤ j′ and E ∩ [i′, i]× [j, j′] =
{(i, j), (i′, j′)} we have

1. rne(i, j)− rne(i′, j′) ≥ 1 and

2. rsw(i′, j′)− rsw(i, j) ≥ 1.

C3. For every pair (i, j), (i′, j′) ∈ E such that i < i′, j < j′ and E ∩ [i + 1, i′] ×
[j + 1, j′] = {(i′, j′)}, let (i′′, j′′) ∈ E be the square of E with the largest i′′

satisfying i′′ ≤ i, j′′ ≥ j′ and E ∩ [i′′, i]× [j′, j′′] = {(i′′, j′′)}; symmetrically, let
(i′′′, j′′′) be the square of E with the largest j′′′ satisfying j′′′ ≤ j, i′′′ ≥ i′ and
E ∩ [i′, i′′′]× [j′′′, j] = {(i′′′, j′′′)}. We have

r(i′, j′) ≥ r(i, j) + rne(i, j) + rsw(i, j)− rne(i′′, j′′)− rsw(i′′′, j′′′).

The alternative rank functions rne, rsw and rse are defined by:

rne(i, j)
def
= i− r(i, j) = #{ dots northeast of (i, j)},

rsw(i, j)
def
= j − r(i, j) = #{ dots southwest of (i, j)},

rse(i, j)
def
= n− (i+ j) + r(i, j) = #{ dots southeast of (i, j)}

As mentioned in Macdonald’s book [5], the white squares of the diagram of a permu-
tation w correspond exactly to the inversions of w: (i, j) is a white square exactly
when both w(i) > j and i < w−1(j). As observed by Fulton, every row with a white
corner corresponds to a descent: if (i, j) is a white corner, then w(i + 1) ≤ j while
w(i) > j, so w(i+1) < w(i); conversely, if w(i+1) < w(i), then the square (i, w(i+1))
must be white, so there must be a white corner in row i.

3.1 Arbitrary permutations

We shall begin by studying the distribution of ranks of white corners for arbitrary
permutations in Sn. Define Pn(x) to be the polynomial that keeps track of the
distribution of ranks:

Pn(x)
def
=

∑
w∈Sn

∑
c∈E(w)

xrw(c)

Define P ne
n (x), P sw

n (x) and P se
n (x) in the analogous way, that is, with the rank function

taken to be rne
w , rsw

w and rse
w respectively. We shall prove that P sw

n (x) = P ne
n (x) and,

more surprisingly, Pn(x) = P se
n (x) by considering the two involutions w 7→ w−1

(transposition of the permutation matrix) and w 7→ rt w (rotation of the matrix
180◦).
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Lemma 3.2 By transposition, we have∑
c∈E(w)

xr
ne
w (c) =

∑
c∈E(w−1)

xr
sw
w−1(c),

and hence P sw
n (x) = P ne

n (x). By rotation 180◦, we have∑
c∈E(w)

xrw(c) =
∑

c∈E(rt w)

xr
se
rt w(c),

and hence P se
n (x) = Pn(x).

Proof Clearly, transposition of the permutation matrix induces a transposition
of the set of ranked white corners, and then the first statement follows from the
definitions of rne

w and rsw
w .

Similarly, for the second statement it is enough to prove that if (i, j) is a white
corner in w, then (n−i, n−j) must be a white corner in rt w, since, by the definitions,
rw(i, j) = rse

rt w(n−i, n−j). First note that the square (i, j) of the permutation matrix
is mapped to n − i + 1, n − j + 1 under rotation. If (i, j) is a white corner of the
diagram of w, we know that the dots in rows i and i+ 1 and in columns j and j + 1
must be placed in squares (i, c), (i + 1, c′), (r, j) and (r′, j + 1) respectively, where
c > j, c′ ≤ j, r > i and r′ ≤ i. After rotation of the permutation matrix, this means
that rt w has dots in squares (n− i, n−c′+1), (n− i+1, n−c+ 1), (n−r′+ 1, n− j),
(n− r+ 1, n− j + 1), and the inequalities above give that this dot placement makes
(n− i, n − j) a white corner of the diagram of rt w. 2

In Table 1 and Table 2 we have tabulated the polynomials Pn(x) and P ne
n (x)

for small n. The value of Pn(1) is of course the sum of the coefficients, which is
equal to the total number of white corners of all permutations in Sn, so in particular
Pn(1) = P ne

n (1).

n Pn(x) Pn(1)

2 1 1
3 5 + 1x 6
4 26 + 9x+ 2x2 37
5 154 + 70x+ 26x2 + 6x3 256
6 1044 + 562x+ 268x2 + 102x3 + 24x4 2000
7 8028 + 4860x+ 2700x2 + 1308x3 + 504x4 + 120x5 17520
8 69264 + 45756x+ 28224x2 + 15828x3 + 7728x4 + 3000x5 + 720x6 170520

Table 1: Table of Pn(x), the rank generating function for white corners of Sn.
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Theorem 3.3 The total number of white corners in Sn is

Pn(1) = (n− 1)!

(
n−1

3

)
+ 6

(
n
2

)
6

.

By dividing with n!, the number of permutations in Sn, we obtain(
n−1

3

)
+ 6

(
n
2

)
6n

as the average number of white squares.

Proof When is (i, j) a white corner? There are four cases:
Case 1: Dots in (i+1, j) and (i, j+1). The n−2 dots that are left can be placed

in (n− 2)! ways.
Case 2: Dots in (i+ d1, j), (i+ 1, j− d2) and (i, j+ 1), where d1 ∈ [1, n− (i+ 1)]

and d2 ∈ [1, j − 1]. The n− 3 dots that are left can be placed in (n− 3)! ways.
Case 3: Dots in (i, j+ d′1), (i−d′2, j+ 1) and (i+ 1, j), where d′1 ∈ [1, n− (j+ 1)]

and d′2 ∈ [1, i− 1]. The n− 3 dots that are left can be placed in (n− 3)! ways.
Case 4: Dots in (i+ d1, j), (i + 1, j − d2), (i, j + d′1), and (i − d′2, j + 1), where

d1 ∈ [1, n− (i+ 1)], d2 ∈ [1, j − 1], d′1 ∈ [1, n− (j + 1)] and d′2 ∈ [1, i− 1]. The n− 4
dots that are left can be placed in (n− 4)! ways.

Hence, the total number of white corners will be the sum of the number of occur-
rences of each square as a white corner:

Pn(1) =
n−1∑
i=1

n−1∑
j=1

[(n− 2)! + (n− (i+ 1))(j − 1)(n− 3)! + (n− (j + 1))(i− 1)(n− 3)!+

+(n− (i+ 1))(j − 1)(n− (j + 1))(i− 1)(n − 4)!]

By standard summation formulas, this sums up to (n− 1)!(
(
n−1

3

)
+ 6

(
n
2

)
)/6. 2

Returning to the table for Pn(x), one might or might not be familiar with the
sequence 1, 5, 26, 154, 1044, 8028, . . . of the values of Pn(0), that is, the constant terms.
They are obtained as a weighted sum of (signless) Stirling numbers of the first kind,
as we shall see. Following Stanley [6], we denote these Stirling numbers by c(n, k),
defined as the number of permutations w ∈ Sn with exactly k cycles.

Proposition 3.4 The number of rank zero white corners of permutations in Sn is

Pn(0) =
n∑
k=0

(k − 1)c(n, k).
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Proof There is a white corner with rank zero in row i precisely when the dot in
row i + 1 is to the left of all previous dots, that is, precisely w(i + 1) is a left-to-
right minimum of w on word-form, other than the first element of the word, which is
trivially a left-to-right minimum. Stanley [6] gives a simple bijection from Sn to Sn
that takes permutations with k left-to-right minima to permutations with k cycles.
Thus, instead of summing the number of rank zero white corners, we may sum the
number of cycles minus one, and

∑
w∈Sn

(−1 + # of cycles in w) =
n∑
k=0

(k − 1)c(n, k).

2

Let us now shift attention to the northeast-rank function rne
w and Table 2.

n P ne
n (x)

2 1x
3 4x+ 2x2

4 19x+ 12x2 + 6x3

5 108x+ 76x2 + 48x3 + 24x4

6 718x+ 544x2 + 378x3 + 240x4 + 120x5

7 5472x+ 4392x2 + 3240x3 + 2256x4 + 1440x5 + 720x6

8 47052x+ 39600x2 + 30564x3 + 22464x4 + 15720x5 + 10080x6 + 5040x7

Table 2: Table of P ne
n (x), the northeast-rank generating function for white corners of

Sn.

In the table of P ne
n (x) = an−1x + an−2x

2 + . . . + a1x
n−1 one recognizes that a1 =

(n−1)!, a2 = 2a1, and for the other coefficients we have that ak > ka1. This behavior
is explained by the following proposition.

Proposition 3.5 Let E ′(w) be the set of white corners of w that are the last white
corners in their rows. Then for 1 ≤ t < n,∑

w∈Sn
# {c ∈ E ′(w) : rsw

w (c) = t} = (n− t)(n− 1)!

Proof We will prove the proposition by induction on n. It is trivially true for n = 2.
Given a permutation matrix w ∈ Sn, we remove the first row and the column of the
dot in the first row and glue together the two pieces to get a new permutation matrix
w′ ∈ Sn−1. The set of white corners last in a row and their southwest ranks are the
same for w and w′ except for a possible white corner on the first row of w. When
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applied to all the (n− 1)! permutation matrices in Sn with a dot in (1, j) for a fix j,
the procedure gives all permutation matrices in Sn−1 once. There is a white corner
at position (1, j − 1) if and only if the dot on the second row is in one of the first
j − 1 columns. Hence there are (j − 1)(n − 2)! of those with rsw(1, j − 1) = j − 1.
Summing over all j we get, by induction,∑
w∈Sn

# {c ∈ E ′(w) : rsw
w (c) = t} = (n− 1− t)(n− 2)!n+ t(n − 2)! = (n− t)(n − 1)!

2

Remark Observe the interpretation of Proposition 3.5 in terms of descents that

follows from
rsw
w (i, j) = # {k > i : w(k) < w(i)}.

For a given descent w(i) > w(i + 1) we have that rsw
w (i, j) counts the number of

inversions having w(i) as the larger element. Looking at all possible descents in all
permutations of Sn, the number of them having exactly t smaller elements later in
the permutation is (n− t)(n− 1)!.

In the statement of Proposition 3.5 we can replace ”last in their rows” and rsw

with ”first in their rows” and rne. This can be proven easily by the 180◦ rotation
operator rt introduced above. We then get a corresponding interpretation in terms
of descents: Looking at the smaller element in all descents in all permutations of Sn,
the number of them having exactly t larger elements earlier in the permutation is
(n− t)(n− 1)!.

Using the transposition instead, we get a statement about the white corners last
or first in their columns. 2

3.2 321-avoiding permutations

We will here consider the essential set of 321-avoiding permutations.
Define An(x) (and Ane

n (x) etc. in analogy) by summing the ranked white squares
over all 321-avoiding permutations. It should be quite obvious that the property of
being 321-avoiding is invariant under transposition and rotation, so once again we
have the identitites An(x) = Ase

n (x) and Ane
n (x) = Asw

n (x).
In the table of An(x), one can observe (at least) three things: first, An(1) is a

power of four; second, the coefficients of the highest-degree terms are the Catalan
numbers; third, the constant terms An(0) is equal to 3(n − 1)−1

(
2n−2
n

)
. The two

latter observations have unexciting proofs, which we omit. The first observation is
explained better from the Table 4.

In Table 4 one quickly recognizes binomial coefficients from every other row of
Pascal’s triangle. We have the following result, the proof of which is quite long and
hard.
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n An(x) An(1)

2 1 1
3 3 + 1x 4
4 9 + 5x+ 2x2 16
5 28 + 19x+ 12x2 + 5x3 64
6 90 + 68x+ 51x2 + 33x3 + 14x4 256
7 297 + 240x+ 197x2 + 150x3 + 98x4 + 42x5 1024
8 1001 + 847x+ 735x2 + 609x3 + 466x4 + 306x5 + 132x6 4096

Table 3: Table of An(x), the rank generating function for white corners of 321-avoiding
permutations in Sn.

n Ane
n (x)

2 1x
3 3x+ 1x2

4 10x+ 5x2 + 1x3

5 35x+ 21x2 + 7x3 + 1x4

6 126x+ 84x2 + 36x3 + 9x4 + 1x5

7 462x+ 330x2 + 165x3 + 55x4 + 11x5 + 1x6

8 1716x+ 1287x2 + 715x3 + 286x4 + 78x5 + 13x6 + 1x7

Table 4: Table of Ane
n (x), the northeast-rank generating function for white corners of

321-avoiding permutations in Sn.

Lemma 3.6 The coefficients of Ane
n (x) come from the last half of row 2n − 3 of

Pascal’s triangle, that is,

Ane
n (x) =

n−1∑
r=1

(
2n− 3

n− 1− r

)
xr.

By summing these binomial coefficients, we immediately get a proof of the ap-
pealing result that the we conjectured from the first table:

Theorem 3.7 The total number of white corners in 321-avoiding permutations in Sn
is

An(1) = Ane
n (1) = 22n−4.

By dividing by Cn, the number of 321-avoiding permutations in Sn, we get the average
size of the essential set to be

22n−4

Cn
∼
√
π

16
n3/2
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Now let us proceed with the proof of Lemma 3.6, which stated that the total
number of white corners ranked r in the set of all 321-avoiding permutations in Sn
is
(

2n−3
n−1−r

)
. Here, “rank” will always refer to the northeast-rank rne(i, j) that counts

the number of dots northeast of (i, j).
Our approach will be to count the number of 321-avoiding permutations in Sn

that has a rank r white corner in a given square (i, j). What will such a permutation
matrix look like? It will be convenient in this context to define (i, j)ne to be the
square such that the area to the northeast, where the rank function count the dots,
is an i× j-rectangle, see Figure 5.

r dots

i

j

n−j−1

i−1

n−i−1

j−1

i−r
dots

j−r dots

n+r−i−j
dots

Figure 5: A 321-avoiding permutation with a northeast-rank r white corner at (i, j)ne.

The bold-marked square is (i, j)ne. In the striped areas, that is, in the squares
north of (i, j)ne in the same column and south of (i, j)ne in the next column, as well as
in the squares west of (i, j)ne in the same row, and east of (i, j)ne in the next row, we
know there can be no dot since (i, j)ne is a white corner. This gives a decomposition
of the rest of the matrix in four areas: northeast, where the rank say there are r dots;
northwest, where there must be a dot in every one of the first j rows that does not
contain one of the r counted dots, so j − r dots in all; southeast, where there must
analogously be i − r dots; and southwest, where the remaining n + r − (i + j) dots
must be.

Lemma 3.8 Let γ(i, j, r) be the number of 321-avoiding permutations in Sn that have
a white corner at (i, j)ne of northeast-rank r. Then γ(i, j, r) is 0 if i+ j > n+ r − 1
and otherwise[(

n− 2 + i− j
i− r

)
−
(
n− 2 + i− j
i− r − 1

)][(
n− 2 + j − i

j − r

)
−
(
n− 2 + j − i
j − r − 1

)]
.

Proof Both the southwest and the northeast area must contain at least one dot,
which is possible only if i + j > n + r − 1. The permutation can be 321-avoiding
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only if the dots in the northeast area, as well as in the southwest area, lie in a
strictly falling spread, since any violating pair would form a 321-pattern together
with any dot in the other area. Thus, the positions of these dots are determined by
the positioning of the dots in the northwest and southeast areas. For these areas, it
is easy to see that it is necessary and sufficient that the dot placement is extendably
321-avoiding. (For the southeast area, the extension is to the north and west, but it
is completely analogous to the extension to the south and east discussed earlier.) By
Theorem 2.1, such a pair of extendably 321-avoiding dotted rectangles can be chosen
in [

(
n−2+i−j

i−r

)
−
(
n−2+i−j
i−r−1

)
][
(
n−2+j−i
j−r

)
−
(
n−2+j−i
j−r−1

)
] ways. 2

We now need to sum these numbers for all squares. To do this we need the
following result, which we have not been able to find in the literature but which most

certainly have been discovered many times before: Let Fm(x)
def
=
∑
n

(
2n+m
n

)
xn, for

any integer m. Then

Fm(x) =
1√

1− 4x

(
1−
√

1− 4x

2x

)m
,

as can be proved by induction through clever use of the standard recurrence for the
binomial coefficients.

Lemma 3.9 For any integers k and m, the following identity holds:

∑
n1+n2=k

[(
m+ 2n1

n1

)
−
(
m+ 2n1

n1 − 1

)][(
m+ 2n2

n2

)
−
(
m+ 2n2

n2 − 1

)]
=

(
2m+ 1 + 2k

k

)
−
(

2m+ 1 + 2k

k − 1

)

Proof The statement corresponds to the generating function identity

(Fm(x)− xFm+2(x))2 = F2m+1 − xF2m+3(x),

which can be verified by direct computation from the explicit expression for Fm(x).
2

Now we are able to sum the numbers for every diagonal, that is, squares (i, j)ne

with fix i+ j.

Lemma 3.10 Fix an integer k and a rank r. Among all 321-avoiding permutation
in Sn, the total number of northwest-rank r white corners in squares (i, j)ne such that

i+ j = k + 2r is 0 if i+ j > n + r − 1, and
(

2n−3
k

)
−
(

2n−3
k−1

)
otherwise.
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Proof We are computing
∑
i+j=k+2r γ(i, j, r). By Lemma 3.8, and after the substi-

tutions n1 := i− r, n2 := j − r,m := n− 2− k, this sum takes the form

∑
n1+n2=k

[(
m+ 2n1

n1

)
−
(
m+ 2n1

n1 − 1

)][(
m+ 2n2

n2

)
−
(
m+ 2n2

n2 − 1

)]

Thanks to Lemma 3.9, this is equal to
(

2m+1+2k
k

)
−
(

2m+1+2k
k−1

)
. Doing the substitutions

backwards, we obtain the desired result. 2

At last we can prove Lemma 3.6. The total number of rank r white corners is of
course the sum over all the diagonals {(i, j)ne : i + j = k + 2r}, k ≤ n + r − 1. By

Lemma 3.10 this is (
(

2n−3
n+r−1

)
−
(

2n−3
n+r−2

)
)+(

(
2n−3
n+r−2

)
−
(

2n−3
n+r−3

)
)+(

(
2n−3
n+r−3

)
−
(

2n−3
n+r−4

)
)+. . .,

so all terms except for the first cancel in pairs. Hence the result is
(

2n−3
n+r−1

)
, as claimed.

2

3.3 Vexillary permutations

Let Vn denote the set of vexillary permutations in Sn. By summing only over permu-
tations in Vn we get another polynomial:

Vn(x)
def
=

∑
w∈Vn

∑
c∈E(w)

xrw(c)

As we did for Pn(x) in the Sn case, define V ne
n (x), V sw

n (x) and V se
n (x) in the analogous

way.
The two maps on permutation matrices that we used in the lemma above behave

well on vexillary permutations; recall Fulton’s description of these as having no pair
of white corners (i, j) and (i′, j′) with i < i′ and j < j′. Transposition of the matrix
induces a transposition of the white corners, while rotation of the matrix induces
a rotation of the white corners with an additional translation of (−1,−1), and the
vexillary property is evidently invariant under both transposition, rotation and trans-
lation of the pattern of white corners. Hence, the same result holds in the vexillary
case:

Lemma 3.11 V sw
n (x) = V ne

n (x), and V se
n (x) = Vn(x). 2

Below are the tables for Vn(x) and V ne
n (x) for n = 2, 3, . . . , 8. Vn(1) = V ne

n (1) is
the total number of white corners of all the permutations in Vn, that is, of all vexillary
permutations in Sn.
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n Vn(x) Vn(1)

2 1 1
3 5 + 1x 6
4 25 + 9x+ 1x2 35
5 133 + 65x+ 13x2 + 1x3 212
6 749 + 446x+ 123x2 + 17x3 + 1x4 1336
7 4422 + 3034x+ 1039x2 + 199x3 + 21x4 + 1x5 8716
8 27147 + 20752x+ 8342x2 + 2000x3 + 293x4 + 25x5 + 1x6 58560

Table 5: Table of Vn(x), the rank generating function for white corners of Vn

Remark We would like very much an expression for Vn(1), the total number of
white corners of permutations in Vn, but it has eluded us. By using the same approach
as for 321-avoiding permutations in section 3.2 one easily proves that

Vn(x) =
∑

(i,j)∈[1,n]×[1,n]

n−2∑
r=0

v(i, n− j, i−m)v(j, n− i, j −m),

where v(i, j,m) is the number of i × j-matrices properly dotted with m dots such
that (1) there is a dot in row i and in column 1; and (2) by extending the matrix
with dotted columns to the west and dotted rows to the south, a vexillary permutation
matrix can be obtained. However, since v(n, n, n) = |Vn|, these numbers are evidently
not easy to come by, see the remark at the end of this paper. 2

From observation in the table, we can at least state the following conjecture with
a fair degree of certitude.

Conjecture 3.12 For fixed integer k ≥ 2 and variable n, the coefficient of xn−k in
Vn(x) can be expressed as a polynomial in n of degree k − 2.

We have been able to prove this for k = 2 and k = 3.
For V ne

n (x) at least we have obtained some partial results. Let vn denote |Vn|, the
number of permutations in Sn that are vexillary. The number sequence v1, v2, v3, . . .
starts 1, 2, 6, 23, 103, 513, . . . , see the remark below.

Proposition 3.13 In V ne
n (x), the coefficients of xn−1 and xn−2 are vn−1 and 2vn−1

respectively.

Proof The only possibility for a white corner c with rne(c) = n− 1 is c = (n− 1, 1)
in which case the dot of column 1 is in (n, 1). But then the permutation is vexillary
if and only if the permutation submatrix [1, n− 1]× [2, n] is vexillary, that is, having
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n V ne
n (x)

2 1x
3 4x+ 2x2

4 17x+ 12x2 + 6x3

5 80x+ 63x2 + 46x3 + 23x4

6 410x+ 339x2 + 278x3 + 206x4 + 103x5

7 2248x+ 1910x2 + 1644x3 + 1375x4 + 1026x5 + 513x6

8 13006x+ 11245x2 + 9931x3 + 8722x4 + 7373x5 + 5522x6 + 2761x7

Table 6: Table of V ne
n (x), the northeast-rank generating function for white corners of

Vn

the white corners in a spread from southwest to northeast. Hence, there are vn−1

white corners c with rne(c) = n− 1 among vexillary n-permutations.
For northeast-rank n − 2 white corners, the reasoning is almost similar but in

several cases. We simply sketch it here: Either there is a dot in (n− 1, 1), in which
case the permutation will be vexillary precisely when the submatrix where row n− 1
and column 1 are deleted is vexillary. There are vn−1 of these, and we will always get a
white corner of northeast-rank n−2 in row n−2. Similarly, we get vn−1 permutations
with the white corner in column 2 when there is a dot in (n, 2). Now we have counted
twice the cases with dots both in (n−1, 1) and (n, 2), so these must be subtracted, but
they correspond bijectively to the cases where there are dots in (n, 1) and (n− 1, 2),
and these shall be added since they give a white corner of proper rank in (n − 2, 2).
These are all cases, so we get in all 2vn−1 white corners of northeast-rank n− 2. 2

Remark There is no really nice formula known for vn. However, J. West has
proved the formula vn =

∑
|λ|=n,l(λ)≤3(fλ)2; the interested reader is refered to Mac-

donald [5, p. 22], where the above formula, combined with results of A. Regev, is
said to imply the following asymptotic: vn ∼ c9n

n4 , where c is some constant. 2

1 Stockholm University, Stockholm, Sweden; kimmo@nada.kth.se
2 KTH, Stockholm, Sweden; linusson@math.kth.se

References

[1] S. Billey, W. Jockusch, and R. P. Stanley, Combinatorial properties of Schubert
polynomials, J. Algebraic Comb. 2 (1993), 345–374.



the electronic journal of combinatorics 2 (1995), #R6 18

[2] K. Eriksson and S. Linusson, Combinatorics of Fulton’s essential set, preprint,
1994.

[3] W. Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal
formulas, Duke Math. J. 65 (1992), 381–420.

[4] D. E. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley,
Reading, MA, 1973.

[5] I. G. Macdonald, Notes on Schubert polynomials, Département de mathé-
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