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Abstract

We consider a leader election algorithm in which a set of distributed ob-
jects (people, computers, etc.) try to identify one object as their leader. The
election process is randomized, that is, at every stage of the algorithm those
objects that survived so far flip a biased coin, and those who received, say a
tail, survive for the next round. The process continues until only one objects
remains. Our interest is in evaluating the limiting distribution and the first
two moments of the number of rounds needed to select a leader. We establish
precise asymptotics for the first two moments, and show that the asymptotic
expression for the duration of the algorithm exhibits some periodic fluctuations
and consequently no limiting distribution exists. These results are proved by
analytical techniques of the precise analysis of algorithms such as: analytical
poissonization and depoissonization, Mellin transform, and complex analysis.

1 Introduction

Consider a group of n people (users, computers, objects, etc.) sharing a scarce re-

source (e.g., channel, CPU, etc.). The following elimination process can be used to

find a “winner” or a “leader” that has undisputed and uncontested access to the re-

source (cf. [bb], [fms], [prodinger]): All objects involved toss a biased coin, and all

players to throw heads are losers while those who throw tails remain candidate win-

ners and flip the coins again until a single winner (leader) is identified. If all players

throw heads at any stage, the toss is inconclusive and all players participate again

in the contest. How many tosses are needed to identify a winner? The problem was
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posed for a fair (unbiased) coin tossing process by Prodinger [prodinger] (cf. also [

grabner]), who provided the first non-trivial analysis. Recently, for the same fair

coin model, Fill et. al. [fms] find the limiting distribution for the number of rounds.

In this paper, we analyze the same problem but when the coins involved are biased,

that is, the probability p of throwing a head is not equal to one half (p 6= 1
2
). In

passing, we should mention that such a randomized elimination algorithm has some

applications, notably in electing a “leading” computer after a synchronization is lost

in a distributed computer network (e.g., token lost in a token passing ring network).

We also remark that a formula for the exact distribution has been given by Fill et.

al. [fms] for the fair model and by Fill [fill]for the biased case.

The above elimination process can be represented as a incomplete trie (cf. [fms],

[mahmoud], [prodinger]) in which only one side of the trie is developed while the

other side is pruned (all those players who throw heads do not participate any more

in the process). Therefore, the number of throws needed to find the winner (leader)

is equivalent to the height in such a incomplete trie. Accordingly, we shall call the

duration of the above elimination process as height, and we study asymptotics of its

moments and the limiting distribution, if it exists.

Tries have been extensively analyzed in the past including the height. The reader is

referred to Knuth [knuth] and Mahmoud [mahmoud] for updated account on recent

developments in this area. In fact, tries and other digital trees were used as a testbed

for the “precise analytical analysis of algorithms”. Several new analytical techniques

were developed in the process of analyzing different parameters of digital trees (cf. [

ffh], [fms], [grabner], [js1], [js2], [knuth], [rjs], [schmid], [spa1]). Recently, the

focus of the research was moved towards developing analytical techniques that can

handle limiting distributions and large deviations results (cf. [fms], [jr1], [jr2], [js2],

[js3]).

In this paper, we continue recent lines of research and establish asymptotic distri-

bution together with the first two moments of the height. The novelty of this work

lies in deriving an asymptotic solution to a certain functional equation that often

arises in the analysis of algorithms and data structures (cf. [ffh],[schmid]).

Namely, we consider functional equations of the following type:

f(z) = f(pz) + f(qz)e−pz + a(z) (1)

where p + q = 1 and a(z) is a given function. The point to observe is that there is

a coefficient depending on z in front of f(qz) which makes the problem interesting

(otherwise a standard approach can be applied; cf. [frs]. While a first-order asymp-

totic for such an equation, when z →∞ in a cone around the positive axis, is rather

easy to obtain, second-order asymptotics are more challenging. This demands an

evaluation of some constants for which a closed-form solution does not exist. We

provide a quickly converging numerical procedure to assess these constants. We must

mention that functional equations of type (1) could be alternatively treated by the
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method proposed in [ffh] (cf. [schmid]), however, it seems to us that our method is

more straightforward. In addition, in [4] the problem of evaluating the constants was

not discussed.

When dealing with the limiting distribution, we use a two steps approach recently

advocated in some papers (notably: [fms], [jr1], [jr2], [js2]): That is, we first pois-

sonize the problem and then depoissonize it. By poissonization we mean to replace

the fixed size population model (i.e., fixed n) by a model in which the number of per-

sons involved is Poisson distributed with mean n. Such a model leads to a functional

equation of type (1): More precisely, for all integers k ≥ 0

fk+1(z) = fk(pz) + e−pzfk(qz) .

This equation is solved inside a cone, and then depoissonized in order to obtain an

asymptotic distribution of the original fixed size model. Actually, during the course of

establishing the limiting distribution we realize that its asymptotic expression exhibits

some fluctuations leading us to a conclusion that the height does not possess a limiting

distribution. This was already observed for the height of tries (cf. [devroye] ) and

symmetric (unbiased coin tossing) incomplete tries (cf. [fms]).

The paper is organized as follows. The next section presents our main results:

In Theorem 1 we discuss asymptotics of the mean and the variance of the height.

The next Theorem 2 provides an asymptotic expression for the distribution of the

height. We close this section with a brief discussion of main consequences of our

results. Section 3 contains the proofs of both Theorem 1 and Theorem 2. Since, as

we already mentioned above, we work on the Poisson model instead of the original

model, we need a tool of depoissonization. For the completeness of our presentation,

we briefly discuss a depoissonization lemma of Jacquet and Szpankowski [js3] in

Section 3.1. Then, Theorem 1 is proved in Section 3.2, and Theorem 2 in Section 3.3.

2 Main Results

In this section, we present our main results. To recall, n people use the randomized

elimination algorithm described above to identify a leader. Let p be the probability of

of survival, and q = 1− p. By Hn we denote the number of tosses needed to identify

the winner.

As mentioned before, the elimination process can be represented as an incomplete

trie. Having this in mind, one can easily derive the basic recurrence equation for the

generating function of Hn. Indeed, let for n ≥ 1, Gn(u) = EuHn =
∑
k≥0 P(Hn = k)zk

be the probability generating function of Hn, where u is a complex number. We

further let G0(u) = 0 for convenience. (This corresponds to defining H0 = ∞; as

pointed out by Jim Fill [fill], this convention is reasonable since we never succeed to

choose a leader without any candidates.)
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Then, G1(u) = 1 and for n ≥ 2

Gn(u) = u
n∑
k=0

(
n

k

)
pkqn−kGk(u) + uqnGn(u) . (2)

The first term of the above is a consequence of the Bernoulli-like split (after the first

round) of n players into those who still stay in the game. Clearly, the remaining

players have Hn − 1 tosses to finish the game. The second term of the above, takes

care of the inconclusive throw (when all players throw heads).

In this paper, we derive the distribution of Hn as well as the first two moments,

that is, EHn and Var Hn. We use the following abbreviated notation: xn = EHn

and wn = EHn(Hn−1). Observing that xn = G′n(1) and wn = G′′n(1), we derive from

(2):

xn = 1 + qnxn +
n∑
k=0

(
n

k

)
pkqn−kxk , n ≥ 2 , (3)

wn = 2(xn − 1) + qnwn +
n∑
k=0

(
n

k

)
pkqn−kwk , n ≥ 2 , (4)

with x0 = x1 = w0 = w1 = 0.

In the next section, we solve asymptotically the above recurrence equations using

poissonization, Mellin transform and depoissonization. This results in our first main

finding.

Theorem 1 Let P := 1/p and χk := 2πik/ lnP . Then:

(i) The mean EHn of the height admits the following asymptotic formula

EHn = logP n+
1

2
− 1− γ − T ∗1 (0)

lnP
+ δ1(logP n) +O(1/n) (5)

where γ = 0.577 . . . is the Euler constant, and

T ∗1 (0) =
∞∑
n=2

xnq
n

n
, (6)

where xn must be computed from (3) (observe that the series converges geometrically

fast). The function δ1(x) is periodic function of small magnitude (e.g., for p = 0.5

one proves |δ1(x)| ≤ 2× 10−5) given by

δ1(x) = −∑
k 6=0

αke
−2πikx (7)

where

αk =
(1 + χk)Γ(χk)− T ∗1 (χk)

lnP
,

Γ(s) is the Euler gamma function (cf. [as]) and T ∗1 (s) is given by (37).
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Table 1: Numerical evaluation of the constants T ∗1 (0), T ∗′1 (0), T ∗2 (0), and the variance

Var Hn for various p ∈ [0.2..0.8]

p T ∗1 (0) T ∗′1 (0) T ∗2 (0) Var Hn

0.2 2.36 2.38 9.32 5.83

0.3 1.22 1.09 3.41 3.58

0.4 0.70 0.56 1.64 2.97

0.5 0.42 0.30 0.95 3.12

0.6 0.25 0.17 0.62 4.07

0.7 0.15 0.09 0.45 6.68

0.8 0.08 0.04 0.35 14.84

(ii) The variance Var Hn = EHn(Hn − 1) + EHn − (EHn)2 satisfies

Var Hn =
π2/6− 1 + 2(1− γ)T ∗1 (0)− 2T ∗′1 (0)− (T ∗1 (0))2

ln2 P
+

2T ∗1 (0) + T ∗2 (0)

lnP
+

1

12

− [δ2
1]0 + δ2(logP n) +O

(
lnn

n

)
(8)

where

T ∗′1 (0) =
∞∑
n=2

xnq
n

n!
Γ′(n) =

∞∑
n=2

xnq
n

n
Ψ(n) , (9)

where Ψ(z) = Γ′(z)/Γ(z) is the psi-function. Observe that for natural n we have

Ψ(n) = −γ +Hn−1 where Hn is the n-th Harmonic number. The constant T ∗2 (0) can

be computed as

T ∗2 (0) =
∞∑
n=2

wnq
n

n

where wn is given by the recurrence (4). Finally, δ2(x) is a periodic continuous

function of zero mean and small amplitude. The constant [δ2
1]0 =

∑
k 6=0 |αk|2 is the

zeroth term of δ2
1(x) and its value is extremely small (e.g., for p = 0.5 one proves that

[δ2
1]0 ≤ sup |δ1(x)|2 ≤ 4× 10−10).

In Table 1 we present numerical values of the constants T ∗1 (0), T ∗′1 (0), T ∗2 (0), and

the asymptotic equivalence of the variance Var Hn given by (8) (for large n) as a

function of p. In particular, we verify that our formula (8) on the variance agrees

with that of Fill et al. [fms] for p = 0.5, where the exact value 1 − γ = 0.422 . . . is

given.

In order to formulate our next result concerning the distribution of Hn we need a

new definition. Let a measure µ be defined on the positive real axis as follows: Par-

tition the positive real axis into an infinite sequence of consecutive intervals I0, I1, . . .
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such that Ik has length (q/p)s(k), where s(k) is the number of 1’s in the binary ex-

pansion of k. Thus, I0 = [0, 1], I1 = [1, 1 + q/p], etc. Note that the total length of

the first 2m intervals I0, ..., I2m−1 is p−m, and that these 2m intervals are obtained by

repeated subdivisions of [0, p−m], each time dividing each interval in the proportions

p : q. Given these intervals, define µ by putting a point mass |Ik| at the right endpoint

of Ik, for each k = 0, 1, ... Note that for p = q = 1/2, µ consists of a unit mass at each

positive integer.

Now, we are in a position to present our second main finding:

Theorem 2 The following holds, uniformly for all integers k,

P(Hn ≤ k) = F (pkn) +O(n−1), (10)

where

F (x) = x
∫ ∞

0
e−xtdµ(t) =

∫ ∞
0

e−tdµx(t), (11)

with µx denoting the dilated measure defined as above for the intervals xI0, xI1, . . . .

In particular, when k = blogP nc + κ where κ is an integer, then for large n the

following asymptotic formula is true uniformly over κ

P(Hn ≤ blogP nc+ κ) = pκ−{logP n}
∫ ∞

0
e−tp

κ−{logP n}
dµ(t) +O

(
1

n

)
, (12)

where {logP n} = logP n− blogP nc.

Remarks (i) Limiting Distribution Does Not Exist. The fractional part {logP n}
appearing in Theorem 2 is dense in the interval [0, 1) and does not converge. Thus,

the limiting distribution of Hn − blogP nc does not exist. In fact, we observe that:

lim inf
n→∞ P(Hn ≤ blogP nc+ κ) ≤ pκ−1

∫ ∞
0

e−tp
κ−1

dµ(t) ,

lim sup
n→∞

P(Hn ≤ blogP nc+ κ) ≥ pκ
∫ ∞

0
e−tp

κ

dµ(t) .

(ii) Symmetric Case p = q = 0.5. We observe that for p = q = 0.5 we obtain

F (x) = x
∞∑
j=1

e−jx =
x

ex − 1
,

and our results coincide with those of [fms].

(iii) It is easily seen that limx→0 F (x) = 1 and limx→∞ F (x) = 0. We conjecture that

F (x) is always decreasing, as it is for p = 0.5 by the explicit formula in (ii). If F (x) is

decreasing, then F (px) is a distribution function, and if Z is a random variable with

this distribution, then (10) can be written

P(Hn ≤ k) = P(Z + logP n ≤ k) +O(n−1).
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Hence, in this case, the distribution of Hn is well approximated by the distribution

of dZ + logP ne; for example it follows that the total variation distance between the

two distributions tends to 0 as n → ∞, which is a substitute for the failing limit

distribution.

(iv) It is possible to obtain further terms in the asymptotic formulae in Theorems 1

and 2 using the same methods.

3 Analysis and Proofs

In this section, we prove Theorems 1 and 2 using an analytical approach. In the

next subsection, we transform the problem to the Poisson model (i.e., poissonize it),

which is easier to solve. Then, we apply the Mellin transform (cf. Section 3.2) and

a simple functional analysis (cf. Section 3.3) to obtain an asymptotic solution for

the poissonized moments and the poissonized distribution for the height. Finally, we

depoissonize these findings to recover our results for the original model.

3.1 Poissonization and Depoissonization

It is well known that often poissonization leads to a simpler solution due to unique

properties of the Poisson distribution (cf. [gm]). Poissonization is a technique which

replaces the fixed population model (sometimes called the Bernoulli model) by a model

in which the population varies according to the Poisson law (hence, Poisson model).

In the case of the leader election algorithm, we replace n by a random variable N

distributed according to Poisson with mean equal n. We shall apply analytical pois-

sonization (cf. [grabner], [jr1], [js1], [js2], [rjs]) that makes use of the Poisson

transform (i.e., exponential generating function as shown below). One must observe,

however, that after solving the Poisson model (in most cases we can only solve it

asymptotically!), we must depoissonize to recover the Bernoulli model results. In

this subsection, we first derive functional equations for the Poisson model, and then

present a general depoissonization lemma of Jacquet and Szpankowski [js3] (cf. also

[fms], [jr1], [js1], [js1], [js2], [rjs]) that we apply throughout the paper.

We now build the Poisson model. Let us define

G̃(z, u) =
∞∑
n=0

Gn(u)
zn

n!
e−z ,

X̃(z) =
∞∑
n=0

xn
zn

n!
e−z ,

W̃ (z) =
∞∑
n=0

wn
zn

n!
e−z ,

where Gn(u), xn and wn are expressed as (2)–(4), respectively. They are poissonized

versions of the corresponding quantities in the Bernoulli model.
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Remark If z ≥ 0, then G̃(z, ·) is the probability generating function of HN(z), where

the population size N(z) is random with the Poisson distribution Po(z). Note, how-

ever, that because of our convention G0 = 0 (or H0 = ∞), G̃(z, ·) is a defective

probability generating function. This could be rectified by instead defining H0 = 0,

but our choice is more convenient for us. Similarly, X̃(z) = ∂
∂u
G̃(z, u)|u=1 is for z ≥ 0

the expectation EHN(z) of the height when the population is random Po(z), provided

we here use the convention H0 = 0.

To see the achieved simplifications, we observe that the recurrences (2)–(4) now

become:

G̃(z, u) = uG̃(pz, u) + uG̃(qz, u)e−pz + (1− u)ze−z , (13)

X̃(z) = X̃(pz) + X̃(qz)e−pz + 1− (1 + z)e−z , (14)

W̃ (z) = W̃ (pz) + W̃ (qz)e−pz + 2X̃(z) + 2
(
(e−z − 1) + ze−z

)
(15)

for a complex z. The above functional equations have a simpler form than their

corresponding Bernoulli model equations, but they are far from being trivial. The

main difficulty lies in the fact that there is a factor e−pz in front of G̃(qz, u), X̃(qz)

and W̃ (qz). Observe that in the symmetric case (i.e., p = q = 0.5) these functional

equations reduce to the one analyzed in Szpankowski [spa1] (cf. also [fms], [frs], [

knuth]). We solve these functional equations asymptotically (see the next two sub-

sections) for z large and real. The next step is a depoissonization of these results, and

we present now a general depoissonization result of Jacquet and Szpankowski [js3]

that generalize previous depoissonization lemmas of [jr1], [jr2], [js1], [rjs]. Recall

that a measurable function ψ: (0,∞) → (0,∞) is slowly varying if ψ(tx)/ψ(x) → 1

as x→∞ for every fixed t > 0.

Lemma 1 [Depoissonization Lemma] Assume that G̃(z) =
∑∞
n=0 gn

zn

n!
e−z is an

entire function of a complex variable z. Suppose that there exist real constants a < 1,

β, θ ∈ (0, π/2), c1, c2, and z0, and a slowly varying function ψ such that the following

conditions hold, where Sθ is the cone Sθ = {z : | arg(z)| ≤ θ}:

(I) For all z ∈ Sθ with |z| ≥ z0,

|G̃(z)| ≤ c1|z|βψ(|z|); (16)

(O) For all z /∈ Sθ with |z| ≥ z0,

|G̃(z)ez| ≤ c2e
a|z|. (17)

Then for n ≥ 1,

gn = G̃(n) +O
(
nβ−1ψ(n)

)
. (18)
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More precisely,

gn = G̃(n)− 1
2
nG̃′′(n) +O

(
nβ−2ψ(n)

)
. (19)

The “Big-Oh” terms in (18) and (19) are uniform for any family of entire functions

G̃ that satisfy the conditions with the same a, β, θ, c1, c2, z0 and ψ.

3.2 Analysis of Moments

We now prove Theorem 1 using the Mellin transform and depoissonization techniques.

We thus begin by studying the functions G̃(z, u), X̃(z) and Ṽ (z) defined above, which

satisfy the functional equations (13)–(15). We write f ∗(s) or M(f, s) for the Mellin

transform of a function f(x) of real parameter x, that is,

f ∗(s) =M(f, s) =
∫ ∞

0
f(x)xs−1dx

provided the above integral converges. A beautiful survey on Mellin transform can

be found in [fgd], and we refer the reader to this paper for details concerning Mellin

transform.

The Poisson mean X̃(z) and second factorial moment W̃ (z) satisfy function equa-

tions (14) and (15), respectively. We observe that from the recurrence equations (3)

and (4) we immediately prove that xn = O(ln(n + 1)) and wn = O(ln2(n + 1)).

It follows that X̃ and W̃ are entire functions. Moreover, it follows easily that

X̃(x) = O(ln(x + 1)) for x > 0. In order to apply the depoissonization lemma

we have to extend this estimate to complex arguments in a cone Sθ.

Thus fix θ = π/4, say; we claim that

|X̃(z)| = O(ln(|z|+ 1)), z ∈ Sθ. (20)

This is proved by induction along increasing domains (cf. [js2] as follows: Let ρ =

max(p, q)−1 > 1. Suppose that R and A are such that

|X̃(z)| ≤ A ln(|z|), z ∈ Sθ, 2 ≤ |z| ≤ R. (21)

If now z ∈ Sθ with R ≤ |z| ≤ ρR, then the recursion relation (14) yields, provided

Rmin(p, q) ≥ 2,

|X̃(z)| ≤ |X̃(pz)|+ |X̃(qz)|e−p|z| cos θ + 1 + (1 + |z|)e−|z| cos θ

≤ A ln(|z|) + A ln(p) + A ln(R)e−pR cos θ + 2 + (cos θ)−1. (22)

Now choose R0 ≥ 2/min(p, q) such that ln(p) + ln(R)e−pR cos θ ≤ −δ < 0 for R ≥ R0.

If A ≥ 3/δ cos θ and R ≥ R0, then (22) shows that (21) holds also for z ∈ Sθ with

R ≤ |z| ≤ ρR. Since clearly (21) holds for R = R0 and a suitable large A, (21) holds

by induction for R = ρnR0 for every n ≥ 0 (with the same A) and (20) follows for

|z| ≥ 2; for small |z| we use X̃(z) = O(|z|2), |z| ≤ 2, because x0 = x1 = 0.
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Similarly one proves, using (15) and (20),

|W̃ (z)| = O(ln2(|z|+ 1)), z ∈ Sθ. (23)

In particular, (20) and (23) hold for real x > 0. It follows that the Mellin trans-

forms X∗(s) and W ∗(s) exist (and are analytic) in the strip −1 < <s < 0. (In fact,

since x1 = w1 = 0, they exist for −2 < <s < 0, but we do not need this.)

Let us now concentrate on the first moment. Define

T1(z) = X̃(qz)e−pz . (24)

Then, T1(z) is an entire function and the Mellin transform T ∗1 (s) exists at least for

−2 < <s <∞. Indeed, since every xn ≥ 0, we have

|X̃(z)ez| ≤ X̃(|z|)e|z| (25)

and thus |X̃(z)| ≤ X̃(|z|)e|z|−<z. Hence, if x > 0 and |z − x| < px/4,

|T1(z)| ≤ X̃(q|z|)eq|z|−<z ≤ X̃(q|z|)eqx−x+2|z−x| ≤ X̃(q|z|)e−px/2 = O(e−px/2 ln(1 +x)).

Thus, by Cauchy’s estimate, for every m ≥ 0,

T
(m)
1 (x) = O(x−me−px/2 ln(1 + x)), x > 0.

Since further T
(m)
1 (x) is bounded for 0 ≤ x ≤ 1, the Mellin transform T

(m)∗
1 (s) exists

at least for 0 < <s <∞, and is bounded on each line <s = σ > 0.

Integration by parts yields s(s+ 1) · · · (s+m− 1)T ∗1 (s) = (−1)mT
(m)∗
1 (s+m) and

thus the estimate

|T ∗1 (σ + iτ)| ≤ C(σ,m)

(1 + |τ |)m (26)

for each m ≥ 2 and −2 < σ <∞; C(σ,m) is bounded for σ in a compact interval of

(−2,∞) and m fixed. In particular, T ∗1 (σ + iτ) is integrable in τ for each σ > −2.

We re-write (14) as follows:

X̃(z) = X̃(pz) + T1(z)− (e−z − 1)− ze−z .

Taking the Mellin transform of the above we have, for −1 < <s < 0,

X∗(s) = p−sX∗(s) + T ∗1 (s)− Γ(s)− Γ(s+ 1), (27)

where Γ(·) is the Euler gamma function. Now, we can solve (27) to get

X∗(s) =
Γ(s) + Γ(s+ 1)− T ∗1 (s)

(P )s − 1
, −1 < <s < 0. (28)
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The right hand side extends to a meromorphic function in the half plane −1 < <s <
∞, with poles at χk = 2πik/ ln(P ), k = . . . ,−1, 0, 1, 2, . . .. All poles are simple

except the one at 0 (k = 0), which is double.

It follows from (28) and (26) that for every σ ∈ (−1, 0) ∪ (0,∞), |X∗(σ + iτ)| =
O((1 + τ 2)−1) ∈ L1(dτ). The Mellin (Fourier) inversion formula thus yields for x > 0

the following.

X̃(x) =
1

2πi

∫ −1/2+i∞

−1/2−i∞
x−sX∗(s)ds. (29)

Shifting the line of integration to <s = R > 0 (using the Cauchy residue theorem)

we obtain for any large R,

X̃(x) = O(x−R)−
∞∑
−∞

Resχk(x
−sX∗(s)). (30)

Let αk = ResχkX
∗(s). If k 6= 0, then

αk = ((1 + χk)Γ(χk)− T ∗1 (χk))/ ln(P );

in particular this implies αk = O(|k|−n) for each n > 0. Moreover, for k 6= 0,

Resχk(x
−sX∗(s)) = x−χkResχkX

∗(s) = αke
−2πik log1/p x.

For k = 0, we obtain

Res0(x−sX∗(s)) = − ln(x)/ ln(P ) + Res0X
∗(s) = − log1/p x−

1

2
+

1− γ − T ∗1 (0)

ln(P )
.

Consequently, for every R > 0,

X̃(x) = log1/p x+
1

2
− 1− γ − T ∗1 (0)

ln(P )
+ δ1(log1/p x) +O(x−R), (31)

where δ1(t) = −∑k 6=0 αke
−2πikt is a periodic function with mean 0.

We now apply the depoissonization lemma. We have already verified condition

(I) in (20), with β = 0 and ψ(x) = ln(x+ 1). Condition (O) can be verified similarly,

but it is also possible to avoid induction and use the recursion just once as follows.

First, by (25) and (20), |X̃(z)ez| ≤ X̃(|z|)e|z| ≤ Ce|z| ln(|z| + 1) for every z. Next,

(14) can be written

ezX̃(z) = eqzepzX̃(pz) + eqzX̃(qz) + ez − 1− z,

which thus yields

|ezX̃(z)| ≤ C ln(1 + |z|)
(
ep|z|+q<z + eq|z|

)
+ e<z + 1 + |z|,

and (O) follows.
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Depoissonization Lemma now gives immediately, by (18), the first moment

EHn = xn = logP n+
1

2
− 1− γ − T ∗1 (0)

lnP
+ δ1(logP n) +O(lnn/n). (32)

The error term can be improved to O(1/n), which yields (5), by instead using (19)

and verifying that X̃ ′′(x) = O(x−2), x > 0. The latter estimate is easily obtained by

differentiating (29) twice (moving the derivatives inside the integral) and estimating

the integral by residue calculus as above. The details can be found in [js2], [js3].

Now, the second moment. Let T2(z) = W̃ (qz)e−pz; then the Mellin transform

T ∗2 (s) exists for −2 < <s <∞ and (15) yields, for −1 < <s < 0,

W ∗(s) = p−sW ∗(s) + T ∗2 (s) + 2X∗(s) + 2Γ(s) + 2Γ(s+ 1), (33)

and thus

W ∗(s) =
2X∗(s)
1− p−s +

2Γ(s) + 2Γ(s+ 1) + T ∗2 (s)

1− p−s

=
−2Γ(s)− 2Γ(s+ 1) + 2T ∗1 (s)

((P )s − 1)2
− 2Γ(s) + 2Γ(s+ 1) + T ∗2 (s)

(P )s − 1
. (34)

As above, we can obtain an asymptotic expansion of W̃ (z) by finding the inverse

of the Mellin transform. Thus, the Poisson variance Ṽ (z) = W̃ (z) + X̃(z) − X̃2(z)

becomes, after some lengthy but elementary calculations,

Ṽ (x) =
π2

6 ln2 p
+

1

12
+

2T ∗1 (0) + T ∗2 (0)

ln(P )

+
−1− 2T ∗′1 (0) + 2(1− γ)T ∗1 (0)− (T ∗1 (0))2

ln2 p
+ δ3(log1/p x) +O(x−R)(35)

where δ3(t) = δ2(t) − [δ2
1]0 is a small fluctuating function. Applying now the De-

poissonization Lemma to W̃ (verifying (O) as for X̃), we easily obtain (8). In

fact, it follows as above, using (19), that wn = W̃ (n) + O(lnn/n) ((18) would give

O(ln2 n/n)), and this together with the already proven xn = X̃(n) + O(1/n) yields

Var Hn = wn + xn − x2
n = Ṽ (n) +O(lnn/n) (cf. [js2], [js3]).

To complete the proof of Theorem 1, we need a method of evaluating the constants

T ∗1 (0), T ∗2 (0), and T ∗′1 (0). Let again xn = EHn which we can compute for any n from

the recurrence above. We need an evaluation of the Mellin transform of X̃(z) =∑
n≥2 xn

zn

n!
e−z since x0 = x1 = 0. Thus noting that M(e−z, s) = Γ(s) for <(s) > 0,

and furthermore M(zne−z, s) = Γ(s+ n) for <(s) > −n, we immediately derive

X∗(s) =
∞∑
n=2

xn
n!
M(zne−z, s) =

∞∑
n=2

xn
n!

Γ(s+ n) (36)

provided <(s) ∈ (−2, 0). Observe that the series converges absolutely in this range

by the estimate of xn above.
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Moreover,

T1(z) = X̃(qz)e−pz =
∑
n≥2

xn
(qz)n

n!
e−z =

∑
n≥2

xnq
n

n!
zne−z

and thus, similarly,

T ∗1 (s) =
∞∑
n=2

xnq
n

n!
Γ(s+ n) (37)

provided −2 < <(s) <∞. In particular,

T ∗1 (0) =
∞∑
n=2

xnq
n

n!
Γ(n) =

∞∑
n=2

xnq
n

n
, (38)

which has an exponential rate of convergence.

Now, we can move on and estimate T ∗′1 (0). Taking the derivative of (37) at s = 0

and arguing as before we arrive at the following formula

T ∗′1 (0) =
∞∑
n=2

xnq
n

n!
Γ′(n) =

∞∑
n=2

xnq
n

n
Ψ(n), (39)

where Ψ(s) = Γ′(s)/Γ(s) is the Psi function; recall that for n ≥ 2 we have Ψ(n) =

−γ +Hn−1 (where Hn here is the n-th Harmonic number).

Of course, T ∗2 (0) can be computed in a similar fashion

T ∗2 (0) =
∞∑
n=2

wnq
n

n
. (40)

This completes the proof of Theorem 1.

3.3 Analysis of the Distribution

We now prove Theorem 2. We start with the functional equation (13). After defining

H̃(z, u) = G̃(z, u)/(1− u) we obtain

H̃(z, u) = uH̃(pz, u) + uH̃(qz, u)e−pz + ze−z . (41)

Let now G̃k(z) =
∑∞
n=1 P(Hn ≤ k) z

n

n!
e−z. Then, H̃(z, u) =

∑∞
k=0 u

kG̃k(z) and an

identification of the coefficients of u in (41) yield

G̃0(z) = ze−z

G̃k+1(z) = G̃k(pz) + e−pzG̃k(qz) , k ≥ 0. (42)

We claim that the above functional equation for G̃k(z) is solved by

G̃k(z) = pkz
∫ p−k

0
e−p

kztdµ(t) (43)
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(where µ is defined just above Theorem 2). In fact, the case k = 0 is simple, because

µ restricted to [0, 1] only consists of a point mass at 1, and thus the integral equals

e−z. For k ≥ 1, we use the fact that the measure µ on (p−k, p−k−1] is obtained from

µ on (0, p−k] by a translation and dilation, so that for every function f ,∫ p−k−1

p−k+
f(t)dµ(t) =

q

p

∫ p−k

0
f(p−k +

q

p
t)dµ(t)

and thus ∫ p−k−1

0
f(t)dµ(t) =

∫ p−k

0
f(t)dµ(t) +

q

p

∫ p−k

0
f(p−k +

q

p
t)dµ(t).

It is now easy to see that (43) satisfies (42).

Moreover, (43) trivially holds also for k < 0, with both sides zero; hence (43)

holds for all integers k.

We next observe that, with F (x) defined in (11),

|G̃k(n)− F (pkn)| = pkn
∫ ∞
p−k+

e−p
kntdµ(t) ≤ pkn

∫ ∞
p−k

e−p
kntdt = e−n (44)

when k ≥ 0, and similarly |G̃k(n) − F (pkn)| = F (pkn) ≤ pkne−p
kn + e−n ≤ (n +

1)e−n when k < 0. Thus, to complete the proof of Theorem 2 it suffices to apply

Depoissonization Lemma, provided we verify conditions (I) and (O) uniformly for

all k (and some fixed θ), with β = 0 and ψ = 1. This can be done as above using

induction along increasing domains, but we give a simpler argument. Indeed, in order

to verify (I) we can use the exact formula (43) and observe that for any decreasing

function f ≥ 0 on (0,∞),
∫∞

0 f dµ(t) ≤ ∫∞0 f dt; hence if <z > 0,

|G̃k(z)| ≤ pk|z|
∫ ∞

0
e−p

k<zt dµ(t) ≤ pk|z|
∫ ∞

0
e−p

k<zt dt =
|z|
<z .

Consequently (I) holds, uniformly in k, for any θ < π/2.

For (O) we first observe that

|ezG̃k(z)| ≤
∞∑
n=0

|z|n
n!

= e|z|.

Hence (42) yields, for k ≥ 0,

|ezG̃k+1(z)| ≤ |eqz||epzG̃k(pz)|+ |eqzG̃k(qz)| ≤ eq<z+p|z| + eq|z| ≤ ea|z|

for some a < 1 and z sufficiently large. Since further |ezG̃0(z)| = |z|, also (O) holds

uniformly in k. This completes the proof of Theorem 2.
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[7] Flajolet, P., Régnier, M. and Sotteau, D. Algebraic Methods for Trie Statistics,
Annals of Discrete Mathematics, 25, 145-188, 1985.

[8] Flajolet, P., Gourdon, X., and Dumas, P. Mellin Transforms and Asymptotics:
Harmonic Sums. Theoretical Computer Science, 144, 3–58, 1995.

[9] Gonnet, G. and Munro, J. The Analysis of Linear Probing Sort by the Use of a
New Mathematical Transform, Journal of Algorithms, 5, 451-470, 1984.

[10] Grabner, P. Searching for Losers. Random Structures and Algorithms , 4, 99–110,
1993.
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[12] Jacquet, P. and Régnier, M. Normal Limiting Distribution of the Size of Tries,
Proc. Performance’87, 209-223, North Holland, Amsterdam 1987

[13] Jacquet, P. and Szpankowski, W. Ultimate Characterizations of the Burst Re-
sponse of an Interval Searching Algorithm. SIAM J. Computing , 18, 777–791,
1989.

[14] Jacquet, P. and Szpankowski, W. Asymptotic Behavior of the Lempel-Ziv Pars-
ing Scheme and Digital Search Trees. Theoretical Computer Science, 144, 161–
197, 1995.

[15] Jacquet, P. and Szpankowski, W. Analytical Depoissonization and Its Applica-
tions, Theoretical Computer Science, to appear.



the electronic journal of combinatorics 4 (1997), #R17 16

[16] Knuth, D. The Art of Computer Programming, Vol. 3: Sorting and Searching .
Addison–Wesley, Reading, Massachusetts, 1973.

[17] Kuipers, L. and Niederreiter, H. Uniform Distribution of Sequences. Wiley, New
York, 1974.

[18] Mahmoud, H. Evolution of Random Search Trees . Wiley, New York, 1992.

[19] Prodinger, H. How to Select a Loser. Discrete Math., 120, 149–159, 1993.

[20] Rais, B., Jacquet, P. and Szpankowski, W. Limiting Distribution for the Depth
in PATRICIA Tries. SIAM J. on Discrete Math., 3, 355–362, 1993.

[21] Schmid, U. The Average CRI-length of a Tree Collision Resolution Algorithm in
Presence of Multiplicity-Dependent Capture Effects, Proc. ICALP 92, Vienna,
223-234, 1992.

[22] Szpankowski, W. Solution to a Linear Recurrence Equation Arising in the Anal-
ysis of Some Algorithms. SIAM J. Alg. Disc. Meth., 8, 233–250, 1987.


