Shape Tiling

Kevin Keating & Jonathan L. King

keating@math.ufl.edu & squash@math.ufl.edu University of Florida, Gainesville FL 32611-2082, USA Submitted: 28 July 1996 Accepted: 21 November 1996

ABSTRACT. Given a list $1\times 1, 1\times a, 1\times b, \ldots, 1\times c$ of rectangles, with a, b, \ldots, c non-negative, when can $1 \times t$ be tiled by positive and negative copies of rectangles which are similar (uniform scaling) to those in the list? We prove that such a tiling exists iff t is in the field $\mathbb{Q}(a, b, \ldots, c)$.

When can rectangle $1 \times t$ be packed by (finitely many) squares? DEHN 1903 gave the answer: If and only if t is rational. For irrational t he showed $1 \times t$ not packable by means of what we will call a "Dehn-functional". It is a map **D** from pairs of real numbers to \mathbb{R} (or any abelian group) which satisfies:

$$\mathbf{D}([x+x'] \times y) = \mathbf{D}(x \times y) + \mathbf{D}(x' \times y)$$

$$\mathbf{D}(x \times [y+y']) = \mathbf{D}(x \times y) + \mathbf{D}(x \times y')$$

It is straightforward to check that for a packing of a rectangle $c \times d$ by finitely-many others, $\mathbf{D}(c \times d)$ must equal the sum of the functional applied to each rectangle in the packing. (The analogous statement applies to tiling. See the **Definitions** section, below, for a formal definition of packing and tiling.)

Two recent papers by FREILING & RINNE 1994, and by LACZKOVICH & SZEKERES 1995, turn the question around: For which sidelengths, s, can the square be packed by rectangles similar to $1 \times s$ and $s \times 1$? Employing a Dehn-functional and a theorem of WALL 1945, they give this astonishing answer: Iff s is algebraic over \mathbb{Q} , and all of its conjugates in the complex plane have positive real part. (We shall henceforth refer to such numbers s as **Wall numbers**.)

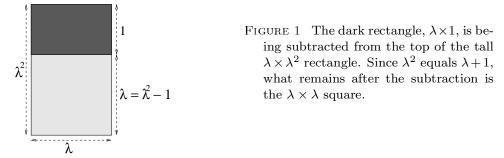
Tilings. Every packing problem has an analogous problem using both positive and negative copies of the prototiles; we will call this operation "signed packing" or "tiling".

It turns out that Dehn's question has the same answer if tiling is allowed: $1 \times t$ can be tiled by squares *iff it can be packed by squares*. However, one sees readily that the [FR,LS] question has a larger answer if tiling is allowed, by considering the Golden Ratio

¹⁹⁹¹ Mathematics Subject Classification. 05B45. Secondary: 52C20 51M25 05B50 12E99.

Key words and phrases. Tiling, packing, Wall number, Dehn's theorem, fields.

 $\lambda \coloneqq \frac{1+\sqrt{5}}{2}$. The conjugate of the Golden Ratio is $\frac{1-\sqrt{5}}{2}$, which is negative. Thus the [FR,LS] theorem guarantees that no square can be packed by rectangles similar to $1 \times \lambda$ and $\lambda \times 1$. Nonetheless, there is a tiling:



The goal of our article is to establish a general tiling theorem for rectangles. A special case of the Tiling Theorem, below, is:

Rectangles with shapes $\{1 \times s, s \times 1\}$ can tile a square IFF $s \in \mathbb{Q}(s^2)$.

Definitions. As usual, let $\mathbb{Q}(x)$ denote the field of rational functions of x, with coefficients in \mathbb{Q} . For ζ a complex number, $\mathbb{Q}(\zeta)$ is the smallest subfield of \mathbb{C} containing ζ . Given a (finite or infinite) subset $S \subset \mathbb{C}$, let $\mathbb{Q}(S)$ be the smallest subfield of \mathbb{C} which includes S.

Identify a rectangle $a \times b$ with a product of half-open intervals, the subset $[0, a) \times [0, b)$ of the plane. A translate, T, of $a \times b$ is a set of the form

$$[t_1, t_1 + a) \times [t_2, t_2 + b)$$

where $t_1, t_2 \in \mathbb{R}$. Say that a collection \mathbb{P} of rectangles **packs** $c \times d$ if we can find a (finite) collection, TRANS, of translates of copies of rectangles in \mathbb{P} such that we have equality

$$\mathbf{1}_{c \times d} = \sum_{T \in \mathrm{TRANS}} \mathbf{1}_{T}$$

between indicator functions. (Indicator function $\mathbf{1}_T$ is 1 for each point (x, y) in T and is 0 for all other points in the plane.)

Say that collection \mathbb{P} *tiles* (or "signed-packs") rectangle $B = b_1 \times b_2$ if: A finite collection TRANS and coefficients $\alpha_T \in \{1, -1\}$ can be found so that

$$\mathbf{1}_B = \sum_{T \in \text{TRANS}} \alpha_T \mathbf{1}_T \,. \tag{2}$$

(All of these definitions make sense in *D*-dimensional Euclidean space. For integer-sided *D*-dimensional polyominoes and bricks, this type of tiling question was studied by BARNES [B1,B2] and KING [Kin]. In particular, given a finite proto-set \mathbb{P} of *D*-dimensional bricks there is an algorithm –which runs, as a function of the number of bits needed to describe a brick $B = b_1 \times b_2 \times \cdots \times b_D$, in linear time– to determine whether *B* is tilable by \mathbb{P} . There is also a computable number $\mathcal{M} = \mathcal{M}(\mathbb{P})$ so that if each sidelength $b_i \geq \mathcal{M}$, then *B* is \mathbb{P} -packable iff it is \mathbb{P} -tilable.)

Lastly, a tiling $\mathbf{1}_{c \times d} = \sum_{T \in \text{TRANS}} \alpha_T \mathbf{1}_T$ is "horizontally splittable" if we can write $c = c^{(1)} + c^{(2)}$ and $\text{TRANS} = \mathcal{C}^{(1)} \sqcup \mathcal{C}^{(2)}$, a disjoint union of non-empty sets, so that:

$$\mathbf{1}_{c^{(i)} \times d} = \sum_{T \in \mathcal{C}^{(i)}} \alpha_T \mathbf{1}_T \,,$$

for i = 1, 2. Define "vertically splittable" analogously.

Tiling (2) is *completely-splittable* if, either: TRANS is a singleton *or* –recursively– the tiling can be split, either horizontally or vertically, into two tilings each of which is completely-splittable.

Shapes. Uniformly scaling rectangle $a \times b$ by *scale-factor* u (a positive number) yields rectangle $au \times bu$. Let the *shape* $a \times b$ represent the set of all uniform-scalings of the rectangle. Consequently, say that \mathbb{P} *shape-packs* $c \times d$ if the union

$$\bigcup_{u \times b \in \mathbb{P}} \{ au \times bu \mid u > 0 \} \quad \text{packs} \quad c \times d.$$

Define " \mathbb{P} shape-tiles $c \times d$ " analogously.

$\S2$ Some Results

We start with a normalization. For each positive number v, a collection $\{1 \times s\}_{s \in S}$ shape-tiles $1 \times t$ iff $\{1 \times vs\}_{s \in S}$ shape-tiles $1 \times vt$. We can choose v so that some product vs is 1. Consequently, we can assume, gratis, that S contains 1.

TILING THEOREM, 3. Suppose $1 \in S$, where S is a (finite or infinite) set of positive reals. Then rectangles $\mathbb{P} \coloneqq \{1 \times s \mid s \in S\}$ shape-tile $1 \times t$ IFF t is in $\mathbb{Q}(S)$, and $t \ge 0$.

Moreover, when $t \in \mathbb{Q}(S)$, there is a tiling which is completely-splittable and uses only scale-factors in the field $\mathbb{Q}(S)$.

PROOF. For a tilable $1 \times t$, it will be temporarily convenient to say that $1 \times (-t)$ is tilable also. Definition (2) extends consistently to rectangles with negative sidelengths, if we identify $\mathbf{1}_{a \times (-b)}$ and $\mathbf{1}_{(-a) \times b}$ with $-\mathbf{1}_{a \times b}$. Thus we can freely remove the " $t \ge 0$ " in the statement of the theorem.

We will make use of the field $K \coloneqq \mathbb{Q}(S)$.

Establishing (\Rightarrow) . If $t \notin K$ then there exists[†] a K-linear functional $f: \mathbb{R} \to \mathbb{R}$ such that f(t) = 0 and f(1) = 1. Thus

$$\mathbf{D}(x \times y) \coloneqq x \cdot f(y)$$

is a Dehn-functional. For any $s \in S$ and real u,

$$\mathbf{D}(u \times su) = u \cdot f(su) = u \cdot s \cdot f(u) = \mathbf{D}(su \times u).$$

[†]We can define the linear functional by picking a K-basis for \mathbb{R} . Or, we can avoid the Axiom of Choice, as follows. Let V be the K-vector-subspace of \mathbb{R} spanned by the sidelengths of all the rectangles in the purported tiling. Extend the collection $\{t, 1\}$ to a K-basis for V, then define f on this basis to get the desired K-linear-functional $f: V \to \mathbb{R}$.

Thus the Dehn-functional $\mathbf{D}(y \times x) - \mathbf{D}(x \times y)$ is zero on every shape in the proto-set \mathbb{P} . Hence this Dehn-functional must be *zero* on each tilable rectangle. On the other hand, its value on $1 \times t$ is the difference $t \cdot 1 - 1 \cdot 0$, which is not zero.

Establishing (\Leftarrow). Let \mathcal{G} , the "good set", be the collection of numbers t such that $1 \times t$ is shape-tilable by the proto-set. Consider good numbers p and q. Then $1 \times (-p)$ is tilable and, by stacking $1 \times p$ on top of $1 \times q$, also $1 \times (p+q)$ is tilable. Thus

The good set is preserved under negation and addition.

What happens when we place $1 \times p$ and $1 \times q$ side-by-side? Scaling each appropriately gives rectangles $q \times qp$ and $p \times pq$. These tile $(p+q) \times pq$. So if $p+q \neq 0$, we conclude that $\frac{pq}{p+q}$ is good. Thus

The good set is preserved under "twisting"

where, for $p \neq -q$, we define the **twist** of p with q to be

$$p \bowtie q \coloneqq \frac{pq}{p+q}$$

Notice that the operation of twisting rectangles $1 \times p$ and $1 \times q$ scales them by scalefactors $\frac{q}{p+q}$ and $\frac{p}{p+q}$, both of which are in K.

Lastly, since the operation of twisting (resp. addition) corresponds to building a tiling which splits horizontally (resp. vertically), the following Field Lemma will complete the proof of the theorem.

FIELD LEMMA, 4. Suppose $1 \in \mathcal{G}$, where \mathcal{G} is a subset of \mathbb{C} which is closed under negation, addition and twisting. Then \mathcal{G} is a subfield of \mathbb{C} .

PROOF. Suppose p is "good", that is, in \mathcal{G} . Then pn and p/n are good, for positive integers n; this follows by induction and using that goodness is preserved under addition and twist. In the following, p and q are assumed to be good.

Reciprocals are good: For $p \neq 0$, note that $(p-1) \bowtie 1 = \frac{p-1}{p}$ is good. Thus $\frac{1}{p}$, which equals $1 - \frac{p-1}{p}$, is good.

Squares are good: Since $(1 \pm p)$ is good, $(1 - p) \bowtie (1 + p)$ is good. Multiplying by -2 yields that $p^2 - 1$ is good, hence p^2 .

Products are good: Since $(p+q)^2 - (p-q)^2$ is good, so is 4pq and thus pq. Addendum. Note that the lemma continues to hold with \mathbb{C} replaced by any field whose characteristic is not two, i.e. $1 + 1 \neq 0$.

Question. By using a Dehn-functional, it is straightforward to see that if the tiling in Theorem 3 is actually a packing, then all the scale-factors must be in $\mathbb{Q}(S)$.

Does this same conclusion hold for all minimum-cardinality tilings? (I.e, those which minimize the cardinality of TRANS, the set of translates).

Closing remark. The [FR,LS] theorem suggests studying the following transitive relation \Rightarrow on the positive reals: $s \Rightarrow t$ if $\{1 \times s, s \times 1\}$ shape-packs $1 \times t$. Restating their result: $s \Rightarrow 1$ iff s is a Wall number. Consequently, these numbers are hereditary; if $s \Rightarrow t$, with t a Wall number, then s is too.

We currently have no understanding of the arrow relationship. Certainly if the minimal polynomial of s is unrelated to that of t, then there is no reason to expect $s \Rightarrow t$. Our theorem can, of course, give no positive result. It does, however, give the negative result that even if s and t have the *same* minimal polynomial, neither need arrow the other—simply because neither tiles the other.

In the normalization of the Tiling Theorem, a collection $\{1 \times s, s \times 1\}$ shape-tiles $1 \times t$ exactly when $st \in \mathbb{Q}(s^2)$. Now suppose lengths s and t have a common minimal polynomial $f(x) \in \mathbb{Z}[x]$ which is cubic with three positive roots. Certainly $st \notin \mathbb{Q}(s^2)$ occurs if $\mathbb{Q}(s)$ fails to contain all three roots. And this will be the case if the discriminant of f is not a perfect square. (See definition and corollary of [Jac, p. 258].) Indeed, we only need find such an f with 3 real roots since, for a sufficiently large integer T, the translated polynomial $x \mapsto f(x - T)$ will have all roots positive.

An example is provided by $f(x) \coloneqq x^3 - 6x + 2$, which has 3 real roots and, by the Eisenstein Criterion [H, Thm. 3.10.2], is irreducible. The discriminant of f equals $-4 \cdot (-6)^3 - 27 \cdot 2^2 = 6^2 \cdot 3 \cdot 7$, which is not a perfect square.

References

- [B1] F.W. Barnes, Algebraic theory of brick packing, I, Discrete Math. 42 (1982), 7–26.
- [B2] F.W. Barnes, Algebraic theory of brick packing, II, Discrete Math. 42 (1982), 129–144.
- [Deh] M. Dehn, Uber die Zerlegung von Rechtecken in Rechtecke, Math. Ann. 57 (1903), 314–332.
- [FR] C. Freiling & D. Rinne, Tiling a Square with Similar Rectangles, Math. Research Letters 1 (1994), 547–558.
- [H] I.N. Herstein, *Topics in Algebra*, Wiley & Sons, 1975.
- [Jac] Nathan Jacobson, Basic Algebra I, 2nd ed., W.H. Freeman, 1974.
- [Kin] J.L.King, Brick Tiling and Monotone Boolean Functions, Preprint available at webpage http://www.math.ufl.edu/~squash/
- [LS] M. Laczkovich & G. Szekeres, Tilings of the Square with Similar Rectangles, Discrete Comput. Geom. 13 (1995), 569–572.