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��������� Given a list 1×1,1×a, 1×b, . . . , 1×c of rectangles, with a, b, . . . , c non-negative,
when can 1 × t be tiled by positive and negative copies of rectangles which are similar
(uniform scaling) to those in the list? We prove that such a tiling exists iff t is in the
field �(a, b, . . . , c).

When can rectangle 1 × t be packed by (finitely many) squares? Dehn 1903 gave
the answer: If and only if t is rational. For irrational t he showed 1 × t not packable
by means of what we will call a “Dehn-functional”. It is a map D from pairs of real
numbers to � (or any abelian group) which satisfies:

D
(
[x+ x′]× y

)
= D(x× y) + D(x′ × y)

D
(
x× [y + y′]

)
= D(x× y) + D(x× y′)

It is straightforward to check that for a packing of a rectangle c × d by finitely-many
others, D(c× d) must equal the sum of the functional applied to each rectangle in the
packing. (The analogous statement applies to tiling. See the Definitions section, below, for a formal

definition of packing and tiling.)
Two recent papers by Freiling & Rinne 1994, and by Laczkovich & Szekeres

1995, turn the question around: For which sidelengths, s, can the square be packed by
rectangles similar to 1 × s and s × 1? Employing a Dehn-functional and a theorem
of Wall1945, they give this astonishing answer: Iff s is algebraic over �, and all of its
conjugates in the complex plane have positive real part. (We shall henceforth refer to
such numbers s as Wall numbers .)

Tilings. Every packing problem has an analogous problem using both positive and
negative copies of the prototiles; we will call this operation “signed packing” or “tiling”.

It turns out that Dehn’s question has the same answer if tiling is allowed: 1× t can
be tiled by squares iff it can be packed by squares. However, one sees readily that the
[FR,LS] question has a larger answer if tiling is allowed, by considering the Golden Ratio
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λ := 1+
√

5
2 . The conjugate of the Golden Ratio is 1−

√
5

2 , which is negative. Thus the
[FR,LS] theorem guarantees that no square can be packed by rectangles similar to
1×λ and λ×1. Nonetheless, there is a tiling:

1

λ

2λ = λ − 1
λ2

�����
 � The dark rectangle, λ×1, is be-
ing subtracted from the top of the tall
λ×λ2 rectangle. Since λ2 equals λ+ 1,
what remains after the subtraction is
the λ× λ square.

The goal of our article is to establish a general tiling theorem for rectangles. A special
case of the Tiling Theorem, below, is:

Rectangles with shapes
{

1× s, s× 1
}

can tile a square IFF s ∈ �(s2).

Definitions. As usual, let �(x) denote the field of rational functions of x, with coeffi-
cients in �. For ζ a complex number, �(ζ) is the smallest subfield of � containing ζ.
Given a (finite or infinite) subset S ⊂ �, let �(S) be the smallest subfield of � which
includes S.

Identify a rectangle a×b with a product of half-open intervals, the subset [0, a)×[0, b)
of the plane. A translate, T , of a× b is a set of the form

[t1, t1 + a) × [t2, t2 + b)

where t1, t2 ∈ �. Say that a collection � of rectangles packs c × d if we can find a
(finite) collection, TRANS, of translates of copies of rectangles in � such that we have
equality

1c×d =
∑

T∈TRANS

1T

between indicator functions. (Indicator function 1T is 1 for each point (x, y) in T and is 0 for all

other points in the plane.)
Say that collection � tiles (or “signed-packs”) rectangle B = b1 × b2 if: A finite

collection TRANS and coefficients αT ∈ {1,−1} can be found so that

1B =
∑

T∈TRANS

αT1T . (2)

(All of these definitions make sense in D-dimensional Euclidean space. For integer-sided D-dimensional
polyominoes and bricks, this type of tiling question was studied by ���
� [B1,B2] and  �� [Kin].
In particular, given a finite proto-set � of D-dimensional bricks there is an algorithm –which runs, as
a function of the number of bits needed to describe a brick B = b1×b2×· · ·×bD , in linear time– to
determine whether B is tilable by �. There is also a computable number M = M(�) so that if each
sidelength bi ≥M, then B is �-packable iff it is �-tilable.)
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Lastly, a tiling 1c×d =
∑

T∈TRANS αT1T is “horizontally splittable” if we can write
c = c(1) + c(2) and TRANS = C(1) t C(2), a disjoint union of non-empty sets, so that:

1c(i)×d =
∑
T∈C(i)

αT1T ,

for i = 1, 2. Define “vertically splittable” analogously.
Tiling (2) is completely-splittable if, either: TRANS is a singleton or –recursively–

the tiling can be split, either horizontally or vertically, into two tilings each of which is
completely-splittable.

Shapes. Uniformly scaling rectangle a×b by scale-factor u (a positive number) yields
rectangle au× bu. Let the shape a× b represent the set of all uniform-scalings of the
rectangle. Consequently, say that � shape-packs c× d if the union⋃

a×b∈�

{
au× bu

∣∣ u > 0
}

packs c× d.

Define “� shape-tiles c× d” analogously.

§2 Some Results

We start with a normalization. For each positive number v, a collection
{

1 × s
}
s∈S

shape-tiles 1 × t iff
{

1 × vs
}
s∈S shape-tiles 1 × vt. We can choose v so that some

product vs is 1. Consequently, we can assume, gratis, that S contains 1.

Tiling Theorem, 3. Suppose 1 ∈ S, where S is a (finite or infinite) set of positive
reals. Then rectangles � :=

{
1× s

∣∣ s ∈ S} shape-tile 1× t IFF t is in �(S), and t ≥ 0.
Moreover, when t ∈ �(S), there is a tiling which is completely-splittable and uses

only scale-factors in the field �(S).

Proof. For a tilable 1× t, it will be temporarily convenient to say that 1× (−t) is
tilable also. Definition (2) extends consistently to rectangles with negative sidelengths,
if we identify 1a×(−b) and 1(−a)×b with −1a×b. Thus we can freely remove the “t ≥ 0”
in the statement of the theorem.

We will make use of the field K := �(S).

Establishing (⇒). If t /∈ K then there exists† a K-linear functional f : �→� such
that f(t) = 0 and f(1) = 1. Thus

D(x× y) := x · f(y)

is a Dehn-functional. For any s ∈ S and real u,

D(u× su) = u · f(su) = u · s · f(u) = D(su× u) .

†We can define the linear functional by picking a K-basis for �. Or, we can avoid the Ax-
iom of Choice, as follows. Let V be the K-vector-subspace of � spanned by the sidelengths of all
the rectangles in the purported tiling. Extend the collection {t, 1} to a K-basis for V , then define f on
this basis to get the desired K-linear-functional f : V →�.
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Thus the Dehn-functional D(y×x)−D(x×y) is zero on every shape in the proto-set �.
Hence this Dehn-functional must be zero on each tilable rectangle. On the other hand,
its value on 1× t is the difference t · 1 − 1 · 0, which is not zero.

Establishing (⇐). Let G, the “good set”, be the collection of numbers t such that
1× t is shape-tilable by the proto-set. Consider good numbers p and q. Then 1× (−p)
is tilable and, by stacking 1× p on top of 1× q, also 1× (p + q) is tilable. Thus

The good set is preserved under negation and addition.

What happens when we place 1×p and 1×q side-by-side? Scaling each appropriately
gives rectangles q × qp and p× pq. These tile (p+ q)× pq. So if p+ q 6= 0, we conclude
that pq

p+q is good. Thus

The good set is preserved under “twisting”

where, for p 6= −q, we define the twist of p with q to be

p ./ q :=
pq

p + q
.

Notice that the operation of twisting rectangles 1 × p and 1 × q scales them by scale-
factors q

p+q and p
p+q , both of which are in K.

Lastly, since the operation of twisting (resp. addition) corresponds to building a tiling
which splits horizontally (resp. vertically), the following Field Lemma will complete the
proof of the theorem. ♠

Field Lemma, 4. Suppose 1 ∈ G, where G is a subset of � which is closed under
negation, addition and twisting. Then G is a subfield of �.

Proof. Suppose p is “good”, that is, in G. Then pn and p/n are good, for positive
integers n; this follows by induction and using that goodness is preserved under addition
and twist. In the following, p and q are assumed to be good.

Reciprocals are good: For p 6= 0, note that (p − 1) ./ 1 = p−1
p is good. Thus 1

p ,
which equals 1− p−1

p
, is good.

Squares are good: Since (1 ± p) is good, (1 − p) ./ (1 + p) is good. Multiplying
by −2 yields that p2 − 1 is good, hence p2.

Products are good: Since (p+ q)2 − (p− q)2 is good, so is 4pq and thus pq. ♠

Addendum. Note that the lemma continues to hold with � replaced by any field whose
characteristic is not two, i.e, 1 + 1 6= 0.

Question. By using a Dehn-functional, it is straightforward to see that if the tiling
in Theorem 3 is actually a packing, then all the scale-factors must be in �(S).

Does this same conclusion hold for all minimum-cardinality tilings? (I.e, those which
minimize the cardinality of TRANS, the set of translates).
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Closing remark. The [FR,LS] theorem suggests studying the following transitive re-
lation � on the positive reals: s � t if

{
1×s, s×1

}
shape-packs 1×t. Restating their

result: s � 1 iff s is a Wall number. Consequently, these numbers are hereditary; if
s� t, with t a Wall number, then s is too.

We currently have no understanding of the arrow relationship. Certainly if the min-
imal polynomial of s is unrelated to that of t, then there is no reason to expect s� t.
Our theorem can, of course, give no positive result. It does, however, give the negative
result that even if s and t have the same minimal polynomial, neither need arrow the
other—simply because neither tiles the other.

In the normalization of the Tiling Theorem, a collection
{

1×s, s×1
}

shape-tiles 1×t
exactly when st ∈ �(s2). Now suppose lengths s and t have a common minimal polyno-
mial f(x) ∈ �[x] which is cubic with three positive roots. Certainly st /∈ �(s2) occurs
if �(s) fails to contain all three roots. And this will be the case if the discriminant of f
is not a perfect square. (See definition and corollary of [Jac, p. 258].) Indeed, we only need
find such an f with 3 real roots since, for a sufficiently large integer T , the translated
polynomial x 7→ f(x− T ) will have all roots positive.

An example is provided by f(x) := x3 − 6x + 2, which has 3 real roots and, by
the Eisenstein Criterion [H, Thm. 3.10.2], is irreducible. The discriminant of f equals
−4 · (−6)3 − 27 · 22 = 62 · 3 · 7, which is not a perfect square.
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[Deh] M. Dehn, Über die Zerlegung von Rechtecken in Rechtecke, Math. Ann. 57 (1903), 314–332.
[FR] C. Freiling & D. Rinne, Tiling a Square with Similar Rectangles, Math. Research Letters 1 (1994),

547–558.
[H] I.N. Herstein, Topics in Algebra, Wiley & Sons, 1975.
[Jac] Nathan Jacobson, Basic Algebra I, 2nd ed., W.H. Freeman, 1974.
[Kin] J.L. King, Brick Tiling and Monotone Boolean Functions, Preprint available at webpage

http://www.math.ufl.edu/∼squash/
[LS] M. Laczkovich & G. Szekeres, Tilings of the Square with Similar Rectangles, Discrete Comput.

Geom. 13 (1995), 569–572.


