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Abstract

The 1935 result of Erdős and Szekeres that any sequence of ≥ n2 +1 real numbers
contains a monotonic subsequence of ≥ n+ 1 terms has stimulated extensive further
research, including a paper of J. B. Kruskal that defined an extension of monotonicity
for higher dimensions. This paper provides a proof of a weakened form of Kruskal’s
conjecture for 2-dimensional Euclidean space by showing that there exist sequences
of n points in the plane for which the longest monotonic subsequences have length
≤ n1/2 + 3. Weaker results are obtained for higher dimensions. When points are
selected at random from reasonable distributions, the average length of the longest
monotonic subsequence is shown to be ∼ 2n1/2 as n→∞ for each dimension.

AMS-MOS Subject Classification: Primary: 05A05, Secondary: 06A07, 60C05.



Monotonic subsequences in dimensions
higher than one

A. M. Odlyzko
AT&T Labs - Research
Murray Hill, NJ 07974

email: amo@research.att.com

J. B. Shearer
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
email: jbs@watson.ibm.com

R. Siders
AT&T Labs - Research
Murray Hill, NJ 07974

email: siders@math.umn.edu

Dedicated to Herb Wilf on the occasion of his 65-th birthday

1. Introduction

A sequence y1, . . . , yk of real numbers is said to be monotonic if either y1 ≤ y2 ≤
· · · ≤ yk or y1 ≥ y2 ≥ · · · ≥ yk. A classic theorem of Erdős and Szekeres [4] states
that every sequence of m2 + 1 real numbers has a monotonic subsequence of m + 1
terms. Moreover, there do exist sequences of m2 real numbers with no monotonic
subsequences of length greater than m. This extremal result has led to research on a
range of related problems in both extremal and average behavior. For references, see
the survey of Mike Steele [13], and [11].

The result of Erdős and Szekeres stimulated the question of what happens when
in a sequence x1, . . . , xn, the real numbers xj are replaced by vectors xj from d-
dimensional Euclidean space. The first problem is to define what is meant by mono-
tonicity for a subsequence in dimension d ≥ 2. One way to do this is to say that a
subsequence xi1, . . . , xik , 1 ≤ i1 < · · · < ik ≤ n, is monotonic if it is monotonic in
each coordinate (when the xj are presented in some fixed coordinate system). N. G.
de Bruijn showed (see [8]) that for this definition, a complete answer can be obtained
from the Erdős-Szekeres result. From a sequence of m2d+1 vectors in �d, a monotonic
subsequence of m+ 1 terms can be chosen, and this is best possible.

A different generalization to higher dimensions, this time to relation spaces, was
considered by J. B. Kruskal [8]. In this case he was also able to obtain a complete
answer using the Erdős-Szekeres result.

In this note we consider yet another generalization of monotonicity to vectors in
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�
d that was proposed by Kruskal in [8]. It is more natural geometrically than the

one considered by de Bruijn in that it is independent of the choice of the coordinate
system. There are several definitions (all shown to be equivalent to each other in
[8]). The one we will work with says that a sequence y1, . . . , yk, with yj ∈ �

d for
each j, is monotonic if there exists some nonzero w ∈ �

d such that the sequence of
inner products (y1, w), . . . , (yk, w) is a monotonic sequence of real numbers. With
this definition of monotonicity, any sequence of d + 1 points is monotonic. Also,
since any nonzero w can be chosen, it is immediate by the Erdős-Szekeres result [4]
that a monotonic subsequence of ≥ dn1/2e points can be chosen from any sequence
of n points. Kruskal conjectured that to guarantee the existence of a monotonic
subsequence of length k ≥ d+ 1, it is necessary and sufficient that the total number
of points n satisfy n ≥ k2 − kd− k + d + 1. If Kruskal’s conjecture is true, then for
every d, there will be sequences of points in �

d with longest monotonic subsequences
of length (1 + o(1))n1/2 as n→∞.

As an aside, suppose we take y1, . . . , yn to be any of the sequences that are ex-
tremal for the Erdős-Szekeres result, so that the yj are real numbers, and the longest
monotonic subsequence among them has length dn1/2e. Let us now construct a se-
quence in �

d by placing the yj on a line, say xj = (yj, 0, . . . , 0) for 1 ≤ j ≤ n. Then
for any w ∈ �d with nonzero first coordinate, the longest monotonic subsequence of
(x1, w), . . . , (xn, w) will have length dn1/2e. However, for w = (0, 1, 0, . . . , 0), we will
have (xj, w) = 0 for all j, so for this w we will obtain a monotonic subsequence of
length n. This shows that if we required strict monotonicity for the subsequences of
the (xj, w), the problem would have a trivial solution.

We will show in Section 2 that if d is fixed and z1, . . . , zn are any n points in
�
d that are in general position, then as n → ∞, almost all permutations x1, . . . , xn

of z1, . . . , zn will have their longest monotonic subsequence of length (2 + o(1))n1/2

as n → ∞. In particular, if the zj are chosen independently at random from some
continuous distribution on �

d (say uniform on the unit cube), and are permuted at
random, then we will get maximal monotonic subsequences of length (2 + o(1))n1/2

as n→∞ with high probability.
Since most random choices give longest monotonic subsequences not much longer

than 2n1/2 for any d ≥ 2, we get (asymptotically for n →∞) within a factor of 2 of
what Kruskal’s conjecture predicts. However, that is the most that this method can
do for us. On the other hand, in Section 3 we present an explicit construction of a
sequence in d = 2 for which the longest monotonic subsequence has length ≤ n1/2 +3.
This shows that for d = 2 Kruskal’s conjecture is asymptotically tight. We expect
that similar although more complicated constructions exist for all d ≥ 3, and therefore
that the asymptotic form of Kruskal’s conjecture is true for all dimensions. We do
not know whether the exact form of Kruskal’s conjecture is correct. For d = 2, we
can improve our bound to ≤ n1/2 + 2, but we do not know whether our construction
can be modified to give the full conjecture.



the electronic journal of combinatorics 4 (no. 2) (1997), #R14 3

2. Average behavior

Ulam [15] was apparently the first one to ask about the distribution of Ln, the
length of the longest increasing subsequence in a permutation of n distinct real num-
bers. After initial work of Baer and Brock [1] and Hammersley [6], Logan and Shepp
[9] and Vershik and Kerov [16] proved the conjecture that Ln tends to 2n1/2 in prob-
ability as n → ∞. Later it was shown by Frieze [5] that the distribution of Ln
is concentrated near its mean. Frieze’s result was subsequently sharpened by Bol-
lobás and Brightwell [2] and Talagrand [14]. Some of the fine structure details of
the distribution of Ln are still unknown. For full references, numerical evidence, and
conjectures about the distribution of Ln, see [10] and [11].

In this paper we will use only two results. One follows from the lower bound of
Logan and Shepp and of Vershik and Kerov:

Proposition 2.1 For every ε > 0,

Prob(Ln > (2− ε)n1/2)→ 1 as n→∞ . (2.1)

The other result is a weak form of the upper bound that follows from the work of
Frieze, of Bollobás and Brightwell, and of Talagrand. The result we will actually use
follows also from the one-sided concentration result of J.-H. Kim [7], which is simpler
to prove, but yields surprisingly strong bounds. (We will use only a weak version of
Kim’s result.)

Proposition 2.2 For all α, ε > 0, there is a constant C = C(α, ε) such that

Prob(Ln > (2 + ε)n1/2) ≤ Cn−α . (2.2)

Let us now consider points z1, . . . , zn ∈ �
d that are in general position (no 3 on

a line, no 4 in a plane, etc.). For any nonzero w ∈ �
d, permuting the zj induces a

permutation of the inner products (zj, w). Hence Proposition 2.1 shows immediately
that if we permute the zj, the resulting sequences x1, . . . , xn will almost always have
monotonic subsequences of length ≥ (2 + o(1))n1/2 as n→∞.

Suppose again that z1, . . . , zn ∈ �
d are in general position, and suppose that

x1, . . . , xn is a permutation of z1, . . . , zn. In determining monotonicity of subsequences
of x1, . . . , xn, we only need to consider directions w that satisfy d − 1 linearly inde-
pendent constraints of the form (w, zi − zj) = 0. (Suppose we move w continuously
without hitting any additional conditions (w, zi) = (w, zj), and without destroying
any conditions of this type that held before. Then the relative positions of the (w, zi)
do not change, and when we do add an additional relation (w, zi) = (w, zj), longest

monotone subsequences can only grow.) However, there are fewer than
(
n
2

)d−1
such

directions w. For each w, a random permutation of z1, . . . , zn gives a random per-
mutation of the n − 2(d− 1) numbers (w, zj) for which (w, zj) is unique. We apply
Proposition 2.2 to those, and conclude that the probability of a monotone subse-
quence of length ≥ (2 + ε)n1/2 + 2d is ≤ n−10d for n sufficiently large. Hence the
probability of a monotone subsequence of length ≥ (2 + ε)n1/2 + 2d for any of the
≤ n2d directions w that need to be considered is o(1) as n→∞.

Combining the results proved above, we obtain the following result.
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Theorem 2.1 If z1, . . . , zn ∈ �
d are in general position, and are permuted at ran-

dom, then for any ε > 0, the length Mn of the longest monotonic subsequence in the
permuted sequence satisfies

Prob((2 − ε)n1/2 ≤Mn ≤ (2 + ε)n1/2)→ 1 as n→∞ . (2.3)

The restriction to general positions in Theorem 2.1 is important, since z1 = z2 =
· · · = zn = 0 produces dramatically different behavior.

Theorem 2.1 determines the typical asymptotic behavior of the length of the
longest monotonic subsequence in �d. The same methods can also be used to study the
expected lengths of unimodal and related subsequences, if those notions are extended
to �

d in the same way. (For d = 1, these questions were answered by Chung [3] and
Steele [12].)

3. Extremal sequences

Section 2 showed that for any d ≥ 2, there do exist sequences x1, . . . , xn ∈ �
d

with longest monotonic subsequences of length (2 + o(1))n1/2 as n → ∞. That is
within a factor of 2 of what Kruskal’s conjecture predicts. In this section we show
that for d = 2, we can construct sequences of points that gain that factor of 2, and
so come close to proving Kruskal’s conjecture. (Our construction yields sequences
that in which the longest monotonic subsequences are longer by at most 2 than those
predicted to exist by Kruskal’s conjecture. A careful examination of our proof shows
that we can decrease our upper bound by 1, and thus be at most 1 worse than
Kruskal’s conjecture.)

Theorem 3.1 For any n ∈ �
+, there exists a sequence of points x1, . . . , xn ∈ �

2

which has no monotonic subsequence of length > bn1/2c+ 2.

Proof. We first use induction to construct, for all k ∈ �
+ and 0 < ε < 1/10, a

sequence of points z1, . . . , zk ∈ �2 with the following properties:

(i) the angle between any two lines determined by pairs of the zj is < ε.

(ii) If the line through z1 and zk is turned in a counterclockwise direction, the
projections of the zj on that line appear first in the order

z1, z2, . . . , zk .

Then, as the line keeps turning, z1 moves past z2, so the order becomes

z2, z1, z3, . . . , zk .

Then z1 moves past z3, . . . , zk, in turn, while the order of those points remains
unchanged, until the order becomes

z2, z3, . . . , zk, z1 .
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Next, as the line continues turning, zk moves past zk−1, then past zk−2, . . ., and
finally z2 to create the order of projections

zk, z2, z3, . . . , zk−1, z1 .

Next, z2 moves past z3, then z4, . . ., until the order is

zk, z3, z4, . . . , zk−1, z2, z1 ,

and then zk−1 starts moving past zk−2, . . . . In the end, when the rotation
reaches 180◦, we see the reversed order

zk, zk−1, . . . , z2, z1 .

(iii) If we look at the points zj in the order z1, zk, z2, zk−1, z3, zk−2, . . ., then any
point zj lies inside the triangle determined by the preceding three points in this
ordering.

To start the induction, for k = 1 we choose z1 to be a point, for k = 2 let z1 and
z2 be any two distinct points, and for k = 3 let z1, z2, and z3 be the three points in
Fig. 1 that are labeled z1, z2, and zk, respectively. Suppose that we can construct
I(k − 2, ε′) for any 0 < ε′ < 1/10. We next proceed to construct I(k, ε) for any ε
with 0 < ε < 1/10 as follows. Let z1 = (0, 0), zk = (4, 0), and scale and translate
I(k − 2, ε/1000) so that if its points are z′1, . . . , z

′
k−2, then

z′1 = (2,−ε/10), z′k−2 = (3,−49ε/1000) .

(See Fig. 1 for this construction.) If we then let zj = z′j−1, 2 ≤ j ≤ k − 1, we easily
see that the sequence z1, z2, . . . , zk satisfies all the conditions for I(k, ε).

z

zk

2

z

k-1z
1

Figure 1: Construction of points z1, z2, . . . , zk.

We now proceed to prove Theorem 3.1. It suffices to construct a sequence x1, . . . , xn
satisfying the conditions of this theorem for n = m2. Let z1, . . . , zn be the sequence
of points I(n, 1/100) constructed above. We now rearrange them into the sequence
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1

2 3

4 5 6

7 8 9 10

11 12 13

14 15

16

Figure 2: Diamond configuration for n = 16, used to define the sequence x1, . . . , x16.

x1, . . . , xn. To do this, we write the numbers 1, 2, . . . , n into a regular diamond with
1 on top, 2 and 3 beneath it (in that order, although any ordering of this or other
rows would do just as well), 4, 5, and 6 beneath them, and so on, until we get n in
the bottom row. (See Fig. 2 for n = 16.) Read the points left to right, reading the
columns from top to bottom for the column headed by 1 and all the columns to the
left of that one, and reading the columns to the right of the central one from bottom
to top. For the case n = 16 illustrated in Fig. 2, we obtain the ordering

7, 4, 11, 2, 8, 14, 1, 5, 12, 16, 15, 9, 3, 13, 6, 10 . (3.1)

In general, if the sequence is s1, . . . , sn, we define zj = xsj for 1 ≤ j ≤ n. (For n = 16,
we have z1 = x7, z2 = x4, z3 = x11, and so one.)

We now look at projections of the xj onto a line that rotates counterclockwise,
and starts parallel to the x-axis. We first examine just those directions for which the
projections of the zj in that direction have the ordering

zn, zn−1, . . . , zn−t, zt+2, zt+3, . . . , zn−t−2, zn−t−1, zt+1, zt, . . . , z2, z1 . (3.2)

The ordering of the projections of the xj is obtained from the same diamond we
started with, but after interchanging the t+ 1 extreme pairs of points in the initial
ordering. For example, for n = 16 and t = 3, we interchange the pairs of labels (7, 10),
(4, 6), (11, 13), and (2, 3) in the diamond of Fig. 2. (See Fig. 3 for an illustration.)

The interchanges in the diamond always involve pairs of points in the same row
(except when at the end we interchange points inside the central column, first 1 with
n, then 5 with n−4, and so on). Hence an increasing subsequence of projections must
move to the right or down in the diamond, and so has at most m = n1/2 elements.
Similarly, a decreasing subsequence has to move left or up, and so also has at most
m elements.

It remains to consider projections intermediate between those that give arrange-
ments of the form (3.2). However, these projections differ from those given by (3.2)
in the positioning of at most two points. Hence any monotonic subsequence of our
sequence has length ≤ m+ 2 = n1/2 + 2. QED
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1

3 2

6 5 4

10 8 9 7

13 12 11

14 15

16

Figure 3: Diamond configuration for n = 16 and t = 3.
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