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Abstract

An n-Venn diagram is a collection of n finitely-intersecting simple closed
curves in the plane, such that each of the 2n sets X1∩X2∩· · ·∩Xn, where each
Xi is the open interior or exterior of the i-th curve, is a non-empty connected
region. The weight of a region is the number of curves that contain it. A region
of weight k is a k-region. A monotone Venn diagram with n curves has the
property that every k-region, where 0 < k < n, is adjacent to at least one
(k−1)-region and at least one (k+ 1)-region. Monotone diagrams are precisely
those that can be drawn with all curves convex.

An n-Venn diagram can be interpreted as a planar graph in which the
intersection points of the curves are the vertices. For general Venn diagrams,
the number of vertices is at least d2n−2

n−1 e. Examples are given that demonstrate
that this bound can be attained for 1 < n ≤ 7. We show that each monotone
Venn diagram has at least

( n
bn/2c

)
vertices, and that this lower bound can be

attained for all n > 1.

Keywords: Venn diagram, dual graph, convex curve, Catalan number.
AMS Classification (primary, secondary): 05C10, 52C99.

1 Introduction

There has been a renewed interest in Venn diagrams in the past couple of years.
Recent surveys have been written by Ruskey [10] and Hamburger [8]. In this paper
we tackle a natural problem that has not received any attention: What is the least
number of vertices in a Venn diagram of n curves? Figure 1(a) shows the classic Venn
diagram of 3 curves, which contains 6 vertices. The Venn diagram of Figure 1(b) is
also constructed with 3 curves, but has only 3 vertices. This second diagram has the
minimum number of vertices among all Venn diagrams of 3 curves (a complete listing
may be found in Chilakamarri, Hamburger, and Pippert [3]). We show that this is
the minimum value in Theorem 2.1 in the following section.
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(a) Venn Diagram with 3 curves and 6 vertices (b) Venn Diagram with 3 curves and 3 vertices

Figure 1: Example of a simple and a non-simple 3-Venn diagram.

We give the relevant graph theoretic definitions in the remainder of this section.
Section 2 provides a proof of the lower bound for the number of vertices of general
Venn diagrams and provides examples of Venn diagrams that have this minimum
number if 1 < n ≤ 7. Finding a minimum vertex Venn diagram for n > 7 remains
an open problem. In Section 3, we demonstrate that the upper bound of

(
n
n/2

)
for

the minimum number of vertices of a monotone Venn diagrams is attainable for all
n > 1. This is demonstrated, using a specific and recursively constructed sequence
of diagrams. The proof that the number of vertices is as stated involves the Catalan
numbers.

1.1 Venn Diagrams and Graphs

Let us review Grünbaum’s definition of a Venn diagram [7]. An n-Venn diagram in
the plane is a collection of simple closed Jordan curves C = C1, C2, . . . , Cn, such that
each of the 2n sets X1∩X2∩ . . .∩Xn is a nonempty and connected region. Each Xi is
either the bounded interior or the unbounded exterior of Ci, and this intersection can
be uniquely identified by a subset of {1, 2, . . . , n}, indicating the subset of the indices
of the curves whose interiors are included in the intersection. To this definition we
add the condition that pairs of curves can intersect only at a finite number of points.

We say that two Venn diagrams are isomorphic if, by continuous transformation
of the plane, one of them can be changed into the other or its mirror image [10].

When analyzing a Venn diagram, we often think of it as a plane graph V , whose
vertices (called Venn vertices) are the intersection points of the curves. The labelled
edges of V are of the form C(v, w), where there is a segment on curve C with inter-
section points v and w, and no intersection points between them on C. The label of
the edge is i if C = Ci. Each face, including the outer infinite face, is called a region
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Square vertices Square and circle verticesCircle vertices with black edges

D(V ) R(V )
V

Figure 2: The radual graph construction.

when referring to V . Each region in the Venn diagram has associated with it a unique
subset of 1, 2, . . . , n, and a weight. The weight is the number of curves that contain
the region and is equal to the cardinality of its representative subset. A region of
weight k is referred to as a k-region.

A facial walk of a region is a walk taken around the region in clockwise order,
recording the edges and vertices bordering the region as they are encountered. It is
easy to prove that the graph V is 2-connected, and hence each edge borders exactly
two regions. Both vertices of this edge are found on facial walks of both regions. A
vertex traversal of a vertex v in a Venn diagram is a circular sequence C0, C1, . . . , Cm
of the curves adjacent to v, when read in a clockwise rotation around v [10].

We also use the familiar dual graph, D(V ), of the Venn diagram. It is constructed
by placing a vertex within each region of V . For each edge of V , a dual graph edge is
drawn which connects the vertices within the two adjacent regions. Note that each of
the dual vertices corresponds to a face in V , and each of the Venn vertices corresponds
to a face in D(V ). We identify each of the dual vertices by the same subset and weight

of the associated region on V . We define the directed dual graph, ~D(V ), by imposing
a direction on each edge so that it is directed from the vertex of larger weight to the
vertex of smaller weight [10].

The vertex set of the radual graph R(V ) consists of the union of the vertex sets
of V and D(V ). The edge set of R(V ) consists of all edges in D(V ) together with
edges between each dual vertex and the following specified Venn vertices: In the
radual graph, a dual vertex d is adjacent to a Venn vertex v if v is encountered on
a facial walk around the region of V containing d. The radual graph construction is
illustrated in Figure 2. The radual graph of any 2-connected planar graph is itself
planar. Note that the edges incident with d in R(V ) are alternately incident with
Venn vertices and dual vertices as we circle around d in a fixed direction.
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1.2 Monotone Venn Diagrams

In this paper we are primarily interested in those Venn diagrams that are monotone.
Following [10], we define a diagram to be monotone if and only if the directed dual

graph ~D(V ) has a unique sink (a vertex with no out-going edges), and a unique
source (a vertex with no incoming edges). An equivalent definition of a monotone
Venn diagram is that each dual vertex with weight 0 < k < n in the dual graph is
adjacent to a dual vertex with weight k − 1 and a dual vertex with weight k + 1.

Monotone diagrams are a natural and interesting class of Venn diagrams. The
general constructions of Edwards [5], [6] are monotone. The “necklace property”
mentioned in Edwards [4] is a consequence of monotonicity. A Venn diagram is
convex if its curves are convex. The Venn diagrams in Figure 1 are both convex.
In [1], it is proven that a Venn diagram is isomorphic to a convex Venn diagram if
and only if it is monotone. Thus the geometric condition of convexity is equivalent
to the purely combinatorial condition of monotonicity.

2 General Venn Diagrams

Let Min(n) be the least number of vertices of a Venn diagram of n curves.

Theorem 2.1 If n > 1, then

Min(n) ≥
⌈

2n − 2

n− 1

⌉
.

Proof: Consider a n-Venn diagram V , with vertex set W . Let f , v, and e denote
the number of faces, vertices and edges of V . We denote the degree of vertex w as
deg(w). By definition, for w ∈W , deg(w) is no more than 2n. So

2nv ≥
∑
w∈W

deg(w) = 2e.

By Euler’s relation, e = 2n + v − 2, and therefore

v ≥
2n − 2

n− 1
.

2

We provide examples of general n-Venn diagrams that attain this lower bound for
1 < n ≤ 7. Figure 3 shows a minimum 4-Venn discovered in collaboration with Peter
Hamburger. Figure 4 and 5 are diagrams which are successively extended from the
minimum 4-Venn diagram, discovered by the first author.

Figure 6 is a polar symmetric minimum 7-Venn diagram, discovered in collabo-
ration with Stirling Chow using a computer search. Note that each vertex has the
maximum degree; every curve passes through every vertex. The diagram is symmetric
in the sense that each curve of the diagram can be obtained by rotating a given curve
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Figure 3: A 4-Venn diagram with 5 vertices.

(e.g., the highlighted one in the diagram) by a multiple of 2π/7 about some point
on the plane. Symmetric diagrams in this sense can only exist if n is prime. Thus a
minimum vertex symmetric diagram might only exist if n is a prime for which n− 1
divides 2n − 2. The only such primes, 7 < n < 100, are 19 and 43.

The diagrams of this section inspire the conjecture that the lower bound of The-
orem 2.1 can be achieved for all numbers n. We leave this as an open problem.

3 Monotone Venn Diagrams

The following lemmas deal with general plane graphs, illustrating that each dual
vertex in the radual graph is bordered by a specific type of cycle. The lemmas are
used to prove the lower bound for monotone Venn diagrams.

Lemma 3.1 The degree of a dual vertex d in the radual graph is equal to twice the
number of edges on the facial walk of the region containing d in the original plane
graph.

Proof: Consider P , D(P ), and R(P ), a plane graph, its dual graph, and its radual
graph, respectively: Let d be a dual vertex within face F of P . There are an equal
number of edges and vertices on the facial cycle of F . Each vertex vi on this cycle is
adjacent to d by definition of R(P ). Each edge on the facial cycle of F corresponds
to an edge between d and another dual vertex di in region S of P . Therefore d is
adjacent to the total number of vertices and edges on F ’s facial cycle. 2

Lemma 3.2 The subgraph of the radual graph R(P ) induced by the open neighbour-
hood of a dual vertex d is an alternating cycle of dual vertices and vertices of the
plane graph P .
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Figure 4: A 5-Venn diagram with 8 vertices.
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Figure 5: A 6-Venn diagram with 13 vertices.
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Figure 6: A 7-Venn diagram with 14 vertices.
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Proof: Choose any 2 consecutive (in a small circle around d) vertices v and w that
are adjacent to d in R(P ). Without loss of generality, let v be a vertex of P and w

a dual vertex in the region S of P . Then v is also contained on the facial cycle of S
and therefore is adjacent to w. 2

An interesting property of monotone Venn diagrams is that they can be peeled.
For an n-Venn diagram V and an integer k ≥ 1, the k-peeled subgraph Vk of V is
obtained by first removing all edges that border two regions in V of weights less than
k, and then removing all isolated vertices.

Lemma 3.3 A k-peeled subgraph Vk of a monotone n-Venn V contains every original
region whose weight is at least k, and no bounded regions of weight less than k.

Proof (by induction on k): For the base case observe that V1 is the same as V .
For k ≥ 1, assume the statement is true. Consider Vk, the k-peeled graph of a

monotone n-Venn diagram V , and its original dual graph D(V ).
Each dual vertex with weight k is connected to at least one dual vertex of weight

k − 1, by the definition of a monotone Venn diagram. By the induction hypothesis,
each dual vertex with weight k is contained in a closed region of Vk, while each weight
k− 1 dual vertex is located in the unbounded region of Vk. By definition of the dual
graph, there is an edge in the Venn diagram that corresponds to each dual graph edge
between two dual vertices of weights k− 1 and k. The removal of each of these Venn
edges, peels Vk and opens each k-region to the outer unbounded region.

None of the regions with weight greater than k are affected. No k-region is left
bounded in the peeled graph. Therefore the statement is true for Vk+1. 2

Using the same steps as in the construction of the radual graph of an n-Venn
diagram, we construct the radual graph of a k-peeled graph of a monotone n-Venn
diagram. Note that if we remove the dual vertex associated with the unbound region,
we have a subgraph of the radual graph associated with the original monotone n-Venn
diagram.

Theorem 3.1 For any radual graph R(V ), of a monotone n-Venn diagram V , and

any 0 < k < n, there is a cycle of size 2
(
n
k

)
in R(V ), consisting of alternating Venn

vertices and dual vertices with weight k.

Proof: Consider Vk, the k-peeled graph of an n-Venn diagram V . By Lemma 3.3,
there are no regions with weight k − 1 within Vk. Therefore, all weight k − 1 regions
of V are part of the unbounded region in Vk. Since all the weight k regions in Vk
must share an edge with regions with weight k − 1, there are

(
n
k

)
outer edges on Vk.

Now consider the radual graph, R(Vk): Let d be the dual vertex in R(Vk) of the

unbounded region in Vk. By Lemma 3.1, deg(d) = 2
(
n
k

)
, and by Lemma 3.2, the

vertices adjacent to d form a cycle which alternates between Venn vertices and dual
vertices with weight k. Since neither d nor any of its edges are involved, this cycle is
contained in the subgraph of R(V ). 2
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Let Mn be the minimum number of vertices in a monotone n-Venn diagram. To
prove that Mn =

(
n
bn/2c

)
, we first show this is a lower bound, and then show that this

value is attained by a certain sequence of Venn diagrams. We obtain the lower bound
of Mn from the number of (n/2)-subsets of {1, 2, . . . , n}.

Theorem 3.2 If n > 1, then

Mn ≥

(
n

bn/2c

)
.

Proof: By Theorem 3.1, there exists a cycle on the radual graph of a monotone n-
Venn of size 2

(
n
k

)
, where k = bn/2c. Since this cycle alternates between dual vertices

and Venn vertices,

Mn ≥

(
n

bn/2c

)
.

2

3.1 A Straightened Venn Diagram

Suppose that V is an n-Venn diagram with a vertex v such that deg(v) = 2n. Let v
have a vertex traversal such that it is possible to split it into two copies where each
copy is adjacent to n distinct curves; i.e., where the vertex traversal consists of two
contiguous subsequences, each containing n curves. Imagine pulling the two copies of
v apart, horizontally stretching the rest of the curves so one of the curves C becomes
a straight line segment. Each of the curves and the intersections are stretched but
do not change their original relationships. The resulting diagram represents a Venn
diagram with n simple curve segments beginning and ending at the two copies of
v. The exterior region is now represented by the area above the curves and the
interior region is represented by the region below the curves. We call this diagram a
straightened representation of V .

Definition 3.1 We define an n-Straightened Venn Diagram, (n-SVD) as a straight-
ened representation of an n-Venn diagram, Vn with the following properties:

1. The curve Cn is a horizontal line segment, beginning and ending on the two
copies of vertex v1, named vL

1 and vR
1 .

2. All vertices of Vn lie on Cn and are numbered vL
1 , v2, . . . , vm, v

R
1 .

3. There are exactly n vertices with degree 2n, including v1 and v2.

4. Any vertical line drawn through Cn intersects each curve exactly once.

5. All non-adjacent vertices on Cn are the endpoints of exactly 0 or 2 edges.
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Note that this diagram becomes a Venn diagram if we join the two copies of v1 and
make Cn a circle.

Lemma 3.4 Any SVD represents a monotone Venn diagram.

Proof: By definition, the SVD represents a Venn diagram. It follows from Property
4 that the vertical line can be seen as a path through the directed dual graph, starting
in the upper region, and ending in the lower. 2

Lemma 3.5 In an n-SVD, the number of curves intersecting at a vertex has the
same parity as n.

Proof (by induction on vk):
Let hk be the number of curves intersecting at a vertex vk. Note that hk =

deg(vk)/2. Also, since an SVD is monotone, hk is the number of edges from vi to vk,
taken over all i for which 1 ≤ i < k ≤ n.
Base Case: By property 3 of Definition 3.1, h1 = n.
Inductive Step: Assume the statement is true for all vk, where k ≥ 1.

Let the number of edges from vk to vk+1 be c. Let the number of edges from vk to
vl, where l > k+ 1, be d. Let the number of edges from vj to vk+1, where j < k, be g.
Then hk = c+d, and hk+1 = c+g. By Property 5 of Definition 3.1, d and g are even.
Then by the induction hypothesis, c must have the same parity as n. Therefore, hk+1

has the same parity as n. 2

Before we can construct an (n + 1)-SVD from an n-SVD, we need a method to
reduce the number of vertices on a Venn diagram. This method is defined in the next
section.

3.1.1 Vertex Compression

We can compress 2 adjacent vertices v and w on a Venn diagram if they share exactly
one common curve C. This is done by removing the edge C(vw) and then mending
the curve C by merging v and w. The process reduces the number of vertices by one,
while maintaining the Venn diagram properties. All curves remain simple and closed
and no regions have been created or destroyed.

We use this operation to prove the next theorem. An illustration of the proof can
be found in Figure 7, for the case n = 4.

Theorem 3.3 An n-SVD can be extended to an (n+ 1)-SVD.

Proof: Let Vn be an n-SVD with m vertices. Divide the plane into m sections
P1, P2, . . . , Pm, each section delimited by two vertical lines through two consecutive
vertices on Vn.
Step 1 : We draw a new curve Cn+1 beginning at vL

1 , and ending on vR
1 . In each

Pi, we move up to the highest region that has not been previously visited, and sweep
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(d) Straighten the new curve to get V5.

(c) Compression of vertices along the new curve.

(b) The new curve moving through V4.

(a) The diagram V4.

vR1vL1

Figure 7: Constructing V5 from V4
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downwards as far as possible through all non-visited regions, crossing curves as nec-
essary. We exit each Pi through the bordering vertex, and continue in this manner
until we reach vR

1 . Since Cn+1 passes through all 2n regions, at the end of this step,
we have a representation of a monotone Venn diagram which has been cut at v1.
Step 2: The curve Cn+1, while in Pi, intersects 0 ≤ r ≤ n distinct curves on its
downward sweep before it exits through the right vertex. For r ≥ 2, we can apply
the above compression operation r − 1 times and create exactly one vertex from the
previous r vertices. This operation, performed similarly in each section, reduces the
number of newly created vertices to no more than 2m.
Step 3: Straighten Cn+1.

The new diagram is an (n+ 1)-SVD because

1. The curve Cn+1 is the straightened horizontal line segment, beginning and end-
ing on the two copies of v1.

2. Since Cn+1 passes through all existing vertices, and creates the only new ones,
all vertices lie on Cn+1, and are numbered vL

1 = wL
1 , w2, . . . , wt, w

R
1 = vR

1 , where
t ≤ 2m.

3. Cn+1 crosses all existing curves in one downward sweep in the first section of Vn,
between vL

1 and v2, and these new vertices are compressed to form one vertex
of degree 2(n + 1). After that, Cn+1 does not venture into the upper or lower
regions again, and therefore we cannot produce another compression involving
all the curves. The curve Cn+1 passes through all existing vertices on Vn, so
any vertices that had degree 2n previously, will now have degree 2(n+ 1). The
total number of vertices having degree 2(n+ 1) is n+ 1.

4. Since Cn+1 is a straight line, it can be intersected by a vertical line exactly once.
The curves of Vn continue to move left to right in the new diagram.

5. If vertices u and w are non-adjacent in Vn, then there are zero or two edges
incident to both. If the number is two, then Cn+1 has already visited the
regions above and below these edges, before passing through u. In either case,
Cn+1 does not alter the number of edges incident to u and w.

If the vertices are adjacent in Vn, then prior to passing through u, curve Cn+1

has either visited the regions above and below the outermost edges, or it has
not. If it has not, then Cn+1 crosses all the edges, and u and w share no edges
in the new diagram. If it has, then Cn+1 does not cross the upper and lower
edges, and u and v, if they are no longer adjacent, are the endpoints of exactly
two edges.

2

If we use the same construction described in the proof of Theorem 3.3, for all
values of n, we create a sequence V2, V3, V4, . . . of SVDs that has very interesting
properties. When discussing SVDs from now on, we specifically refer to this set.

The construction of the first two diagrams is described below.
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1. For n = 1, the curve C1 is a horizontal line segment which divides the plane
into an upper and lower region.

2. For n = 2, the curve C2 starts at C1’s leftmost point, moves up to the upper
region, crosses C1 into the lower region and stops at C2’s rightmost point. No
compression is necessary and C2 becomes the new straight line segment.

The next four diagrams created by our construction are shown in Figure 8.

3.2 Properties of SVDs

3.2.1 Structural Properties

Let Vn be a straightened n-Venn diagram, constructed as described in the previous
section. Let vi be a vertex on Vn that has degree 2n. And let vj be the next vertex
to the right of vi, which also has degree 2n. We will call the portion of Vn which is
contained between these 2 vertices a football, F n

k , where k is an index number of the
football, as we count from left to right. By Definition 3.1, 1 ≤ k ≤ n.

Each football has a boundary, which consists of the edges that border the outer
and inner region. A boundary edge is sometimes referred to as the upper or lower
boundary edge.

Note that due to the method of construction, Cn splits F n−1
1 into F n

1 and F n
2 .

For k > 1, Cn does not cross a boundary in F n−1
1 . These two facts mean that the

modified F n−1
k−1 in Vn−1 is re-indexed as F n

k in Vn.

Lemma 3.6 The topological structure of F n
k , where 1 ≤ k ≤ n, is covered by one of

the following statements:

1. When 1 ≤ k ≤ 2, it is a collection of n labelled edges.

2. When 3 ≤ k ≤ n − 1, it is a boundary containing F n−2
1 · · ·F n−2

k−1 , as illustrated
in Figure 9.

3. When k = n it is a boundary containing F n−2
1 · · ·F n−2

n−2 .

Proof (by induction on n):
See Figure 8 for the base cases of n = 2 and n = 3.
Assume the statement is true for F n−1

1 . The curve Cn passes through all curves
in F n−1

1 , from the upper to lower region. After compression and straightening Cn, we
produce F n

1 and F n
2 , divided by the only new vertex. Thus statement 1 is proven.

Assume the lemma is true for F n−1
k−1 and consider 3 ≤ k ≤ n−1: When constructing

F n
k from F n−1

k−1 , the curve Cn does not cross the boundary, since k > 2. For k = 3, the
action of adding Cn to F n−1

2 creates a single vertex compressing n− 3 labelled edges.
When Cn is straightened, the structure within the newly indexed F n

3 ’s boundary is
identical to F n−2

1 F n−2
2 .
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F 4
1

F 4
2

F 4
3

F 4
4

Figure 9: The Topological Structure of F 6
5

For k > 3, by the induction hypothesis, F n−1
k−1 ’s boundary contains F n−3

1 · · ·F n−3
k−2 .

For the special case of k = n, the boundary does not contain F n−3
k−2 , and for simplicity,

this is assumed in all future statements concerning F n
k . When Cn is added to create

F n
k from F n−1

k−1 , its action inside the boundary follows the same pattern as Cn−2 does
in F n−3

1 · · ·F n−3
k−2 , when creating Vn−2 from Vn−3. The modified F n−3

1 · · ·F n−3
k−2 in Vn−3

becomes F n−2
1 · · ·F n−2

k−1 , in Vn−2. The modified F n−1
k−1 , re-indexed as F n

k in Vn, contains
F n−2

1 · · ·F n−2
k−1 . Thus statements 2 and 3 are proven.

2

3.2.2 Curve Properties

Another property of these straightened Venn diagrams is that within each football, the
curve segment of Ci has a predictable placement. It is clear from the construction that
the curve segments in F n

1 are the edges ordered Cn, . . . , C1 and the curve segments in
F n

2 are ordered Cn−1, . . . , C1, Cn.

Lemma 3.7 For 2 ≤ k ≤ n, the curve segment of Cj in F n
k is described by one of

the following statements:

1. When 1 ≤ j < n−k+1, the segment is the same as its placement in F n−2
1 · · ·F n−2

k−1 .

2. When j = n− k + 1, the segment is the upper boundary.

3. When j = n− k + 2, the segment is the lower boundary.

4. When n−k+2 < j ≤ n, the segment replaces the segment of Cj−2 in F n−2
1 · · ·F n−2

k−1 .

Proof: Note that for simplicity, when k = n, we assume that references to F n−2
1 · · ·F n−2

k−1

do not include F n−2
k−1 .

When j = n, Cj is the straight line segment. It is the upper boundary of F n
1 , the

lower boundary of F n
2 , and clearly replaces Cn−2 in all of F n

3 · · ·F
n
n .
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For k = 2, the curves are Cn−1, . . . , C1, Cn, from upper to lower boundary, so
statements 1, 2 and 3 are proven, and 4 is not applicable.

For k > 2 and j < n, we use induction on n. See Figure 8 for the base cases of
n = 2 and n = 3.
Inductive Step: Assume the statement is true for any Cj in F n−1

k .
Since n−k+1 = n−1−(k−1)+1, and n−k+2 = n−1−(k−1)+2, we use the

induction hypothesis to claim that boundaries of F n−1
k−1 remain the same boundaries

when F n
k is created. Thus statements 2 and 3 are true for all n.

For non-boundary values of j, we invoke the induction hypothesis to claim that
Cj in F n−1

k−1 is either the same as its placement, or is replacing Cj−2, in F n−3
1 · · ·F n−3

k−2 .
Cn acts on F n−1

k−1 in the same manner as Cn−2 acts on F n−3
1 · · ·F n−3

k−2 , creating F n
k or

F n−2
1 · · ·F n−2

k−1 respectively. So Cj in F n
k is either still the same as its placement, or is

still replacing Cj−2, in F n−2
1 · · ·F n−2

k−1 . Thus statements 1 and 4 are true for all n. 2

3.3 Counting the Vertices

We have determined in the proof of Theorem 3.3, that the number of vertices of Vn is
no more than twice the number of vertices of Vn−1. In order to precisely determine the
number of vertices, we need to subtract the number of times that Cn passes through
2 existing vertices in Vn−1, without crossing an edge.

For n > 2, we say Vn has a singleton crossing, whenever it has a vertex of degree
4. During the construction of Vn+1, as Cn+1 exits this vertex, entering section Pi, it
confines itself within the 2 curves and does not create a new vertex before exiting Pi.
See the square vertices of Figure 7(a).

Lemma 3.8 If a singleton crossing occurs on Vn, then n is even.

Proof: A singleton crossing means that 2 curves cross at one vertex. By Lemma 3.5,
n must be even. 2

Let S(n, k) be the number of singleton crossings within the football F n
k . For

clarity, we define S(2, 1) = 0, and S(2, 2) = 1. We define S(n) to be the total number
of singleton crossings on an n-SVD.

Lemma 3.9 The number S(n, k) is positive if and only if n is even and n/2 < k ≤ n.

Proof (by induction on n):
Obviously k ≤ n, so we deal specifically with n/2 < k.

Base Case: For n = 2, S(2, 2) = 1, and S(2, 1) = 0.
Inductive Step: Suppose it is true for n− 2 and consider F n

k .
Suppose S(n, k) > 0: We know that n is even (by Lemma 3.8). Let F n−2

i be a
football contained within the boundary of F n

k , such that S(n − 2, i) > 0. Then by
Lemma 3.6 1 ≤ i ≤ k − 1 and by the induction hypothesis

i >
n− 2

2



the electronic journal of combinatorics 5 (1998), #R44 18

Therefore n/2− 1 < i. ≤ k − 1, which implies that n/2 < k.
Suppose n is even and n/2 < k ≤ n. By Lemma 3.6, F n

k contains F n−2
1 · · ·F n−2

k−1

within its boundary. Since k − 1 > n/2− 1, by the induction hypothesis F n−2
k−1 must

have a singleton crossing. Therefore, S(n, k) > 0. 2

We now present three little corollaries concerning S(n, k):

Corollary 3.4 For all n ≥ 2, we have S(n, n) = S(n, n− 1).

Proof: By Lemma 3.6, we know that the unlabeled F n
n−1 is identical to the unlabeled

F n
n . 2

Corollary 3.5 If n is even and n ≥ 2, then S(n, n/2 + 1) = 1.

Proof (by induction on n):
Base Case:

S(2, 2) = 1

Inductive Step: Suppose it is true for S(n− 2, n/2). Then

S(n, n/2 + 1) =
n/2∑
i=1

S(n− 2, i) (by Lemma 3.6)

=
n/2−1∑
i=1

S(n− 2, i) + S(n− 2, n/2)

= 0 + 1 = 1 (by Lemma 3.9 and the induction hypothesis).

2

Corollary 3.6 For all 1 ≤ k ≤ n,

S(n, k) = S(n, k − 1) + S(n− 2, k − 1)

.

Proof:

S(n, k) =
k−1∑
i=1

S(n− 2, i) (by Lemma 3.6)

=
k−2∑
i=1

S(n− 2, i) + S(n− 2, k − 1)

= S(n, k − 1) + S(n− 2, k − 1).

2
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Define T (n, k) to be the number of well-formed parentheses strings of length 2n,
which begin with exactly k left parentheses. The following recurrence relation for
T (n, k) is proven in Hu and Ruskey [9].

T (n, k) =


T (n, 2) if k = 1
T (n, k + 1) + T (n− 1, k − 1) if 1 < k < n
1 if k = n.

We use T (n, k) to demonstrate a relationship between S(n) and C(n), the nth
Catalan number. The Catalan numbers count the total number of well-formed paren-
theses strings of length 2n. Two equations for C(n) are given below.

C(n) =
1

n+ 1

(
2n

n

)

=
n∑
i=1

T (n, i).

Lemma 3.10 For an even integer n > 1,

S(n, k) = T (n/2, n− k + 1).

Proof (by induction on k):
Base Case:

S(n, n/2 + 1) = 1 = T (n/2, n/2)

Inductive Step: Assume the statement is true for all values less than k:

S(n, k) = S(n, k − 1) + S(n− 2, k − 1) (by Corollary 3.6)

= T (n/2, n− k + 2) + T (n/2− 1, n− k)

= T (n/2, n− k + 1).

And

S(n, n) = S(n, n− 1) = T (n/2, 2) = T (n/2, 1).

2

Corollary 3.7 For n = 2m, the number of singleton crossings S(n) on Vn, is C(m).

Proof:

C(m) =
m∑
i=1

T (m, i)

=
n∑

j=m+1

S(n, j) (by Lemma 3.10)

= S(n).

2
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3.3.1 Subtracting the Singleton Crossing from 2Mn

We know from the proof of Theorem 3.3 and the previous section, that if V n has Mn

vertices, then Vn+1 has 2Mn − S(n) vertices.

Theorem 3.8 Mn =

(
n

bn/2c

)
.

Proof: Theorem 3.2 showed that Mn ≥
(
n
n/2

)
. We proceed by induction on n.

Base Cases: Observe that M2 = 2 and M3 = 3, by Figure 8.
Inductive Step: Let n = 2m, and assume that for all k < n,

Mk =

(
k

bk/2c

)
.

Then for n, which is even,

Mn ≤ 2Mn−1 − S(n− 1, k) = 2Mn−1

= 2

(
2m− 1

m− 1

)

=
2(2m− 1)!

(m− 1)!m!

=
2m(2m− 1)!

m(m− 1)!m!

=
2m!

m!m!

=

(
2m

m

)

=

(
n

bn/2c

)
.

And for n+ 1, which is odd,

Mn+1 ≤ 2Mn − S(n) = 2Mn − C(m)

= 2

(
2m

m

)
−

1

m+ 1

(
2m

m

)

=
2(m+ 1)− 1

m+ 1

(
2m

m

)

=
(2m+ 1)(2m)!

(m+ 1)m!m!

=
(2m+ 1)!

(m+ 1)!m!

=

(
2m+ 1

m

)

=

(
n

bn/2c

)
.

2
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