
Periodic Sorting Using
Minimum Delay, Recursively Constructed Merging Networks

Edward A. Bender
Center for Communications Research

4320 Westerra Court
San Diego, CA 92121, USA

ed@ccrwest.org

S. Gill Williamson
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0114, USA

gwilliamson@ucsd.edu

Submitted: December 6, 1996
Submitted in revised form August 25, 1997

Accepted: December 9, 1997

Abstract

Let α and β be a partition of {1, . . . , n} into two blocks. A merging network is a
network of comparators which allows as input arbitrary real numbers and has the
property that, whenever the input sequence x1, x2, . . . , xn is such that the subse-
quence in the positions α and the subsequence in the positions β are each sorted,
the output sequence will be sorted. We study the class of “recursively constructed”
merging networks and characterize those with delay dlog2 ne (the best possible delay
for all merging networks). When n is a power of 2, we show that at least 3n/2−1 of
these nets are log-periodic sorters; that is, they sort any input sequence after log2 n
passes through the net. (Two of these have appeared previously in the literature.)

1991 AMS Classification Number. Primary: 68P10

the electronic journal of combinatorics 5 (1998), #R5 2

1. Introduction

This paper is divided into two main parts in two ways. First, Sections 1–5 contain
the concepts and results and Sections 6–10 contain the proofs. Second, one part of
the paper deals with merging and the other with sorting. The concepts mentioned
in the present section will be made precise in the next section.

In software terms, a merging network is a program with no branching, looping,
or arithmetic other than the replacement of a pair of values (x, y) with c(x, y) =(
min(x, y),max(x, y)

)
, called a comparator. In hardware terms, a merging network

is a branch-free and feedback-free circuit whose only logic units are comparators.
Given two “interleaved” sorted sequences, a merging net sorts the entire sequence.
A sorting net is like a merging net except that the input is an arbitrary sequence and
the output is sorted. Since comparators may operate in parallel when there is no
overlap of inputs, a considerable amount of parallelism is possible. If a comparator
takes one time unit, the delay of a net is its running time when the most efficient
parallelism is used.

The problem of designing n-input merging and sorting nets having minimum
delay or a minimum number of comparators has been studied by many authors.
Knuth [8, Sec. 5.3.4] discussed the history and results concerning sorting and merg-
ing nets up to 1973. Aigner [1, Thm. 3.3] showed that the best merging nets have
delay dlog2 ne provided neither of the sequences being merged is empty. It has re-
cently been shown by Miltersen, Paterson, and Tarui [9] that a network for merging
an m-long sequence and an n-long one requires 1

2 (m+n) log2 m+O(n) comparators
provided n ≥ m and m → ∞.

A simple information-theoretic argument shows that at least log2(n!) compara-
tors are needed to sort n items. By Stirling’s formula, it follows that the number of
comparators is at least n log n+O(n). Since at most bn/2c comparators can be ex-
ecuted simultaneously, the delay of such a sorting net must be at least log n+O(1).
Until Ajtai, Komlos, and Szemeredi [2] showed that there are networks for sorting
n items having delay on order of log n and using on order of n log n comparators,
researchers were unable to approach such bounds. Since all known families of nets
of this type are quite complicated and have very large factors multiplying both
log n and n log n, it is natural to ask for simpler networks. Some families have been
found with delay times (log n + O(1))2. Of particular interest are two found by
Dowd, Perl, Rudolph, and Saks [5] and Canfield and Williamson [3] that consist
of dlog2 ne repetitions of a merging network. Such a net is called an dlog2 ne-pass
periodic sorter. Kammeyer, Belew, and Williamson [7] conjectured two additional
such families based on empirical studies. A pictorial representation of these nets
for n = 16 is given at the end of the next section at the end.

In the present paper, we study a natural class of n-input merging nets which we
call recursive, focusing on those with minimum delay. We characterize the structure
of these nets and show that they achieve the best possible delay, namely dlog2 ne.
When n is a power of two and the two sorted input sequences have length n/2, we
show that

(a) the least number of comparators needed is (n/2) log2(n/2) + 1, which achieves

the electronic journal of combinatorics 5 (1998), #R5 3

the asymptotic best possible bound of Miltersen et al, and
(b) at least 3n/2−1 of the nets sort after log2 n passes, thereby including the known

and conjectured results of the previous paragraph.

2. Definitions

Unfortunately, a variety of concepts are required. Those needed for stating our
main results are collected in this section.

• regular expression notation: Let S be either a set of sequences or a single
sequence. In the latter case, we identify S with {S}. If T is defined similarly,
then ST is the set of concatenations of pairs of sequences, one from S and one
from T . In particular, Sk is the set of sequences formed by concatenating k
elements of S with repetition allowed. Also, S+ is the union of Sk over all
k > 0, and S∗ is S+ with the empty sequence adjoined. When it will not lead
to confusion we sometimes abuse notation by letting a set of sequences stand
for some element of the set.

• (adjacent) comparator: A comparator is a function c : R
2 → R

2 with

c(x, y) =
(
min(x, y),max(x, y)

)
.

If u ∈ R
n and 1 ≤ i < j ≤ n, then v = ci:j(u) ∈ R

n is given by vk = uk if
k 6= i, j and (vi, vj) = c(ui, uj). We also call ci:j a comparator. If j = i + 1, it
is an adjacent comparator.

• network: A network of comparators, or simply a net, is a sequence of com-
parators ci1:j1 , ci2:j2 , · · · , cik:jk

. A function f : R
n → R

n given by

f(s) = cik:jk

(· · · ci1:j1(s) · · ·)
is associated with the net. In other words, the function f is a composition of
the comparators ci:j . We call s the input and f(s) the output of the net.

Here is a pictorial representation of the net c1:3, c2:4, c1:2, c2:3, c1:4 for R
4. The inputs

are shown being “fed in” at the top and comparators are represented by horizontal
bars. Outputs emerge at the bottom.

s1 s2 s3 s4

(1)

The inputs and outputs of a net may be indexed by a set σ other than {1, 2, . . . , n}.
To keep track of the set, we refer to a net for σ.

• layer: A sequence of comparators may be executed in parallel if and only if
it contains no repeated subscripts. We call such a collection of comparators a
layer. In (1), c1:3 and c2:4 can be executed in parallel, but c1:2 and c2:3 cannot.

the electronic journal of combinatorics 5 (1998), #R5 4

• delay: The delay of net is the minimum number of layers needed to represent
the net. The delay of (1) is 3 and the 3 layers are {c1:3, c2:4}, {c1:2}, and
{c2:3, c1:4}.

• (trivial) partition `: If σ is a set of integers, |σ| denotes its size and σ ` {α, β}
is a partition of σ into two, possibly empty, subsets. If either α or β is empty,
the partition is trivial.

• induced partitions: If σ ` {α, β} and σ ` {σ(1), σ(2)}, let α(i) = α∩σ(i) and
β(i) = β ∩ σ(i). The induced partitions are α ` {α(1), α(2)}, β ` {β(1), β(2)},
σ(1) ` {α(1), β(1)}, and σ(2) ` {α(2), β(2)}.

• (bi)alternating: Suppose δ ` {ε, ζ} is such that, when the elements of δ
are listed in order, ε contains every other element of δ (and hence so does ζ).
We say that the partition δ ` {ε, ζ} is alternating. We call σ ` {σ(1), σ(2)}
bialternating (with respect to α and β) if the induced partitions of α and β are
each alternating.

For example listing the elements of σ in order and using subscripts to denote ele-
ments of α(i) and β(i),

σ = α
(1)
1 , β

(2)
1 , β

(1)
1 , β

(2)
2 , α

(2)
1 , α

(1)
2 , α

(2)
2 , β

(1)
2 (2)

is bialternating, but

σ = α
(1)
1 , α

(2)
1 , β

(1)
1 , α

(2)
2 , β

(2)
1 , α

(1)
2 , β

(2)
2 , β

(1)
2 (3)

is not. If σ = {1, . . . , 8}, the induced partitions of α and β are α ` {{1, 6}, {5, 7}}
and β ` {{2, 4}, {3, 8}}

for (2), and α ` {{1, 6}, {2, 4}}
and β ` {{3, 8}, {5, 7}}

for (3).
• merger: A merging net, or merger, for σ ` {α, β} is a net such that, if the

subsequence of the input indexed by α is sorted and likewise for β, then the
output is sorted.

• recursive merger; correction subnet: A merging net for σ ` {α, β} is re-
cursive if either {α, β} is trivial (and so no comparators are needed) or there is
a partition σ ` {σ(1), σ(2)} such that the net consists of recursive merging nets
for σ(1) and σ(2) followed by an arbitrary comparator net, and the partition
satisfies
(a) σ ` {σ(1), σ(2)} 6= {α, β} is nontrivial;
(b) if |α| ≥ 2 and |β| ≥ 2, then the induced partitions α ` {α(1), α(2)} and

β ` {β(1), β(2)} are both nontrivial.
The arbitrary comparator net following σ(1) and σ(2) is called the correction
subnet.

Condition (a) can be restated as: At least one of the induced partitions
α ` {α(1), α(2)} and β ` {β(1), β(2)} is nontrivial, which is weaker than (b). Con-
dition (a) prevents the trivial cases in which all the work is done before the correc-
tion subnet ({σ(1), σ(2)} trivial) or in the correction subnet ({σ(1), σ(2)} = {α, β})

the electronic journal of combinatorics 5 (1998), #R5 5

whereas (b) requires that, when possible, the work must also be divided between
the merging nets for σ(1) and σ(2) as well.

• periodic sorter: A net is called a k-pass periodic (or sequential) sorter if
passing a sequence through k copies of the net always produces sorted output.
For example, the 2n-input, delay-2 net · · · is an (n/2)-pass
periodic sorter, called the odd-even transposition sort [8, p. 241].

Here is the Dowd, Perl, Rudolph, and Saks 4-pass periodic sorter for n = 16:

Here is the Canfield and Williamson 4-pass periodic sorter for n = 16:

3. Theorems About Recursive Merging Networks

Our main theorem on the structure of recursive merging nets is:

Theorem 3.1. Suppose that σ = {1, . . . , n} ` {α, β} with |α| ≥ 2 and |β| ≥ 2.
The following are true:
(a) A minimum delay, recursive merging net for σ has delay d = dlog2 ne.
(b) If there is a minimum delay recursive merging net associated with the partition

σ ` {σ(1), σ(2)}, then this partition is bialternating and

⌈
max

(
log2 |σ(1)|, log2 |σ(2)|)⌉ <

⌈
log2 |σ| ⌉. (4)

(c) The following construction gives precisely the minimum delay recursive merging
nets associated with a bialternating partition σ ` {σ(1), σ(2)}.
(i) Suppose the minimum elements of α and β both belong to σ(1) or both

belong to σ(2). Then the correction subnet consists of c2k:2k+1 for 1 ≤ k <
|σ|/2 and, optionally when |σ| is even, c1:|σ|.

the electronic journal of combinatorics 5 (1998), #R5 6

(ii) Suppose one of the minimum elements of α and β belongs to σ(1) and
the other to σ(2),. Then the correction subnet consists of c2k−1:2k for
1 ≤ k ≤ |σ|/2.

(iii) The recursive merging nets for σ(1) and σ(2) each have delay at most d−1.
Note that by (i) and (ii), the correction subnet has delay 1.

The condition in (4) rarely fails. Bialternating guarantees that |α(1)| and |α(2)| differ
by at most one and likewise for |β(1)| and |β(2)|. Hence |σ(1)| and |σ(2)| differ by at
most 2, which can lead to failure of (4) when n is nearly a power of 2. Switching
β(1) and β(2) if necessary, we can insure that |σ(1)| and |σ(2)| differ by at most 1
and, consequently, that (4) holds.

Theorem 3.1 enables us to say quite a bit about the structure of recursive
merging networks with minimum delay: As long as |α| ≥ 2 and |β| ≥ 2 there are
only two ways to partition the sequence σ for recursion and the correction subnet
is practically determined. In this case, if

⌈
log2 |σ(i)|⌉ =

⌈
log2 |σ|⌉ − 1, (5)

then the net for σ(i) is also minimum delay. From Theorem 3.1(b), there are only
two ways in which (5) can fail to hold for i = 1, 2:
(a) |σ| = 2k +1 for some k, in which case the values of |σ(i)| are 2k−1 +1 and 2k−1.
(b) |σ| = 2k + 2 for some k, in which case the values of |σ(i)| can be 2k−1 + 2 and

2k−1.
The following corollary avoids these problems by limiting |σ| to powers of 2.

Corollary 3.1.1. Suppose |σ| = n = 2k. Fix a partition σ ` {α, β} with
|α| = |β| = n/2. Given a sequence s1, s2, . . ., call a maximal subsequence whose
successive indices differ by t a distance-t subsequence. The following are true.
(a) The minimum delay of a recursive merging net for σ is k = log2 n.
(b) Every minimum delay recursive merging net for σ has the following structure:

− The top j layers together form 2k−j disjoint minimum delay recursive
merging nets, each of which has 2j−1 inputs from α and 2j−1 inputs from
β. Furthermore, the 2j−1 elements from α (resp. β) are a distance-2k−j

subsequence of the sequence α (resp. β).
− The first layer consists of n/2 comparators, each comparing an α and a β.
− For j > 1, the jth layer of the net consists of 2k−j parallel correction

subnets as described in Theorem 3.1(c).
(c) The number of such nets is 3n/2−1. If we disallow the optional comparators

(the c1:|σ| of Theorem 3.1(i)), then the number of nets is 2n/2−1.
(d) The minimum number of comparators in a minimum delay recursive merging

net for σ is (k−1)n
2 + 1 and there is exactly one such net.

Two aspects of the corollary may be misleading. First, (d) does not claim that
all (k−1)n

2 + 1 comparators are essential. All comparators are essential when they

the electronic journal of combinatorics 5 (1998), #R5 7

are first introduced in correction subnets as part of the the recursive construction.
Later comparators may make some earlier comparators redundant. We believe that
this does not happen, but have been unable to prove it.

Second, it appears to be a simple matter to count all delay-k recursive merging
nets with |α| = |β| = 2k−1, but this depends on what is meant by “all” nets. If
a merging net is defined to include both the partition and the comparators, then
enumeration is trivial: There are 1

2

(
n

n/2

)
ways to partition σ into two equally long

subseqences. (The factor of one-half occurs because we do not distinguish between
α and β.) If a merging net is defined to be only the arrangement of comparators,
then we are unable to count them. Problems arise because the same net can be
obtained for more than one partition of σ. These partitions can be created by
selectively switching α(2) and β(2) at various levels in the recursion. Such a switch
changes {α, β} but it does not change the net if
(a) the result is still bialternating and
(b) at all levels of the recursive construction, the use of (i) or (ii) in Theorem 3.1

is unchanged.
To illustrate the problem (a) causes, note our switching changes (2) to (3). We
clarify (b) by considering nets for {1, 2, 3, 4} with |α| = |β| = 2. Then {α, β} is
one of

{{1, 2}, {3, 4}}
,
{{1, 3}, {2, 4}}

, and
{{1, 4}, {2, 3}}

. We may assume 1 ∈ α.
Here are the nine minimum delay recursive nets.

α(1) α(2) β(1) β(2)
α(1) α(2) β(1) β(2) α(1) α(2) β(2) β(1)

α(1) β(1) α(2) β(2) α(1) β(1) α(2) β(2) α(1) β(2) α(2) β(1)

α(1) β(1) β(2) α(2) α(1) β(1) β(2) α(2) α(1) β(2) β(1) α(2)

The rows in this array correspond to partitions {α, β} of σ = {1, 2, 3, 4}, the first two
columns correspond to cases in which Theorem 3.1(i) applies, and the last column
to the cases in which Theorem 3.1(ii) applies. The input position labels indicate the
set to which the position belongs. Refer to a net in this array as Ni,j in the usual
matrix fashion. Interchanging α(2) and β(2) creates the following interchanges of
identical nets N1,3 ↔ N2,3, N2,1 ↔ N3,1, and N2,2 ↔ N3,2, and condition (b) holds.
In contrast, the interchange α(2) ↔ β(2) interchanges the partition associated with
N3,3 and the partition associated with N1,1 and N1,2, condition (b) fails, and so the
correction subnets change.

the electronic journal of combinatorics 5 (1998), #R5 8

In Corollary 3.1.1, the only unused positions in a layer are those associated with
the nonuse of the optional comparators in Theorem 3.1(i). In the next section, we
present examples which show that connecting some of these positions can destroy a
net’s merging capability. The following result shows that some connections do not.

Theorem 3.2. Let |α| = |β| be a power of two and consider the recursive merging
nets described in Corollary 3.1.1. For the jth layer, let λj be the set of left ends of
missing optional comparators and let ρj be the missing right ends. Adding compara-
tors of the form cl:r with l ∈ λj and r ∈ ρj does not destroy the merging capability
of the net. In fact, such comparators have no effect because their inputs are always
already in order.

Suppose |σ| = n = 2k and σ ` {α, β}. At the jth layer up from the output, there
are 2j−1 interleaved merging nets. If t of them could have optional comparators,
|λ| = |ρ| = t and so the number of ways to construct a set of i comparators cl:r is(
t
i

)2
i!. It follows that the theorem leads to

k−1∏
j=1

(2j−1∑
t=0

(
2j−1

t

) t∑
i=0

(
t

i

)2

i!
)

sorting nets for each partition σ ` {α, β}. Messy asymptotic estimates show that
this behaves like (n/2)n/2, which is considerably larger than the 3n/2−1 of Corol-
lary 3.1.1(c).

4. Theorems About Periodic Sorting Networks

We now turn our attention to periodic sorting nets built from recursive merging nets.
For simplicity, we limit our attention to |α| = |β| = n/2 a power of 2, say n = 2k.
Corollary 3.1.1 describes how all such recursive merging nets are constructed. In
this case, two types of periodic k-pass sorters are known. We show that they are
members of a larger family.

Since a network is a periodic sorter after a sufficiently large number of passes if
and only if it contains all adjacent comparators [5, Thm. 1], two natural questions
are:
(a) Which recursive merging nets contain all adjacent comparators?
(b) Of those nets in (a), which are k-pass periodic sorters?
The first question has a relatively simple answer, but the other appears more dif-
ficult. The fact that (a) is not sufficient will be illustrated by an example. We
do not have a theorem similar to Theorem 3.2 for periodic sorting nets. However,
Theorem 3.2 can be used to add comparators to sorting nets which are based on a
series of merges, as is the case for the Batcher sort [8, Sec. 5.3.4].

Theorem 4.1. If |σ| = n = 2k and σ ` {α, β} is alternating, then every recursive
merging net for σ is a k-pass periodic sorter.

the electronic journal of combinatorics 5 (1998), #R5 9

By Corollary 3.1.1(c), there are 3n/2−1 such nets. We conjecture the nets in The-
orem 3.2 are k-pass periodic sorters whenever σ ` {α, β} is alternating. This has
been verified up to |σ| = 16 by computer.

The construction of a recursive merging net can be described by a simple tree
constructed as follows:

− At each vertex, a bialternating partition of the lines is constructed by placing
the leftmost α line in α(1) and the leftmost β line in β(i), according to the label
i at the vertex.

− The left son corresponds to σ(1) and the right to σ(2).

The periodic sorting nets given by Dowd, Perl, Rudolph, and Saks [5] correspond
to trees having all vertices labeled 2. The nets given by Canfield and Williamson [3]
correspond to trees having all vertices labeled 1 and having none of the optional
comparators of Theorem 3.1(i). In both cases, σ ` {α, β} is alternating, and so
these nets are included in Theorem 4.1. Kammeyer, Belew, and Williamson [7]
discovered the two nets for n = 16 in which the root and its sons have one value
and the remaining vertices have the other value. Based on these, they conjectured
a general pattern which is included in the families in Corollary 3.1.1.

Theorem 4.2. Call a partition τ ` {τ (1), τ (2)}
− type 1 if listing τ in order gives an element of

(
t(1)t(1)t(2)t(2)

)∗, or

− type 2 if listing τ in order gives an element of
(
t(1)t(2)t(2)t(1)

)∗,

where t(i) stands for any element of τ (i). Other partitions have no type. Suppose
|α| = |β|, a power of 2. We will “mark” certain vertices of the tree described above
and only consider the type of a marked vertex. The partition σ ` {σ(1), σ2)} of the
input lines σ associated with a vertex determines its type, if any. Thus, each vertex
will be labeled 1 or 2, and perhaps be marked and typed. The tree for a recursive
merger has all adjacent comparators if and only if:

(a) Every marked vertex has type equal to its label.

(b) The root is marked.

(c) For every marked non-leaf vertex:

(i) if its left son has the same label, it is also marked;

(ii) if its right son is labeled 1, it is also marked.

The following merging net has all adjacent comparators but is not a 4-pass
sorter. The lines are labeled according to whether they are in α or β. An input
sequence that causes failure and the corresponding output sequence are given. The
tree associated with the net’s construction is shown on the right. The root, its right

the electronic journal of combinatorics 5 (1998), #R5 10

son, and the two rightmost leaves are marked.

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 sort
α α β α β α β α β α β α β α β β

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 sort

2

1 1

1 1 1 1

5. Adding Comparators Can Ruin a Net

It is natural to suppose that adding comparators to a sorting or merging net will not
destroy the ability of the net to sort or merge. It was shown by de Bruijn [4] that,
when a sorting net contains only adjacent comparators, adding extra comparators
does not destroy the ability of the net to sort. On the other hand, this is not true
when nonadjacent comparators are allowed The net

sorts, but the net

which has c1:2 added, fails to sort the sequence 1, 1, 0, 0. This simple counterexample
is not recursively constructed and the added comparator increases the delay. There
are some 16-input recursive merging nets that are 4-pass periodic sorters such that
the addition of a comparator destroys either the merging, the 4-pass periodic sorting,
or both. Examples of this were found by a computer, which was also used to
verify sorting and merging capabilities. In the following three examples, the added
comparator is indicated in bold face. In all cases, Theorems 3.1 and 4.1 insure that
the original nets merge and are 4-pass periodic sorters. The following net is not a
4-pass periodic sorter, but is a merger.

1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 0 sort
α β α β α β α β α β α β α β α β

0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 sort

1

1 1

1 1 1 1

the electronic journal of combinatorics 5 (1998), #R5 11

The following net is a 4-pass periodic sorter, but is not a merger.

1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 merge
α β α β α β α β α β α β α β α β

0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 merge

1

1 2

1 1 1 1

The following net is neither a 4-pass periodic sorter nor a merger. The upper inputs
and outputs are for the merge and the lower are for the sort.

1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 merge
1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 0 sort
α β α β α β α β α β α β α β α β

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 merge
0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 sort

2

2 1

1 1 1 1

6. Proof of Theorems 3.1 and 3.2 and Corollary 3.1.1

Let σ ` {α, β} be nontrivial. We will prove the following two theorems in Sections
7 and 8.

Theorem 6.1. If σ ` {σ(1), σ(2)} is bialternating, |α| ≥ 2, and |β| ≥ 2, then
Theorem 3.1(i) and (ii) describe the minimum delay correction subnets.

Theorem 6.2. If σ ` {σ(1), σ(2)} is not bialternating and the induced partitions of
α and β are not trivial, then the correction subnet has delay greater than one.

Proof (of Theorem 3.1): Without loss of generality, we may assume that |σ(1)| ≥
|σ(2)|. Since being recursive requires that σ ` {σ(1), σ(2)} 6= {α, β} be nontrivial, it
is easily seen that the correction subnet cannot be empty. Since Aigner [1 Thm. 3.3]
has shown that the delay of any n-input merging net for two nonempty sequences is
at least dlog2 ne, it follows the delay for σ is at least

⌈
log2 |σ(1)|⌉+1. Theorem 3.1(a)

and (c) now follow easily by using induction on n and Theorem 6.1, provided (4)
holds. The discussion immediately following the statement of Theorem 3.1 shows

the electronic journal of combinatorics 5 (1998), #R5 12

that it is always possible to satisfy (4). Theorem 3.1(b) now follows easily from
d = dlog2 ne and Theorem 6.2.

Proof (of Corollary 3.1.1): The delay in (a) follows immediately from the theorem.
Whenever |α| (resp. |β|) is even, the bialternating requirement guarantees that
|α(1)| = |α(2)| = |α|/2 (resp. |β(1)| = |β(2)| = |β|/2). The recursive structure in (b)
now follows immediately from the theorem.

The distinction between α(1) and α(2) is irrelevant, so we may as well suppose
that α(1) contains the first element of α. Given α(1), the distinction between β(1)

and β(2) is relevant, because Theorem 3.1(b) shows that this leads to different
correction subnets and hence to different merging nets. This fact guarantees that
the nets counted in this proof are distinct.

Let Nn be the number of minimum delay recursive merging nets for σ. When
n ≥ 4, the theorem tells us that we have minimum delay merging nets on σ(1) and
σ(2) and that |α(i)| = |β(i)| = n/4. It also tells us that there are three choices for
the correction subnet. Hence Nn = Nn/2 × Nn/2 × 3 for n ≥ 4. Note that N2 = 1,
since the net is a single comparator. It is easily verified that Nn = 3n/2−1 is the
solution to this recursion. If we disallow c1:|σ|, “3” is replaced by “2” in the previous
argument.

The minimum number of comparators, Ck, for the |α| = |β| = 2k−1 case is
easily found. The theorem tells us that there is a correction subnet with 2k−1 − 1
comparators but not with less. Hence Ck = Ck−1 + Ck−1 + 2k−1 − 1. Since C1 = 1,
one easily verifies that Ck = (k − 1)2k−1 + 1. To achieve this minimum, case (ii) in
Theorem 3.1 can never occur. Hence σ ` {α, β} determines {σ(1), σ(2)}.

Proof (of Theorem 3.2): It suffices to prove the last statement in the theorem for
a single comparator cl:r added to the jth layer. Relabeling α and β if necessary,
we can assume that l ∈ α. After the jth layer, Corollary 3.1.1(b) guarantees that
position l will contain the minimum of some set µ′ of input positions associated with
one of the 2k−j recursive merging nets of Corollary 3.1.1(b). Likewise, position r
will contain the maximum of some set µ′′ of such a set of input positions. Since the
inputs α are sorted, it suffices to show that some element of α′ = µ′ ∩ α is to the
left of an element of α′′ = µ′′ ∩ α. (We may suppose α′ 6= α′′.) This follows from
two observations:

(a) Since there are no optional comparators in the first layer, |α′| ≥ 2 and |α′′| ≥ 2.

(b) If α′ and α′′ are the positions in α associated with two merging nets on the jth
layer, then {α′, α′′} is an alternating partition. We now prove this.

Let k > j be the layer at which the inputs in positions µ′ and µ′′ first enter the
same correction subnet. It suffices to look at the first k layers and induct on k − j.
For k − j = 1, the result follows from Theorem 3.1(b).

We now suppose the result is true for k − j = m and prove it for k − j = m+1.
In level j + 1, α′ is associated with some correction subnet µ̂′. Let α̂′ be the subset
of α associated with that correction subnet and define α̂′′ similarly associated with
a correction subnet µ̂′′. By induction, {α̂′, α̂′′} is alternating. By Theorem 3.1(b),
α̂′ ` {α′, α′} and α̂′′ ` {α′′, α′′} are alternating partitions. The result follows.

the electronic journal of combinatorics 5 (1998), #R5 13

7. Proof of Theorem 6.1

Note that Theorem 6.1 is not recursive—it deals only with the correction subnet
after both σ(1) and σ(2) are sorted. Since (i) and (ii) have very similar proofs, we
will prove only (i). We may assume that 1 ∈ σ(1).

We make use of the 0-1 principle, which states that a net correctly merges or
sorts if and only if it does so when its inputs are restricted to {0, 1}. See [8, p. 224]
for a proof. If τ is a set, let τi be the ith smallest element in τ and let τ(k) be the
set of elements of τ which do not exceed k. Note that |τ(τk)| = k. When we say “τ
contains m zeroes”, we mean “the number of zeroes in a specified input that are in
positions indexed by τ equals m”. Note that, for (i) in the theorem,

(
|α(k)| is odd

)
⇔

(
max(α(k)) ∈ α(1)

)
.(

|β(k)| is odd
)

⇔
(
max(β(k)) ∈ β(1)

)
.

(6)

We distinguish four cases based on the parity of the number of zeroes in α and
in β.

Both Parities. We may assume that α contains 2i zeroes and β contains 2j+1. It
follows that σ(1) contains i+j +1 zeroes and σ(2) contains i+j. Let k = 2i+2j +1.
Since |α(k)|+ |β(k)| = k, exactly one of |α(k)| and |β(k)| is even, say |α(k)|. Hence
|α(1)(k)| = |α(2)(k)| and |β(1)(k)| = |β(2)(k)| + 1. Thus |σ(1)(k)| = |σ(2)(k)| + 1 and
so

|σ(1)(k)| = i + j + 1, the number of zeroes in σ(1);
|σ(2)(k)| = i + j, the number of zeroes in σ(2).

It follows that, after sorting σ(1) and σ(2) we have an element of 0k1∗.

Both Even. Let α contain 2i zeroes and β contain 2j. Let k = 2i+2j. Note that
σ(1) and σ(2) each contain k/2 zeroes. If |α(k)| and |β(k)| are even, the reasoning
is similar to the previous case. Otherwise, both |α(k)| and |β(k)| are odd. Thus
|σ(1)(k)| exceeds |σ(2)(k)| by 2; that is, |σ(1)(k)| = i+ j +1 and |σ(2)(k)| = i+ j −1.
By (6), k ∈ σ(1) and so k + 1 ∈ σ(2). It follows that after sorting σ(1) and σ(2), we
have an element of 0k−1101∗ and so ck:k+1 is needed.

Both Odd. Let α contain 2i+1 zeroes and β contain 2j−1. Let k = 2i+2j. Note
that σ(1) contains k +1 zeroes and σ(2) contains k −1. If |α(k)| and |β(k)| are both
odd, the reasoning is similar to the first case. Otherwise, both |α(k)| and |β(k)|
are even. Hence |σ(1)(k)| = |σ(2)(k)| = k/2 and, by (6), k ∈ σ(2) and k + 1 ∈ σ(1)

It follows that after sorting σ(1) and σ(2), we have an element of 0k−1101∗ and so
ck:k+1 is needed.

In both of the last two cases, k is even and hence any essential comparator
must be of the form c2l:2l+1. We now show that all of these are essential. If |α(2l)|
and |β(2l)| are even, let α and β each contain an odd number of zeroes for a total
of 2l. Use the “both odd” case to see that c2l:2l+1 is essential. If |α(2l)| and |β(2l)|

the electronic journal of combinatorics 5 (1998), #R5 14

are odd, let α and β each contain an even number of zeroes for a total of 2l. Use
the “both even” case to see that c2l:2l+1 is essential.

We remark that for case (ii), comparators are needed in the “both parities”
case and are not needed in the other two cases.

8. Proof of Theorem 6.2

As in the proof of Theorem 6.1, we use the 0-1 principle to limit our attention to
0-1 inputs and note that Theorem 6.2 is not recursive.

To avoid excessive superscripting, we will associate a with α(1), A with α(2),
b with β(1), and B with β(2). Furthermore, we usually drop subscripts and punc-
tuation and abuse equality when referring to sequences so that we are dealing
with words in M = {a, b, A, B}∗. For example, σ = Abab denotes the fact that
σ = {σ1, σ2, σ3, σ4}, where σi < σi+1, has been partitioned into α = {σ1, σ3} and
β = {σ2, σ4}. Furthermore, α(1) = {σ3}, α(2) = {σ2}, β(1) = β, and β(2) is empty.
Note that the abAB notation conveys all the information needed to study one level
of the recursive construction: The recursion will sort the lower case positions and
will sort the upper case positions. The correction subnet will merge these two sorted
sequences, using the fact that α (the sequence in {a, A}∗) and β (the sequence in
{b, B}∗) were originally sorted.

• Let Mk be the set of all x ∈ M for which the least possible delay in the
correction subnet is k.

• The notation
s → x → t with x ∈ M and s, t ∈ {0, 1}∗

means that, if s is sorted on α and β, then t is what we obtain after sorting
on σ(1) and on σ(2), but before the correction subnet. Thus we think of x as
describing a network that sorts lower case letter positions and sorts upper case
letter positions, and we think of the arrows as indicating data flowing into and
out of the network.

To prove Theorem 6.2, we require four lemmas.

Lemma 8.1. If x = x1 · · ·xn ∈ Mk, then the following are in Mk and conversely:
(a) the word obtained from x by changing all α’s to β’s and conversely, preserving

case;
(b) the word obtained from x by changing the case of all letters;
(c) the words obtained from x by allowing a and b to commute and allowing A and

B to commute.
(d) the word xn · · ·x1 obtained by reversing x;

Proof: The operations in (a) and (b) do not affect the initial bimonotone require-
ments on the α’s and on the β’s, nor do they affect the monotone rearrangement of
the upper case and lower case sequences. Interchanging an adjacent a,b pair leads to
the same sequence after a monotone rearrangement on the lower case letters. Since

the electronic journal of combinatorics 5 (1998), #R5 15

the same is true for upper case letters, (c) is proved. The reversal of all sequences
together with the interchange of 0 and 1 leaves all statements valid and so (d) is
proved.

Lemma 8.2. If x, y, z ∈ M and xyz ∈ M1, then x, y, z ∈ M0 ∪ M1.

We omit the simple proof of this lemma. The following lemma will be proved in the
next section.

Lemma 8.3. A correction subnet is minimal if removing any of the comparators
destroys the merging property of the net. If x ∈ M1, then all comparators in a
minimal, delay 1 correction subnet are of the form ci:i+1; i.e., they are adjacent.

Lemma 8.4. The following sequences are not in M1:
(a) elements of b{a, A}∗Aa∗b,
(b) elements of A{b, B}∗b{a, A}∗b.

Proof: For (a) we consider two functions. The first function is 0 everywhere except
at the Aa∗; that is,

0{0, 0}∗11∗0 → b{a, A}∗Aa∗b → 0{0, 0}∗101∗.

Thus a comparator is needed between the rightmost A and the following position.
The second function is

1{0, 0}∗01∗1 → b{a, A}∗Aa∗b → {0, 0}∗10+1∗1,

where 0+ corresponds to the rightmost block of A’s. Thus a comparator is needed
between the leftmost A in that block and the preceding position. This shows that
b{a, A}∗Aa∗b 6∈ M1.

By (a), we can assume that (b) has the form A{b, B}∗ba∗b. By Lemmas 8.1(c)
and 8.2, it suffices to show that A{b, B}∗b2 6∈ M1. Consider the function which is
1 at A and 0 elsewhere. Then

10∗02 → A{b, B}∗b2 → 0∗10∗02,

where the final 1 is in the position of the rightmost capital letter. This sequence
requires a nonadjacent comparator and so is not in M1 by Lemma 8.3.

The rest of this section is devoted to proving the following strengthened version
of Theorem 6.2.

Theorem 8.1. We say the sequence x meets a set S k times if k elements of x
lie in S. Suppose x ∈ M meets each of the sets {a, A}, {b, B}, {a, b}, and {A, B}
at least twice (the “meet conditions”) and is not bialternating, then x 6∈ M1 ∪ M0.

To see that this is stronger than Theorem 6.2, note that x = aaBB satisfies the
meet conditions but the partitions of α and β are both trivial.

the electronic journal of combinatorics 5 (1998), #R5 16

Proof (of Theorem 8.1): We induct on |x|. Let x = x1 · · ·xn+1. By Lemma 8.1,
we may assume that xn+1 = b. Let x′ = x1 · · ·xn. The meet condition tells us that

x′ contains at least two α’s. (7)

By Lemma 8.2, and the induction hypothesis, we are done if x′ satisfies the meet
conditions and is not bialternating. Thus, it suffices to show that the following
three situations are impossible when x is in M1, satisfies the meet conditions, and
is not bialternating.
(i) x′ is bialternating.
(ii) x′ is not bialternating, contains b, and does not satisfy the meet conditions.
(iii) x′ is not bialternating, does not contain b, and does not satisfy the meet con-

ditions.

Case (i). Since x′ is bialternating, (7) tells us that it contains both a and A. By
Lemma 8.4(a), x must end in either bab or bb. By Lemma 8.1(c), we can replace
bab with abb, which does not destroy the bialternating nature of x′. It follows from
the fact that x′ is bialternating and Lemma 8.4(b) that x ends with either Cabb
or cBbb where c (resp. C) stands for some lower (resp. upper) case letter. Set all
inputs to 0 except for the last A and the following a, if any. For Cabb, we have

0∗10∗100 → · · ·Cabb → 0∗1001,

which requires the nonadjacent comparator cn−2:n. By Lemma 8.3, x 6∈ M1. For
cBbb, we have

0∗10∗02

0∗10∗10∗02

}
→ · · · cBbb →

{
0∗100, if the rightmost α is A;
0∗101, if the rightmost α is a;

The former requires the nonadjacent comparator cn−1:n+1 and so is covered by
Lemma 8.3. The latter requires cn−1:n. In this case, set all inputs except c and the
last bb to 0:

0∗1011 → x → 0∗1011,

which requires cn−2:n−1. Since both cn−2:n−1 and cn−1:n are required, the delay is
at least two and so x 6∈ M1. This completes case (i).

Case (ii). There are three possible cases:
(a) x′ contains A but not a.
(b) x′ contains A and a.
(c) x′ contains a but not A.

Suppose (a) holds. Since a is not present and x satisfies the meet conditions,
it contains at least two A’s. Set all A’s to 1 and all β’s to 0. After passing through
the net x, the rightmost position will be 0 and there will be at least two 1’s to the
left of it. Apply Lemma 8.3.

Suppose (b) holds. Since x′ does not satsify the meet conditions, it cannot
contain B. By Lemma 8.4(a), it follows that no A can lie between two b’s. Starting

the electronic journal of combinatorics 5 (1998), #R5 17

at the rightmost A, we have x = · · ·Aa∗ba∗b · · ·. By Lemma 8.1(c), we can rearrange
Aa∗ba∗b as Aba∗b, which is not in M1 by Lemma 8.4(b).

Suppose (c) holds. By the meet condition for x, x′ contains a and B. If
x′ contained more than one a, we could apply Lemma 8.1(a) and Lemma 8.4 to
conclude that x′ 6∈ M1. Therefore x′ contains at exactly one a. Since xn = b, x
meets {a, A} only once, a contradiction.

Case (iii). Let π(y) stand for some permutation of the letters of the word y.
Since b 6∈ x′, x = π(a∗A∗B∗)b. The meet conditions on x show that this is in fact
either π(aa+BB+)b or π(a+A+B+)b. The former cannot occur since then x′ would
satisfy the meet conditions. Thus it remains to consider x = π(a+A+B+)b. Note
that x1 6= b.

Consider the word y = xn+1 · · ·x1. By Lemma 8.1(d) and the previous parts
of the proof, especially the last two sentences in the previous paragraph, we may
assume that y is one of

π(A+b+B+)a, π(a+b+B+)A, π(a+A+b+)B.

Combining this with the conclusion of the previous paragraph, it follows that we
may assume that x is one of

x(1) = a π(A+B+)b, x(2) = A π(a+B+)b, x(3) = B π(a+A+)b.

Recall that x is not bialternating. By Lemma 8.1, we can assume that x(1) and x(2)

contain at least two B’s and that x(3) contains two adjacent a’s. To eliminate x(1),
apply Lemma 8.3 to

1π(1+021∗)1 → aπ(A+B2B∗)b → 1021∗.

To eliminate x(2), apply Lemma 8.1(b), possibly Lemma 8.1(d), and lastly Lemma 8.4
to π(a+B2B∗). To eliminate x(3), apply Lemmas 8.1(a) and 8.4(b).

9. Proof of Lemma 8.3

Suppose that the correction subnet has delay 1 and contains a nonadjacent com-
parator. We will show that this leads to a contradiction. Among all inputs from
{0, 1}n that require a nonadjacent comparator let s be one containing the maximum
number of ones. Let t be the result before the correction subnet, that is s → x → t.
There are (0,1)-sequences p, q, and r with q nonempty such that t = p1q0r is the
result of passing s through all of the net except the correction subnet. The leftmost
nonadjacent comparator that is needed, ci:j , switches the 0 and 1 in p1q0r. With-
out loss of generality, we may assume that i ∈ σ(1) and j ∈ σ(2). We now prove a
sequence of facts
(a) We have p = 0∗. If this were false, there would be a 1 in p that would require

a nonadjacent comparator.

the electronic journal of combinatorics 5 (1998), #R5 18

(b) The last 0, if any, in a position indexed by α (resp. β) is in a position indexed
by σ(2). If this were false, we could change that 0 to a 1 without affecting ti or
tj .

(c) Any zeroes in t after the ith position must be indexed by σ(2). Since ti = 1 is
indexed by σ(1) this follows from the fact that the positions indexed by σ(i) are
sorted before the correction subnet.

(d) We have r = 1∗. Changing the last 0 in s to a 1 will not alter ti and, if r
contains a 0, will also not alter tj by (c).

(e) We have q = 1+. If we change the last 0 in s to a 1, it follows from (b) and
(d) that t is changed to p1q1r. If q contained a 0, a comparator other than ci:j
would be needed to move ti. This contradicts the delay 1 assumption.

At this point we have shown that t = 0∗11+01∗.

(f) The first 1, if any, in a position indexed by α (resp. β) is in a position indexed
by σ(2). If not, change that 1 to a 0. Since p = 0∗, this changes t to 0∗01+01∗

and so a comparator other than ci:j is needed to move tj , contradicting delay 1.

(g) We may divide the total number of input ones between positions indexed by α
and β in any manner without altering t. By (b) and (f), increasing the number
of ones by 1 in one subsequence and decreasing in by 1 in the other will not
change the number of ones in σ(1) and σ(2). Hence t will be unchanged.

We are now ready to derive a contradiction. Let k be the total number of
zeroes in s. Let l of the first k positions be indexed by α. From (g), we can place l
zeroes in the positions indexed by α and the remaining in the positions indexed by
β. Then s = 0k1∗ and so it will not be rearranged by comparators. Hence t = 0k1∗,
contradicting the fact that t = 0∗11+00∗.

10. Proof of Theorems 4.1 and 4.2

Proof (of Theorem 4.2): Think of marking as meaning that the subnets being
merged at that point must contain adjacent comparators. Consider the lines asso-
ciated with a marked vertex. Since there are no comparators between σ(1) and σ(2)

above the correction subnet, pairs of lines requiring comparators must belong to
the same block of the partition. The agreement of label and type is precisely what
is needed to guarantee that a pair of adjacent lines needing a comparator occur in
the same block. This explains (a) in the theorem. Since the final correction layer
contains only about half of the needed adjacent comparators, condition (b) starts
the adjacent comparator requirement. Condition (c) insures that the requirement is
propagated when the correction layer of a son does not contain the required adjacent
comparators.

Proof (of Theorem 4.1): The method of proof is essentially that same as that in
[3] and [5].

the electronic journal of combinatorics 5 (1998), #R5 19

Recall that we defined a distance-t subsequence of s1, s2, . . . to be a maximal
subsequence whose successive indices differ by t. We call a sequence t-sorted if all
its distance-t subsequences are sorted. We will show the following:

I For 0 ≤ i ≤ k − 2, if α and β are 2i+1-sorted, then, after passing through the
first k − i layers, they are 2i-sorted.

II If the α and β sequences feeding into layer j are 2i-sorted and j > k − i, then
so are the outputs.

We now show how to complete the proof given I and II. Suppose α and β are 2i+1-
sorted. By I, they are each 2i-sorted after passing through the first k − i layers.
By II, this property is preserved by passing through the remaining layers. Hence,
if the input α and β sequences are 2i+1-sorted, the output α and β sequences are
2i-sorted. Since |α| = |β| = 2k−1, both sequences are trivially 2k−1-sorted and so,
by the previous sentence they are 20-sorted after k−1 passes through the net. Since
a 1-sorted sequence is sorted and the net is a merging net, one more pass completes
the sort. This proves the theorem subject to verifying I and II.

The following observation will prove useful later. Let α̂ and β̂ be any distance-t
subsequences of α and β for any t. Together, they are a subsequence σ̂ of σ. Since
the hypothesis of the theorem states that σ ` {α, β} is alternating, it follows that

σ̂ ` {α̂, β̂} is alternating. (8)

We now prove I. From Corollary 3.1.1(b), the first k − i − 1 layers consist of
2i+1 merging nets whose inputs are distance-2i+1 subsequences of α and β. Since
α and β are assumed to be 2i+1-sorted, each of the 2i+1 merging nets has as input
a sorted subsequence of α and a sorted subsequence of β, and so the output of
each of these merging nets is sorted. By Corollary 3.1.1(b) again, the (k − i)th
layer consists of 2i correction subnets. Limit attention to one of these correction
subnets. Use {c, C} and {d, D} to stand for the {a, A} and {b, B} subsequences
in some order, with upper (resp. lower) cases corresponding to upper (resp. lower)
cases; i.e., letters correspond to letters and cases to cases. Note that:
(a) By the preceding discussion, the inputs to the correction subnet from cd are

sorted as are the inputs from CD.
(b) By Corollary 3.1.1(b), c, C, d, and D are distance-2i+1 subsequences of α

and β.
(c) By Corollary 3.1.1(b), the cC and dD sequences are distance-2i subsequences

of α and β.
Since the meaning of c and d and the assignment of upper and lower case can each
be changed, it follows from (8), (b), and (c) that the only possible choices for the
interleaving of the four subseqences are

(i) c1, d1, C1, D1, c2, d2, C2, . . . , Dl and (ii) c1, D1, C1, d1, c2, D2, C2, . . . , dl,

where l = 2k−i−2. Note that (i) and (ii) of Theorem 3.1(c) apply to subsequences
(i) and (ii), respectively.

the electronic journal of combinatorics 5 (1998), #R5 20

We treat (i) and leave (ii) to the reader since it is similar. Let a sequence letter
stand for the input to the (k − i)th layer and a primed letter stand for the output.
By (a) above, ci ≤ di ≤ ci+1 and Ci ≤ Di ≤ Ci+1. We have C ′

i = max(di, Ci) and
c′
i+1 = max(Di, ci+1). With or without the optional comparator, c′

1 ≤ c1. Hence

c′
1 ≤ d1 ≤ max(d1, C1) = C ′

1,

C ′
i = max(di, Ci) ≤ max(Di, ci+1) = c′

i+1,

c′
i = max(Di−1, ci) ≤ max(di, Ci) = C ′

i.

Thus the cC sequence is sorted. Similarly, one obtains

D′
l ≥ Cl ≥ min(dl, Cl) = d′

l,

d′
i = min(di, Ci) ≤ min(Di, ci+1) = D′

i,

D′
i−1 = min(Di−1, ci) ≤ min(di, Ci) = d′

i,

which shows that the dD sequence is sorted. Since each of these are distance-2i

subsequences, we have proved I.
We now prove II. Consider that part of layer j corresponding to a particular

correction subnet.
Assume that the correction subnet is as in Theorem 3.1(ii). The layer’s input

consists of distance-2k−j subsequences α̂ and β̂ of α and β. From (8), the partition
σ̂ ` {α̂, β̂} is alternating. From Theorem 3.1(c), either all left inputs to the com-
parators are α’s or all inputs to the comparators are β’s. Now look at one of the
distance-2i subsequences of α that is a subequence of α̂. Call it α̃. Note that

α̃ is a distance-2i−(k−j) subsequence of α̂. (9)

Now look at the β̂ subsequence β̃ that shares comparators with α̃. It follows from
(8) and (9) that β̃ is a distance-2i−(k−j) subsequence of β̂ and hence a distance-2i

subsequence of β. By assumption, α̃ and β̃ are sorted, and they are of the same
length. Since the sequence formed by the minima (resp. maxima) of corresponding
positions of sorted sequences is also sorted, we are done.

Now assume that Theorem 3.1(i) applies and use the notation and argument
of the preceding paragraph. We are done except for dealing with the first and last
elements of σ̂, neither of which is the input of an adjacent comparator. We may
assume that the first element of σ̂ is in α. In this case, the right inputs of the
adjacent comparators are always α̂’s. Suppose the first element of α̂ is in α̃. Use
primes to denote the ouput of the correction layer and lack of primes to denote its
input. With or without the optional comparator, α̃′

1 ≤ α̃2. Since α̃′
i = max(β̃i−1, α̃i)

for i > 1, it follows that α̃′
1 ≤ α̃′

2. Hence α̃′ is sorted. A similar argument applies
to the distance-2i β subsequence containing the last element of σ̂. This completes
the proof of II and hence of Theorem 4.1.

the electronic journal of combinatorics 5 (1998), #R5 21

References

[1] M. Aigner, Parallel complexity of sorting problems, J. Algorithms 3 (1982) 79–
88. V. Grinberg has given an alternate proof. See Knuth, The Art of Computer
Programming, Volume 3 errata, solution to Ex. 46 of Sec. 5.3.4 (text page 641).
See http://www-cs-faculty.stanford.edu/∼knuth/taocp.html.

[2] M. Ajtai, J. Komlos, and E. Szemeredi, Sorting in c log n parallel steps, Com-
binatorica 3 (1983) 1–19.

[3] E. R. Canfield and S. G. Williamson, A sequential sorting network analogous
to the Batcher merge, Linear and Multilinear Algebra 29 (1991) 43–51.

[4] N. G. de Bruijn, Sorting by means of swapping, Discrete. Math. 9 (1974) 333-
339.

[5] M. Dowd, Y. Perl, L. Rudolph, and M. Saks, The periodic balanced sorting
network, J. Assoc. Comput. Mach. 36 (1989) 738–757.

[6] Z. Hong [H. Zhu] and R. Sedgewick, Notes on merging networks, Proc. 14th
Annual ACM Symposium on the Theory of Computing, ACM, New York (1982)
296–302.

[7] T. E. Kammeyer, R. K. Belew, and S. G. Williamson, Evolving compare-
exchange networks using grammars, Artificial Life 2 (1995) 199-237.

[8] D. E. Knuth, Sorting and Searching, volume 3 of The Art of Computer Pro-
gramming, Addison-Wesley, Reading, MA (1973).

[9] P. B. Miltersen, M. Paterson, and J. Tarui, The asymptotic complexity of
merging networks, J. Assoc. Comput. Mach. 43 (1996) 147–165.

