Hypertext bibliography for
Positivity for special cases of $(q,t)$-Kostka coefficients and standard
tableaux statsitics
by Mike Zabrocki
The following references are available electronically:
-
[6] A. Garsia and M. Haiman, Some
bigraded Sn-modules and the Macdonald q,t-Kostka coefficients, Electron.
J. Combinat. V. 3 #2 (1996) pp. 561-620.
-
[8] G.N. Han, Une
version g\'eometrique de la construction de Kerov-Kirillov-Reshetikhin,
Sèminaire Logharingien de Combinatoire, B31a, I.R.M.A. Strasbourg
(1994), 71-85.
-
[13] A. N. Kirillov and M. Shimozono, A
generalization of the Kostka Foulkes polynomials, (preprint math.CO/9803062).
-
[14] A. N. Kirillov, A. Schilling, M. Shimozono, A
bijection between Littlewood-Richardson tableaux and rigged configurations,
(preprint math.CO/9901037).
-
[16] L. Lapointe and J. Morse, Tableaux
statistics for two part Macdonald polynomials, (preprint math.CO/9812001)
-
[21] S. Veigneau, ACE,
an Algebraic Combinatorics Environment for the computer algebra system
MAPLE, User's Reference Manual, Version 3.0, IGM 98--11, Université
de Marne-la-Vallée, 1998.
-
[22] M. A. Zabrocki, A
Macdonald Vertex Operator and Standard Tableaux Statistics for the Two-Column
$(q,t)$-Kostka Coefficients, Electron. J. Combinat. 5, R45 (1998),
46pp.