On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern

Richard Arratia

Department of Mathematics University of Southern California Los Angeles, CA 90089-1113 email: rarratia@math.usc.edu

Submitted: July 27, 1999; Accepted: August 25, 1999.

ABSTRACT. Consider, for a permutation $\sigma \in S_k$, the number $F(n, \sigma)$ of permutations in S_n which avoid σ as a subpattern. The conjecture of Stanley and Wilf is that for every σ there is a constant $c(\sigma) < \infty$ such that for all $n, F(n, \sigma) \leq c(\sigma)^n$. All the recent work on this problem also mentions the "stronger conjecture" that for every σ , the limit of $F(n, \sigma)^{1/n}$ exists and is finite. In this short note we prove that the two versions of the conjecture are equivalent, with a simple argument involving subadditivity.

We also discuss *n*-permutations, containing all $\sigma \in S_k$ as subpatterns. We prove that this can be achieved with $n = k^2$, we conjecture that asymptotically $n \sim (k/e)^2$ is the best achievable, and we present Noga Alon's conjecture that $n \sim (k/2)^2$ is the threshold for random permutations.

Mathematics Subject Classification: 05A05,05A16.

1. INTRODUCTION

Consider, for a permutation $\sigma \in S_k$, the set $\mathcal{A}(n, \sigma)$ of permutations $\tau \in S_n$ which avoid σ as a subpattern, and its cardinality, $F(n, \sigma) := |\mathcal{A}(n, \sigma)|$. Recall that " τ contains σ " as a subpattern means that there exist $1 \leq x_1 < x_2 < \cdots < x_k \leq n$ such that for $1 \leq i, j \leq k$,

(1)
$$\tau(x_i) < \tau(x_j)$$
 if and only if $\sigma(i) < \sigma(j)$.

An outstanding conjecture is that for every σ there is a finite constant $c(\sigma)$ such that for all $n, F(n, \sigma) \leq c(\sigma)^n$. In the 1997 Ph.D. thesis of Bóna [2], supervised by

The author thanks Noga Alon, Béla Bollobás, and Miklós Bóna for discussions of this problem.

Stanley, this conjecture is attributed to "Wilf and Stanley [oral communication] from 1990." All the recent work on this problem also mentions the "stronger conjecture" that for every σ , the limit of $F(n, \sigma)^{1/n}$ exists and is finite. According to Wilf (private communication, 1999) the original conjecture was of this latter form.

In this short note we give, as Theorem 1, a simple argument, involving subadditivity, which shows that the two versions of the conjecture are equivalent.

Here is some background information on the current status of the Stanley-Wilf conjecture. Represent $\sigma \in S_k$ by the word $\sigma(1) \sigma(2) \cdots \sigma(k)$. For the case of the increasing pattern, i.e the identity permutation, $\sigma = 12 \cdots k$, the upper bound $F(n, \sigma) \leq ((k-1)^2)^n$ is well known, and follows from the Robinson-Schensted-Knuth correspondence; also Regev [7] gives the asymptotics

$$F(n, 12\cdots k) \sim \lambda_k \frac{(k-1)^{2n}}{n^{k(k-2)/2}},$$

with an explicit constant λ_k . Simion and Schmidt [8] give a bijective proof that for each $\sigma \in S_3$, $F(n, \sigma) = \frac{1}{n+1} \binom{2n}{n}$; see also Knuth [6], section 2.2.1, exercises.

For $\sigma = 1342$, Bóna [2] finds the explicit generating function for $F(n, \sigma)$, showing that for all n, $F(n, 1342) < 8^n$, and $\lim F(n, 1342)^{1/n} = 8$. Note in contrast that $\lim F(n, 1234)^{1/n} = 9$. Bóna observes that indeed, in all cases for which $\lim F(n, \sigma)^{1/n}$ is known explicitly, it is an integer! For the special class of "layered patterns," such as $\sigma = 6734512$, Bóna [3] has shown that $\sup_n F(n, \sigma)^{1/n}$ is finite. Alon and Friedgut [1] prove an upper bound for the general case which is tantalizingly close to the goal; they relate the problem to a result on generalized Davenport-Schinzel sequences from Klazar [5], and show that for every $\sigma \in S_k$ there exists $c(\sigma) < \infty$ such that for all $n, F(n, \sigma) \leq c(\sigma)^{n\gamma^*(n)}$, where $\gamma^*(n)$ is an extremely slowly growing function, given explicitly in terms of the inverse of the Ackermann function.

Theorem 1. For every $k \geq 2$ and $\sigma \in S_k$, for every $m, n \geq 1$,

(2)
$$F(m+n,\sigma) \ge F(m,\sigma) \ F(n,\sigma)$$

and $F(n, \sigma) \geq 1$; hence by Fekete's lemma on subadditive sequences,

(3)
$$c(\sigma) := \lim_{n \to \infty} F(n, \sigma)^{1/n} \in [1, \infty] \text{ exists},$$

and $\forall n \ge 1$, $F(n, \sigma) \le c(\sigma)^n$.

Proof. First we will show (2) by constructing, from an *m*-permutation and an *n*-permutation which avoid τ , an (m + n)-permutation which avoids τ , injectively.

Without loss of generality, we may assume that k precedes 1 in σ (since, with $(\cdot)^r$ to denote the left-right reverse of a permutation, τ avoids σ iff τ^r avoids σ^r , and hence for all n, $F(n, \sigma) = F(n, \sigma^r)$.)

THE ELECTRONIC JOURNAL OF COMBINATORICS 6 (1999), #N1

Let $\tau' \in S_m$ and $\tau'' \in S_n$, where each of τ' and τ'' avoids σ . Let τ''' be the result of adding m to each symbol in the word for τ'' , so that τ''' is a word in which each of the symbols $m + 1, \ldots, m + n$ appears exactly once.

Consider the concatenation τ of τ' with τ''' as a permutation, $\tau \in \mathcal{S}_{m+n}$. Clearly, τ avoids σ , establishing (2).

[In detail, suppose to the contrary that τ contains σ , say at the k-tuple of positions given by $1 \leq x_1 < x_2 < \cdots < x_k \leq m+n$. Recall that k precedes 1 in σ ; say that $\sigma(a) = 1$ and $\sigma(b) = k$ with $1 \leq b < a \leq k$, so that by (1), for $1 \leq i \leq k$, $\tau(x_a) \leq \tau(x_i) \leq \tau(x_b)$. If $x_k \leq m$ then τ' contains σ , and if $x_1 > m$ then τ'' contains σ . If neither of these, then the $x_1 \leq m$ so that $\tau(x_1) \leq m$, hence $\tau(x_a) \leq \tau(x_1) \leq m$ and therefore $x_a \leq m$; similarly $x_k > m$ so that $\tau(x_k) > m$, hence $\tau(x_b) \geq \tau(x_k) > m$ and therefore $x_b > m$, contradicting b < a.]

Recalling that k precedes 1 in σ , the identity permutation in S_n avoids σ and demonstrates that $F(n, \sigma) \geq 1$ for every $n \geq 1$. Fekete's lemma [4], see also [9], is that if $a_1, a_2, \ldots \in \mathbb{R}$ satisfy for all $m, n \geq 1$, $a_m + a_n \leq a_{m+n}$, then $\lim_{n \to \infty} a_n/n = \inf_{n \geq 1} a_n/n \in [-\infty, \infty)$. Applying this with $a_n := -\log F(n, \sigma)$ completes our proof.

There exist [10] examples with $\sigma, \sigma' \in S_k$, with σ' the identity permutation, and $F(n, \sigma) > F(n, \sigma')$, and Bóna [2], Theorem 4 shows that for all $n \ge 7$, F(n, 1324) > F(n, 1234). Nevertheless, it is possible that for every k, the largest exponential growth rate is the $(k-1)^2$ achieved by the identity permutation.

Conjecture 1. (\$100.00) For all $\sigma \in S_k$ and $n \ge 1$, $F(n, \sigma) \le (k-1)^{2n}$.

The problem of the shortest common superpattern.

Define G(n,k) to be the number of permutations $\tau \in S_n$ which avoid at least one permutation in S_k , i.e.

$$G(n,k) := |\bigcup_{\sigma \in \mathcal{S}_k} \mathcal{A}(n,\sigma)|, \text{ where } F(n,\sigma) := |\mathcal{A}(n,\sigma)|.$$

Simion and Schmidt [8], p. 398, give a formula for n! - G(n,3), the number of *n*-permutations which contain all six patterns of length 3. In considering G(n,k), it is natural to consider the length m(k) of the shortest permutation which contains every $\sigma \in S_k$ as a subpattern, i.e. to consider

$$m(k) := \min\{n : G(n,k) < n!\} = \min\{n : \bigcup_{\sigma \in \mathcal{S}_k} \mathcal{A}(n,\sigma) \neq \mathcal{S}_n\}.$$

For a trivial lower bound on m(k), since $\tau \in S_n$ contains at most $\binom{n}{k}$ subpatterns, to contain every subpattern requires $\binom{n}{k} \ge k!$, hence $\liminf_k m(k)/k^2 \ge 1/e^2$.

Theorem 2. There exists an n-permutation, with $n = k^2$, containing every k-permutation as a subpattern; i.e. $m(k) \leq k^2$.

Proof. Consider the lexicographic order on $[k]^2$ as a one-to-one map specifying the ranks of the ordered pairs, i.e. let $r : [k]^2 \to [k^2]$, with $(i, j) \mapsto (i - 1)k + j$. Also consider the transposed lexicographic order $t : [k]^2 \to [k^2]$ given by t(i, j) := r(j, i). Consider the permutation $\tau \in \mathcal{S}_{k^2}$ given by $\tau = r \circ t^{-1}$; for example, with k = 3, this is $\tau = 147258369$. Then, clearly, τ contains every $\sigma \in \mathcal{S}_k$ as a subpattern. In detail, with the positions $x_1 := t(\sigma(1), 1), \ldots, x_k := t(\sigma(k), k)$ we have $x_1 < \cdots < x_k$ and for m = 1 to k, $\tau(x_m) = (r \circ t^{-1})(t(\sigma(m), m)) = r(\sigma(m), m)$ so that $\tau(x_a) < \tau(x_b)$ iff $\sigma(a) < \sigma(b)$.

Conjecture 2. As $k \to \infty$, $m(k) \sim (k/e)^2$.

In contrast, from the known behavior of the length L_n of the longest increasing subsequence, $L_n \sim 2\sqrt{n}$ with high probability, one cannot hope to use random permutations to show that $\liminf m(k)/k^2 \leq (1/e)^2$. The probability that a random *n*-permutation does not contain every $\sigma \in S_k$ as a subpattern is G(n,k)/n!. Define the threshold t(k) by $t(k) = \min\{n: G(n,k)/n! \leq 1/2\}$, so that trivially $m(k) \leq t(k)$, and hence $\liminf t(k)/k^2 \geq 1/4$.

Conjecture 3. (Noga Alon) The threshold length t(k), for a random permutation to contain all k-permutations with substantial probability, has $t(k) \sim (k/2)^2$.

References

- Alon, N., and Friedgut, E. (1999) On the number of permutations avoiding a given pattern. J. Combinatorial Theory, Ser. A, to appear
- [2] Bóna, M. (1997) Exact and asymptotic enumeration of permutations with subsequence conditions. Ph.D. Thesis, M.I.T.
- [3] Bóna, M. (1999) The solution of a conjecture of Stanley and Wilf for all layered patterns. J. Combinatorial Theory, Ser. A 85, 96-104.
- [4] Fekete, M. (1923) Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzähligen Koeffizienten. Math. Z. 17, 228-249.
- [5] Klazar, M. (1992) A general upper bound in extremal theory of sequences. Comment. Math. Univ. Carolin. 33, 737-746.
- [6] Knuth, D. E. (1968) The art of computer programming. Addison-Wesley, Reading, MA.
- [7] Regev, A. (1981) Asymptotic values for degrees associated with strips of Young diagrams. Adv. Math. 41, 115-136.
- [8] Simion, R., and Schmidt, F. W. (1985) Restricted permutations. European J. of Combinatorics 6, 383-406.
- [9] Steele, J. M. (1997) Probability theory and combinatorial optimization. CBMS-NSF regional conference series in applied mathematics 69. SIAM, Philidelphia, PA.
- [10] West, J. (1990) Permutations with forbidden subsequences; and stack sortable permutations. Ph.D. Thesis, MIT.