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Abstract. Consider, for a permutation σ ∈ Sk, the number F (n, σ) of permuta-
tions in Sn which avoid σ as a subpattern. The conjecture of Stanley and Wilf is
that for every σ there is a constant c(σ) <∞ such that for all n, F (n, σ) ≤ c(σ)n.
All the recent work on this problem also mentions the “stronger conjecture” that for
every σ, the limit of F (n, σ)1/n exists and is finite. In this short note we prove that
the two versions of the conjecture are equivalent, with a simple argument involving
subadditivity.

We also discuss n-permutations, containing all σ ∈ Sk as subpatterns. We prove
that this can be achieved with n = k2, we conjecture that asymptotically n ∼ (k/e)2

is the best achievable, and we present Noga Alon’s conjecture that n ∼ (k/2)2 is
the threshold for random permutations.

Mathematics Subject Classification: 05A05,05A16.

1. Introduction

Consider, for a permutation σ ∈ Sk, the set A(n, σ) of permutations τ ∈ Sn which
avoid σ as a subpattern, and its cardinality, F (n, σ) := |A(n, σ) |. Recall that “τ
contains σ” as a subpattern means that there exist 1 ≤ x1 < x2 < · · · < xk ≤ n such
that for 1 ≤ i, j ≤ k,

τ(xi) < τ(xj) if and only if σ(i) < σ(j).(1)

An outstanding conjecture is that for every σ there is a finite constant c(σ) such
that for all n, F (n, σ) ≤ c(σ)n. In the 1997 Ph.D. thesis of Bóna [2], supervised by
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Stanley, this conjecture is attributed to “Wilf and Stanley [oral communication] from
1990.” All the recent work on this problem also mentions the “stronger conjecture”
that for every σ, the limit of F (n, σ)1/n exists and is finite. According to Wilf (private
communication, 1999) the original conjecture was of this latter form.

In this short note we give, as Theorem 1, a simple argument, involving subadditiv-
ity, which shows that the two versions of the conjecture are equivalent.

Here is some background information on the current status of the Stanley-Wilf
conjecture. Represent σ ∈ Sk by the word σ(1) σ(2) · · ·σ(k). For the case of
the increasing pattern, i.e the identity permutation, σ = 12 · · ·k, the upper bound
F (n, σ) ≤ ((k− 1)2)n is well known, and follows from the Robinson-Schensted-Knuth
correspondence; also Regev [7] gives the asymptotics

F (n, 12 · · ·k) ∼ λk
(k − 1)2n

nk(k−2)/2
,

with an explicit constant λk. Simion and Schmidt [8] give a bijective proof that for
each σ ∈ S3, F (n, σ) = 1

n+1

(
2n
n

)
; see also Knuth [6], section 2.2.1, exercises.

For σ = 1342, Bóna [2] finds the explicit generating function for F (n, σ), showing
that for all n, F (n, 1342) < 8n, and limF (n, 1342)1/n = 8. Note in contrast that
limF (n, 1234)1/n = 9. Bóna observes that indeed, in all cases for which limF (n, σ)1/n

is known explicitly, it is an integer! For the special class of “layered patterns,” such
as σ = 67 345 12, Bóna [3] has shown that supn F (n, σ)1/n is finite. Alon and Friedgut
[1] prove an upper bound for the general case which is tantalizingly close to the goal;
they relate the problem to a result on generalized Davenport-Schinzel sequences from
Klazar [5], and show that for every σ ∈ Sk there exists c(σ) < ∞ such that for all
n, F (n, σ) ≤ c(σ)nγ

∗(n), where γ∗(n) is an extremely slowly growing function, given
explicitly in terms of the inverse of the Ackermann function.

Theorem 1. For every k ≥ 2 and σ ∈ Sk, for every m,n ≥ 1,

F (m+ n, σ) ≥ F (m,σ) F (n, σ)(2)

and F (n, σ) ≥ 1; hence by Fekete’s lemma on subadditive sequences,

c(σ) := lim
n→∞

F (n, σ)1/n ∈ [1,∞] exists,(3)

and ∀n ≥ 1, F (n, σ) ≤ c(σ)n.

Proof. First we will show (2) by constructing, from an m-permutation and an n-
permutation which avoid τ , an (m+ n)-permutation which avoids τ , injectively.

Without loss of generality, we may assume that k precedes 1 in σ (since, with (·)r
to denote the left-right reverse of a permutation, τ avoids σ iff τ r avoids σr, and hence
for all n, F (n, σ) = F (n, σr).)
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Let τ ′ ∈ Sm and τ ′′ ∈ Sn, where each of τ ′ and τ ′′ avoids σ. Let τ ′′′ be the result
of adding m to each symbol in the word for τ ′′, so that τ ′′′ is a word in which each of
the symbols m+ 1, . . . ,m+ n appears exactly once.

Consider the concatenation τ of τ ′ with τ ′′′ as a permutation, τ ∈ Sm+n. Clearly,
τ avoids σ, establishing (2).

[In detail, suppose to the contrary that τ contains σ, say at the k-tuple of positions
given by 1 ≤ x1 < x2 < · · · < xk ≤ m + n. Recall that k precedes 1 in σ; say
that σ(a) = 1 and σ(b) = k with 1 ≤ b < a ≤ k, so that by (1), for 1 ≤ i ≤ k,
τ(xa) ≤ τ(xi) ≤ τ(xb). If xk ≤ m then τ ′ contains σ, and if x1 > m then τ ′′ contains
σ. If neither of these, then the x1 ≤ m so that τ(x1) ≤ m, hence τ(xa) ≤ τ(x1) ≤ m
and therefore xa ≤ m; similarly xk > m so that τ(xk) > m, hence τ(xb) ≥ τ(xk) > m
and therefore xb > m, contradicting b < a.]

Recalling that k precedes 1 in σ, the identity permutation in Sn avoids σ and
demonstrates that F (n, σ) ≥ 1 for every n ≥ 1. Fekete’s lemma [4], see also [9], is
that if a1, a2, . . . ∈ R satisfy for all m,n ≥ 1, am + an ≤ am+n, then limn→∞ an/n =
infn≥1 an/n ∈ [−∞,∞). Applying this with an := − logF (n, σ) completes our proof.

There exist [10] examples with σ, σ′ ∈ Sk, with σ′ the identity permutation, and
F (n, σ) > F (n, σ′), and Bóna [2], Theorem 4 shows that for all n ≥ 7, F (n, 1324) >
F (n, 1234). Nevertheless, it is possible that for every k, the largest exponential growth
rate is the (k − 1)2 achieved by the identity permutation.

Conjecture 1. ($100.00) For all σ ∈ Sk and n ≥ 1, F (n, σ) ≤ (k − 1)2n.

The problem of the shortest common superpattern.

Define G(n, k) to be the number of permutations τ ∈ Sn which avoid at least one
permutation in Sk, i.e.

G(n, k) := | ∪σ∈Sk A(n, σ) |, where F (n, σ) := |A(n, σ) |.

Simion and Schmidt [8], p. 398, give a formula for n! − G(n, 3), the number of
n-permutations which contain all six patterns of length 3. In considering G(n, k), it
is natural to consider the length m(k) of the shortest permutation which contains
every σ ∈ Sk as a subpattern, i.e. to consider

m(k) := min{n : G(n, k) < n! } = min{n : ∪σ∈SkA(n, σ) 6= Sn }.
For a trivial lower bound on m(k), since τ ∈ Sn contains at most

(
n
k

)
subpatterns, to

contain every subpattern requires
(
n
k

)
≥ k!, hence lim infkm(k)/k2 ≥ 1/e2.

Theorem 2. There exists an n-permutation, with n = k2, containing every k-permutation
as a subpattern; i.e. m(k) ≤ k2.
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Proof. Consider the lexicographic order on [k]2 as a one-to-one map specifying the
ranks of the ordered pairs, i.e. let r : [k]2 → [k2], with (i, j) 7→ (i − 1)k + j. Also
consider the transposed lexicographic order t : [k]2 → [k2] given by t(i, j) := r(j, i).
Consider the permutation τ ∈ Sk2 given by τ = r ◦ t−1; for example, with k = 3, this
is τ = 147258369. Then, clearly, τ contains every σ ∈ Sk as a subpattern. In detail,
with the positions x1 := t(σ(1), 1), . . . , xk := t(σ(k), k) we have x1 < · · · < xk and
for m = 1 to k, τ(xm) = (r ◦ t−1)(t(σ(m),m)) = r(σ(m),m) so that τ(xa) < τ(xb)
iff σ(a) < σ(b).

Conjecture 2. As k →∞, m(k) ∼ (k/e)2 .

In contrast, from the known behavior of the length Ln of the longest increasing
subsequence, Ln ∼ 2

√
n with high probability, one cannot hope to use random per-

mutations to show that lim inf m(k)/k2 ≤ (1/e)2. The probability that a random
n-permutation does not contain every σ ∈ Sk as a subpattern is G(n, k)/n!. Define
the threshold t(k) by t(k) = min{n : G(n, k)/n! ≤ 1/2}, so that trivially m(k) ≤ t(k),
and hence lim inf t(k)/k2 ≥ 1/4.

Conjecture 3. (Noga Alon) The threshold length t(k), for a random permutation to
contain all k-permutations with substantial probability, has t(k) ∼ (k/2)2.
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