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Abstract

Let k ≥ 0 and n ≥ 2 be integers. A SOMA, or more specifically a
SOMA(k, n), is an n×n array A, whose entries are k-subsets of a kn-set Ω, such
that each element of Ω occurs exactly once in each row and exactly once in each
column of A, and no 2-subset of Ω is contained in more than one entry of A. A
SOMA(k, n) can be constructed by superposing k mutually orthogonal Latin
squares of order n with pairwise disjoint symbol-sets, and so a SOMA(k, n) can
be seen as a generalization of k mutually orthogonal Latin squares of order n.
In this paper we first study the structure of SOMAs, concentrating on how SO-
MAs can decompose. We then report on the use of computational group theory
and graph theory in the discovery and classification of SOMAs. In particular,
we discover and classify SOMA(3, 10)s with certain properties, and discover
two SOMA(4, 14)s (SOMAs with these parameters were previously unknown to
exist). Some of the newly discovered SOMA(3, 10)s come from superposing a
Latin square of order 10 on a SOMA(2, 10).

1 Introduction

Throughout this paper, k and n denote integers, with k ≥ 0 and n ≥ 2. We initially
define a SOMA, or more specifically a SOMA(k, n), to be an n × n array A, whose
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entries are k-subsets of a kn-set Ω (called the symbol-set for A), such that each element
of Ω occurs exactly once in each row and exactly once in each column of A, and no
2-subset of Ω is contained in more than one entry of A. (We will later find it more
convenient to regard a SOMA as a set of permutations satisfying certain properties.)
Note that a SOMA(1, n) is essentially the same thing as a Latin square of order n.
A SOMA(3, 10) is illustrated in Figure 1.

Figure 1: A SOMA(3, 10) of type (1, 2) with automorphism group of size 10
1 11 21 2 16 27 3 12 26 4 19 28 5 17 23 6 13 14 7 18 20 8 24 25 9 15 30 10 22 29
7 23 30 1 12 22 2 17 28 3 13 27 4 20 29 5 18 24 8 14 15 9 11 19 10 25 26 6 16 21
8 17 22 9 21 24 1 13 23 2 18 29 3 14 28 4 11 30 5 19 25 10 15 16 6 12 20 7 26 27
9 27 28 10 18 23 6 22 25 1 14 24 2 19 30 3 15 29 4 12 21 5 20 26 7 16 17 8 11 13

10 12 14 6 28 29 7 19 24 8 23 26 1 15 25 2 20 21 3 16 30 4 13 22 5 11 27 9 17 18
6 18 19 7 13 15 8 29 30 9 20 25 10 24 27 1 16 26 2 11 22 3 17 21 4 14 23 5 12 28
5 13 29 8 19 20 9 14 16 10 21 30 6 11 26 7 25 28 1 17 27 2 12 23 3 18 22 4 15 24
4 16 25 5 14 30 10 11 20 6 15 17 7 21 22 8 12 27 9 26 29 1 18 28 2 13 24 3 19 23
3 20 24 4 17 26 5 15 21 7 11 12 8 16 18 9 22 23 10 13 28 6 27 30 1 19 29 2 14 25
2 15 26 3 11 25 4 18 27 5 16 22 9 12 13 10 17 19 6 23 24 7 14 29 8 21 28 1 20 30

Let A and B be SOMA(k, n)s. We say that B is isomorphic to A if and only if B
can be obtained from A by applying one or more of: a row permutation, a column
permutation, transposing, and renaming symbols. We remark that the concept of
isomorphism is stronger in [12], as transposing is not allowed. We call this strong
isomorphism, so we say that B is strongly isomorphic to A if and only if B can be ob-
tained from A by applying one or more of: a row permutation, a column permutation,
and renaming symbols.

In this paper we study the structure of a SOMA, and then report on the use of
computational group theory and graph theory in the discovery and classification of
SOMAs. In particular, we discover and classify SOMA(3, 10)s with certain proper-
ties, and discover two SOMA(4, 14)s (SOMAs with these parameters were previously
unknown to exist). Our work makes heavy use of the computational group theory
system GAP (version 4b5) [9] and its share library package GRAPE (version 4.0) [13]
which performs calculations with graphs with groups acting on them. One important
feature of GRAPE that we use is a function which determines cliques with a given
vertex-weight sum in a vertex-weighted graph.

We are particularly interested in decomposable SOMAs, which we now define. For
r = 1, . . . ,m, let kr be a positive integer and Ar be a SOMA(kr, n). Additionally,
suppose that the symbol-sets for A1, . . . , Am are pairwise disjoint. The superposition
of A1, . . . , Am is defined to the n × n array A whose (i, j)-entry A(i, j) is the (dis-
joint) union of A1(i, j), . . . , Am(i, j). This superposition A may or may not not be a
SOMA(k1 + · · ·+ km, n), but if it is, we say that A is a SOMA of type (k1, . . . , km).
Note that a SOMA may have more than one type: for example, a SOMA of type
(k1, . . . , km) is also of type (k1 + · · ·+ km). Let A be a SOMA. If there exist positive
integers s and t such that A is of type (s, t) then we say that A is decomposable;
otherwise we say that A is indecomposable.
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It is not difficult to see that a SOMA(k, n) is of type (1, . . . , 1) if and only if it is
the superposition of k mutually orthogonal Latin squares (MOLS) of order n (having
pairwise disjoint symbol-sets). This is what gives rise to our interest in studying
decomposable SOMAs. One of the main results of this paper is the existence of a
decomposable SOMA(3, 10) of type (1, 2). In Section 3 we prove some elementary
results on the structure of a decomposable SOMA.

The name SOMA was introduced by Phillips and Wallis in [12] (it is an acronym
for simple orthogonal multi-array). However, SOMAs had been studied earlier by
Bailey [2] as a special class of semi-Latin squares used in the design of experiments.
The SOMAs of type (1, . . . , 1) (that is, SOMAs coming from the superposition of
MOLS) are called Trojan squares in [2], where they are shown to be optimal (in a
precisely defined way) amongst (n × n)/k semi-Latin squares (and hence amongst
SOMA(k, n)s) for use in experimental designs.

Let A be a SOMA(k, n). It is an easy exercise to show that k ≤ n− 1, and Bailey [2]
shows that k = n− 1 if and only if A is a Trojan square. Thus, the the existence of a
SOMA(n− 1, n) is equivalent to the existence of n− 1 MOLS of order n, and hence
to the existence of a projective plane of order n. If n is a power of a prime then there
exists a projective plane of order n, but it is a major unsolved problem as to whether
there exists a finite projective plane not of prime-power order.

For all n except 2 and 6, there exists a pair of MOLS of order n. This initially
focussed attention on SOMA(2, 6)s (see [1, 3, 4]). The “optimal” SOMA(2, 6)s are
determined in [4]. In [12], the SOMA(3, 6)s and SOMA(4, 6)s are classified up to
strong isomorphism. (We independently performed this classification.) There are
both decomposable and indecomposable SOMA(3, 6)s and no SOMA(4, 6). Of course
there is no SOMA(5, 6) because there is no projective plane of order 6.

The next non-prime-power after 6 is 10. It is known that there exists a pair of MOLS
of order 10, but not whether there exist three MOLS of order 10. It is known, however,
that for every n > 10 there exist three MOLS of order n (see the editors’ comments
in Chapter 5 of [8]). Combining this result with the existence of a decomposable
SOMA(3, 6) (see [12] or [3]) and the existence of a decomposable SOMA(3, 10) (illus-
trated in Figure 1) we have the following:

Theorem 1 For each n > 3 there exists a decomposable SOMA(3, n).

Remark By the discussion in section 3 of [12], the above result is equivalent to the
existence of a Howell 3-cube H3(n, 2n) for each n > 3.

Problem 1 Does there there exist a SOMA(k, 10) with 4 ≤ k ≤ 8? (There is no
SOMA(9, 10) due to the intensively computational and difficult result that there is
no projective plane of order 10 (see [10]).)
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In the next section we shall reformulate the definition of a SOMA so that a SOMA
becomes a set of permutations satisfying certain properties. This point of view will
help us both in our theoretical and computational study of SOMAs.

2 SOMAs as sets of permutations

Let n ≥ 2 (as usual), and A be a SOMA(k, n) with symbol-set Ω. Each symbol α ∈ Ω
defines a permutation πα of {1, . . . , n} by the rule that iπα = j if and only if α ∈
A(i, j). Since n > 1 we see that different symbols determine different permutations
(otherwise two different symbols would occur together in at least two entries of A).
If we are only given the set {πα | α ∈ Ω} then we can reconstruct the SOMA A up
to the names of the symbols. Indeed, since the names of symbols do not concern us,
it is useful to identify A with the set {πα | α ∈ Ω}.

This gives us an alternative way of viewing a SOMA(k, n). Let n ≥ 2 and k ≥ 0, and
A be a set of permutations of {1, . . . , n}. Then A is said to be a SOMA(k, n) if and
only if

• for all i, j ∈ {1, . . . , n} there are exactly k elements of A mapping i to j, and

• for every two distinct a, b ∈ A, there is at most one i ∈ {1, . . . , n} such that
ia = ib.

Note that a SOMA(k, n) thus defined has size kn.

From here on, we take our definition of a SOMA(k, n) to be the one above, so that
our SOMAs will be sets of permutations. However, we shall usually print out a
SOMA(k, n) in array form, using the symbol-set {1, 2, . . . , kn}.

Let k1, . . . , km be positive integers. For our new definition of SOMA, we have that
a SOMA(k, n) A is of type (k1, . . . , km) exactly when A is the disjoint union of
A1, . . . , Am such that Ar is a non-empty SOMA(kr, n) for r = 1, . . . ,m. Moreover, A
is indecomposable if and only if A cannot be expressed as the disjoint union of two
(or more) non-empty SOMAs.

3 On the structure of a SOMA

Let A be a SOMA(k, n). A subset B of A is called a subSOMA of A if and only if B
is itself a SOMA. If B is a subSOMA of A then B is necessarily a SOMA(k′, n) with
0 ≤ k′ ≤ n, and we call B a subSOMA(k′, n) of A. In this section we prove some
elementary results on subSOMAs and the structure of a decomposable SOMA.
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First note that A and ∅ (the empty set) are both subSOMAs of A. If B is a
subSOMA(k′, n) of A then A \ B is a subSOMA(k − k′, n) of A. Thus A is inde-
composable if and only if A and ∅ are the only subSOMAs of A. The disjoint union
of subSOMAs of A is a subSOMA, and it is easy to see that if B and C are subSOMAs
of A, then B ∩ C is a subSOMA if and only if B ∪ C is.

Suppose that the SOMA(k, n) A is the disjoint union of non-empty subSOMAs
A1, . . . , Am. Then we say that {A1, . . . , Am} is a decomposition of A. If, in addition,
each of A1, . . . , Am is indecomposable, then we say that {A1, . . . , Am} is an unrefin-
able decomposition of A, in which case, where Ai is a SOMA(ki, n) for i = 1, . . . ,m,
we say that A has unrefinable decomposition type (k1, . . . , km).

It is easy to see that a SOMA must have at least one unrefinable decomposition. We do
not know whether there is a SOMA with more than one unrefinable decomposition,
but we suspect there is. However, we shall show that in certain circumstances an
unrefinable decomposition of a SOMA is unique.

Suppose that the SOMA A has a unique unrefineable decomposition {A1, . . . , Am}.
Then A1, . . . , Am must be the only non-empty indecomposable subSOMAs of A, for
if B were a further non-empty indecomposable subSOMA then A would also have
an unrefinable decomposition {B} ∪D, with D an unrefinable decomposition of A \
B. Thus, the subSOMAs of A are precisely the (disjoint) unions of elements of
{A1, . . . , Am}, and so the intersection of two subSOMAs of A is a subSOMA.

Conversely, suppose that each pair of subSOMAs of A intersect in a subSOMA.
Then the set of subSOMAs of A forms a finite boolean lattice L (with meet being
intersection, join being union, and x′ := A\x), and so L is isomorphic to the lattice of
subsets of a finite set (see, for example, [6, Theorem 12.3.3]). Indeed, the subSOMAs
of A are precisely the (necessarily disjoint) unions of the non-empty indecomposable
subSOMAs of A (which are the “join-indecomposable” elements of L). In particular,
A has a unique unrefinable decomposition.

Problem 2 Does there exist a SOMA which does not have a unique unrefinable
decomposition? (Equivalently, does there a exist a SOMA having two subSOMAs
intersecting in a non-SOMA?)

Before going further, we introduce some notation. Let a and b be permutations of
{1, . . . , n}. We write a ∼ b to mean that there is exactly one i ∈ {1, . . . , n} such that
ia = ib. Note that a 6∼ a since n > 1. Given a set S of permutations of {1, . . . , n}
we denote by Γ(a, S) the set {s ∈ S | a ∼ s}. The cardinality of Γ(a, S) is denoted
γ(a, S).

Lemma 2 Suppose A is a SOMA(k, n), a ∈ A, and B is a subSOMA(k′, n) of A.
Then γ(a,B) is equal to (k′ − 1)n or k′n depending respectively on whether or not
a ∈ B.
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Proof For each i ∈ {1, . . . , n} there are exactly k′ elements b ∈ B such that ia = ib.
Moreover, unless a = b, if ia = ib then ja 6= jb for each j ∈ {1, . . . , n} \ {i}. The
result follows. 2

Theorem 3 Suppose that A is a SOMA(k, n), and that B and C are subSOMAs of
A, with B a subSOMA(k′, n). Then:

1. If B 6⊆ C then |B ∩ C| ≤ (k′ − 1)n.

2. If B ∩ C 6= ∅ then |B \ C| ≤ (k′ − 1)n.

3. Suppose k′ = 1, i.e. B is a SOMA(1, n). Then B ⊆ C or B ∩ C = ∅. In
particular, B ∩ C is a SOMA.

4. Suppose k′ = 2, i.e. B is a SOMA(2, n). Then B ⊆ C, B ∩C = ∅, or B ∩C is
a SOMA(1, n). In particular, B ∩ C is a SOMA.

5. Suppose {A1, . . . , Am} is an unrefinable decomposition of A, and that B is a
SOMA(1, n) or an indecomposable SOMA(2, n). Then B = Aj for some j ∈
{1, . . . ,m}.

6. Suppose {A1, . . . , Am} is an unrefinable decomposition of A. Then if all, or all
but one, of A1, . . . , Am is a SOMA(1, n) or a SOMA(2, n), then A has a unique
unrefinable decomposition.

7. A SOMA(k, n) with k ≤ 5 has a unique unrefinable decomposition.

Proof

1. Suppose B 6⊆ C and let b ∈ B \ C. Then, by Lemma 2, Γ(b, C) = C, and so
Γ(b, B ∩ C) = B ∩ C. Therefore |B ∩ C| = γ(b, B ∩ C) ≤ γ(b, B) = (k′ − 1)n.

2. Suppose B ∩ C 6= ∅, and let c ∈ B ∩ C. Then b ∼ c for every b ∈ B \ C. In
other words, B \ C ⊆ Γ(c, B). Therefore |B \ C| ≤ γ(c, B) = (k′ − 1)n.

3. This follows directly from part 1.

4. Suppose k′ = 2, B 6⊆ C, and B ∩ C 6= ∅. Then by part 1, |B ∩ C| ≤ n, and by
part 2, |B \ C| ≤ n. Since |B| = 2n, these inequalities must be equalities. In
particular, |B ∩ C| = n. Let c ∈ B ∩ C. Then c ∼ b for all b ∈ B \ C. Since
γ(c, B) = n = γ(c, B \C), this means that c 6∼ c′ for each c′ ∈ B ∩C. It follows
that B ∩ C is a SOMA(1, n).

5. Since {A1, . . . , Am} is a partition of A, we have that B ∩ Aj 6= ∅ for some
j ∈ {1, . . . ,m}. From parts 3 and 4, we have that the non-empty intersection
X := B ∩ Aj is a subSOMA of A. Since both B and Aj are indecomposable,
we must have B = X = Aj .
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6. Without loss of generality, we may suppose that A1, . . . , Am are distinct, and
each of A1, . . . , Am−1 is a SOMA(1, n) or a SOMA(2, n). Applying part 5, we
see that any unrefinable decomposition of A is of the form {A1, . . . , Am−1}∪D,
where D is an unrefinable decomposition of Am = A \ (A1 ∪ · · · ∪Am−1). Since
Am is indecomposable, we must have D = {Am}.

7. Let D be an unrefinable decomposition of a SOMA(k, n) with k ≤ 5. Then all,
or all but one, of the elements of D is a SOMA(1, n) or a SOMA(2, n). 2

4 Groups acting on permutations and SOMAs

Let Sn denote the group of all permutations of {1, . . . , n}, and let G := Sn oC2 be the
wreath product of Sn with the cyclic group of order 2. Thus

G = 〈Sn × Sn, τ | τ
2 = 1, τ(x, y) = (y, x)τ for all (x, y) ∈ Sn × Sn〉.

Now G acts on the set Σn of all permutations of {1, . . . , n}, as follows. Let s ∈ Σn

and (a, b) ∈ Sn × Sn. Then

s(a,b) := a−1sb and s(a,b)τ := (a−1sb)−1.

In particular, sτ = s−1. The group G acts naturally on the sets S of permutations of
{1, . . . , n}, with Sg := {sg | s ∈ S}.

Suppose A is a SOMA(k, n) and a, b ∈ Sn. Then left multiplication of A by a−1

(obtaining a−1A = {a−1x | x ∈ A}) corresponds to permuting the rows by a in the
original definition of a SOMA, right multiplication of A by b corresponds to permuting
the columns by b, and inverting each element of A corresponds to transposing. Thus,
the property of being a SOMA(k, n) is G-invariant. Furthermore, if A and B are
SOMA(k, n)s then B is isomorphic to A if and only if there is a g ∈ G with Ag = B.
In other words, the G-orbits on the set of SOMA(k, n)s are precisely the isomorphism
classes of these SOMAs. Now the automorphism group of a SOMA(k, n) A is naturally
defined as

Aut(A) := {g ∈ G | Ag = A}.

We now state the general form of the problems we shall tackle: given a subgroup
H of G, classify up to isomorphism the SOMA(k, n)s A with H ≤ Aut(A). In
addition, we may specify some constraints on the types of A. Our approach is to
study cliques of weight kn in certain vertex-weighted graphs whose vertices are H-
orbits of permutations of {1, . . . , n}.
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5 Graphs on permutations and on orbits of per-

mutations

Let Σn denote the set of all permutations of {1, . . . , n}. Define Σ0
n to be the graph

with vertex-set Σn and having vertices x and y adjacent if and only if there is no
i ∈ {1, . . . , n} such that ix = iy. Similarly, Σ0,1

n is the graph with vertex-set Σn and
having vertices x and y adjacent if and only if there is zero or one i ∈ {1, . . . , n} such
that ix = iy. We note that G := Sn oC2 acts as a group of automorphisms of Σ0

n and
of Σ0,1

n . We also observe the following:

• A is a SOMA(1, n) if and only if A is a clique of size n in Σ0
n,

• if A is a SOMA(k, n) then A is a clique of size kn in Σ0,1
n , and

• A is a SOMA(k, n) if and only if A is a clique of size kn in Σ0,1
n and for all

i, j ∈ {1, . . . , n} there are exactly k elements of A mapping i to j.

This suggests that to discover SOMA(k, n)s we should study cliques of size kn in Σ0,1
n .

However, this graph has n! vertices, and determining whether a graph has a clique of
a given size is an NP-complete problem. We thus seek a way of shrinking the problem,
and we do this by assuming that the SOMAs we seek have certain symmetries.

5.1 Collapsed complete orbit graphs

Let Γ be a (finite, simple) graph, and H ≤ Aut(Γ). We define a vertex-weighted
graph ∆ = ∆(Γ, H), called the collapsed complete orbits graph of Γ with respect to
H, as follows. We have that v is a vertex of ∆ if and only if v is a H-orbit of vertices
of Γ as well as a clique of Γ. Furthermore, if v is a vertex of ∆ then its weight is the
size of v. Vertices v and w are adjacent in ∆ if and only if v 6= w and v∪w is a clique
of Γ.

Now let N be a subgroup of Aut(Γ) such that N normalizes H. Then N permutes
the H-orbits of vertices of Γ and preserves the property of being a clique of Γ of a
given size. We thus see that N acts on ∆ as a group of vertex-weight preserving
automorphisms.

To classify SOMA(k, n)s invariant underH ≤ G = SnoC2, we use GRAPE to determine
the cliques in ∆(Σ0,1

n , H) with weight-sum kn, up to action by NG(H), the normalizer
in G of H. We then pick out the SOMA(k, n)s and test pairwise for isomorphism by
converting the SOMAs into appropriate graphs and using nauty [11], within GRAPE,
to test for isomorphism.

Given a SOMA(k, n) A, we construct the graph Φ(A) for A as follows. The vertex-
set of Φ(A) is the union of A, the cartesian product {1, . . . , n} × {1, . . . , n}, the set
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{(“row”, i) | 1 ≤ i ≤ n} and the set {(“column”, i) | 1 ≤ i ≤ n}. The (undirected)
edges are defined as follows. An element a ∈ A is adjacent (only) to the ordered pairs
(i, j) such that ia = j. An ordered pair (i, j) is additionally adjacent to the vertices
(“row”, i) and (“column”, j). In addition, (“row”, i) is adjacent to (“row”, j) for all
j 6= i, and (“column”, i) is adjacent to (“column”, j) for all j 6= i. We observe that
two SOMA(k, n)s A and B are isomorphic if and only if their graphs Φ(A) and Φ(B)
are isomorphic (as graphs). (A similar approach is used by Chigbu [7] for determining
isomorphism of semi-Latin squares.) Furthermore, Aut(Φ(A)) (which we can compute
using nauty) is isomorphic in a natural way to Aut(A).

6 Classification of SOMA(k, 10)s, with k > 2,

invariant under certain groups of order 25

Let A be a SOMA(k, n), K a subgroup of G := Sn oC2, and g ∈ G. Then A is invariant
under K if and only if Ag is invariant under g−1Kg. Thus, the set of isomorphism
classes of SOMAs invariant under the group K does not change when we replace K
by a G-conjugate of K.

Now let G := S10 o C2 = 〈S10 × S10, τ | τ2 = 1, τ(x, y) = (y, x)τ〉,

a := (1, 2, 3, 4, 5), b := (6, 7, 8, 9, 10),

and
H := 〈(a, ab), (b, ab2)〉 ≤ G.

Then H ∼= C5 × C5. In this section we first describe the classification, up to isomor-
phism, of SOMA(k, 10)s with k > 2 invariant under H. After that, we briefly outline
the corresponding results for the other subgroups of G of order 25 (all isomorphic to
C5×C5) containing an element conjugate to d := (ab, ab) (which is the same thing as
containing an element of S10 × S10 of cycle shape (52, 52)). By the discussion above,
we need only look at representatives of G-conjugacy classes of subgroups of order 25
containing a conjugate of d.

Our classification for H proceeds as follows. Let N := NG(H) (|N | = 10000). We
start by determining the H-orbits in Σ10 which are cliques in Σ0,1

10 . There are exactly
4020 such orbits: 20 of length 5, and 4000 of length 25. We then construct the
collapsed complete orbits graph ∆ of Σ0,1

10 with respect to H, whose vertices are these
4020 orbits, weighted by their respective sizes. We then determine that there are
no cliques of ∆ of weight-sum 10k with k > 3, but there are exactly 22 N-orbit
representatives of the cliques of ∆ of weight-sum 30. In addition, it turns out that
the union of the elements of each of these representative cliques is an indecomposable
SOMA(3, 10). We convert these SOMAs into graphs and find that they are pairwise
non-isomorphic. All but four of these SOMAs have automorphism group H, and each
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of the other four has an automorphism group of size 50. It turns out that each of these
four representative SOMAs can be chosen to have exactly the same automorphism
group L of order 50, with

L := 〈H, ((1, 6)(2, 8)(3, 10)(4, 7)(5, 9), (1, 8)(2, 10)(3, 7)(4, 9)(5, 6))τ〉.

The group L is ismorphic to C5×D10, where D10 denotes the dihedral group of order
10. Note that the elements of L \H interchange “rows” and “columns”.

In Figure 2 we display one of the SOMA(3, 10)s with automorphism group H, and in
in Figure 3 we display one of the SOMA(3, 10)s with automorphism group L. Our
calculations took about a half-hour of CPU time on a 233 MHz Pentium PC running
LINUX.

Figure 2: An indecomposable SOMA(3, 10) with automorphism group of size 25
1 6 7 2 8 9 3 10 11 4 12 13 5 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

4 16 19 5 22 25 1 17 28 2 20 23 3 26 29 8 12 30 9 14 18 10 15 21 6 11 24 7 13 27
2 12 27 3 15 18 4 7 24 5 9 30 1 11 21 13 22 29 8 17 26 14 19 28 10 16 23 6 20 25
5 10 20 1 13 26 2 14 16 3 6 22 4 8 28 7 21 25 12 24 29 9 17 27 15 19 30 11 18 23
3 17 30 4 21 23 5 27 29 1 18 19 2 24 25 11 14 20 7 10 22 6 12 26 9 13 28 8 15 16
8 23 29 11 12 17 9 20 26 21 27 28 10 13 30 1 15 24 5 6 16 4 18 25 3 7 14 2 19 22

13 14 21 10 19 29 12 15 23 11 16 26 18 20 27 4 6 9 3 25 28 2 7 30 1 8 22 5 17 24
18 24 26 6 14 27 13 19 25 7 15 29 12 16 22 2 10 28 1 23 30 5 8 11 4 17 20 3 9 21
15 22 28 16 24 30 6 8 18 14 17 25 7 9 19 5 23 26 4 11 27 3 13 20 2 21 29 1 10 12
9 11 25 7 20 28 21 22 30 8 10 24 6 17 23 3 19 27 2 13 15 1 16 29 5 12 18 4 14 26

Figure 3: An indecomposable SOMA(3, 10) with automorphism group of size 50
1 6 7 2 8 9 3 10 11 4 12 13 5 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2 16 19 3 22 25 4 17 28 5 20 23 1 26 29 8 12 30 9 14 18 10 15 21 6 11 24 7 13 27
3 12 27 4 15 18 5 7 24 1 9 30 2 11 21 13 22 29 8 17 26 14 19 28 10 16 23 6 20 25
4 10 20 5 13 26 1 14 16 2 6 22 3 8 28 7 21 25 12 24 29 9 17 27 15 19 30 11 18 23
5 17 30 1 21 23 2 27 29 3 18 19 4 24 25 11 14 20 7 10 22 6 12 26 9 13 28 8 15 16

13 14 21 10 19 29 12 15 23 11 16 26 18 20 27 1 24 28 3 6 30 5 8 25 2 7 17 4 9 22
18 24 26 6 14 27 13 19 25 7 15 29 12 16 22 3 9 23 5 11 28 2 20 30 4 8 21 1 10 17
15 22 28 16 24 30 6 8 18 14 17 25 7 9 19 5 10 27 2 13 23 4 11 29 1 12 20 3 21 26
9 11 25 7 20 28 21 22 30 8 10 24 6 17 23 2 15 26 4 16 27 1 13 18 3 14 29 5 12 19
8 23 29 11 12 17 9 20 26 21 27 28 10 13 30 4 6 19 1 15 25 3 7 16 5 18 22 2 14 24

There are exactly seven conjugacy classes of subgroups of G of order 25 containing
a conjugate of the element d. A representative of one such class is H. We have
repeated the above calculations, replacing H with representatives H1, . . . , H6 of each
of the other classes. We find, up to isomorphism, exactly 19 SOMA(k, 10)s with
k > 2 and invariant under Hi for some i ∈ {1, . . . , 6}, but not invariant under H.
It turns out that each of these 19 SOMAs is an indecomposable SOMA(3, 10) with
automorphism group of order 25.

The programs used and the list of all SOMAs classified in this section are available
from the author.
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7 Classification of SOMA(3, 10)s of type (1, 2)

invariant under certain groups of order 10

Let G := S10 o C2,
h := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),

and
H := 〈(h, h)〉 ≤ G.

In this section we first describe our classification of SOMA(3, 10)s of type (1, 2) in-
variant under H. After that, we briefly outline the corresponding results for the other
subgroups of G of order 10 containing a conjugate of

d := ((1, 2, 3, 4, 5)(6, 7, 8, 9, 10), (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)).

We actually do more. Let A be a SOMA(3, 10) of type (1, 2). Then A contains
exactly three or exactly one subSOMA(1, 10), depending respectively on whether or
not A is of type (1, 1, 1). In particular, since the order of H is not divisible by 3, at
least one subSOMA(1, 10) of A is invariant under H. What we shall classify is all
SOMA(k, 10)s A such that:

• k > 2,

• A is invariant under H, and

• A contains at least one subSOMA(1, 10) invariant under H.

As explained above this includes all SOMA(3, 10)s of type (1, 2) invariant under H.
Unfortunately, we find that none of these SOMAs is of type (1, 1, 1).

Our classification proceeds as follows. Let N := NG(H) (|N | = 800). We first
determine the H-orbits on the permutations of {1, . . . , 10} which are cliques in Σ0

10.
There are exactly 206 such orbits: 10 of length 1, 20 of length 2, and 176 of length
5. We then construct the collapsed complete orbits graph ∆ of Σ0

10 with respect to
H, whose vertices are these 206 orbits, weighted by their respective sizes. Next, we
determine a set R of N-orbit representatives of the cliques of ∆ of weight-sum 10.
There are just 86 such N-orbits (giving us 86 N-orbits of Latin squares of order 10
invariant under H). We then set L to be an empty list, and for each representative
r ∈ R do the following:

1. Determine the set C of common neighbours of the elements of r in the graph
Σ0,1

10 .

2. Determine the set S of H-invariant SOMA(k′, 10)s contained in C, such that
k′ ≥ 2. (It turns out that k′ = 2 is the only possibility.)



the electronic journal of combinatorics 6 (1999), #R32 12

3. For each s ∈ S, add r ∪ s to L.

Now at this point L is a list of SOMA(k, 10)s containing all isomorphism types of the
SOMA(k, 10)s we wish to classify. We next convert the elements of L into appropriate
graphs and test pairwise for isomorphism. We find there are just 35 isomorphism
classes of SOMA(k, 10)s A such that k > 2, A is invariant under H, and A contains
at least one SOMA(1, 10) invariant under H. Each such SOMA A is of type (1, 2), but
not of type (1, 1, 1), and has automorphism group H. One such SOMA is illustrated
in Figure 1. Our calculations took about a half-hour of CPU time on a 233 MHz
Pentium PC running LINUX.

Note that each of our 35 SOMA(3, 10)s of type (1, 2) is the disjoint union of a
SOMA(1, 10) and an indecomposable SOMA(2, 10). We have checked that each of
these SOMA(2, 10)s is not contained in a SOMA(k, 10) with k > 3.

There are exactly seven conjugacy classes of subgroups of G of order 10 containing
a conjugate of the element d. A representative of one such class is H. We have
repeated the above calculations, replacing H with representatives H1, . . .H6 of each
of the other classes. We find, up to isomorphism, exactly 70 SOMA(k, 10)s A such
that k > 2, A is invariant under Hi for some i ∈ {1, . . . , 6}, A contains at least one
SOMA(1, 10) invariant under Hi, and A is not isomorphic to any of the 35 SOMAs
we classified for H. Each of these 70 further SOMAs has unrefineable decomposition
type (1, 2). Furthermore, all but two of these SOMAs have automorphism groups of
size 10 (35 are isomorphic to D10 and 33 are isomorphic to C10), and the other two
SOMAs can be chosen to have automorphism group M , generated by

((2, 5)(3, 4)(6, 9)(7, 8), (2, 5)(3, 4)(6, 8)(9, 10))

and
((1, 2, 3, 4, 5)(6, 9, 7, 10, 8), (1, 2, 3, 4, 5)(6, 10, 9, 8, 7))τ.

The group M contains d and is isomorphic to C2 ×D10. One of these two SOMAs
with automorphism group M is illustrated in Figure 4.

Figure 4: A SOMA(3, 10) of type (1, 2) with automorphism group of size 20
1 11 16 2 13 14 3 21 23 4 26 29 5 17 20 7 18 22 6 25 28 8 15 27 9 19 30 10 12 24
2 18 19 1 12 17 4 11 15 5 22 25 6 27 30 10 13 21 7 20 23 3 24 26 8 14 29 9 16 28
3 28 29 4 16 20 1 13 18 6 12 14 2 23 24 9 17 26 10 15 22 7 19 25 5 21 27 8 11 30
4 21 25 5 26 30 6 17 19 1 15 20 3 11 13 8 12 28 9 18 27 10 14 23 7 16 24 2 22 29
5 12 15 6 22 24 2 27 28 3 16 18 1 14 19 4 23 30 8 13 26 9 20 29 10 11 25 7 17 21
8 20 24 3 25 27 7 14 26 10 19 28 9 15 21 6 11 29 2 16 17 1 22 30 4 12 13 5 18 23
9 14 22 8 19 21 5 24 29 7 11 27 10 16 26 2 20 25 3 12 30 4 17 18 1 23 28 6 13 15

10 17 27 9 11 23 8 16 22 2 21 30 7 12 29 3 14 15 4 19 24 5 13 28 6 18 20 1 25 26
7 13 30 10 18 29 9 12 25 8 17 23 4 22 28 1 24 27 5 11 14 6 16 21 2 15 26 3 19 20
6 23 26 7 15 28 10 20 30 9 13 24 8 18 25 5 16 19 1 21 29 2 11 12 3 17 22 4 14 27

The programs used and the list of all SOMAs classified in this section are available
from the author.
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8 Two indecomposable SOMA(4, 14)s

It is known that there exist three MOLS of order 14 (see [14]), but not whether there
exist four such. However, we shall show that there exists a SOMA(4, 14).

Let
a := (1, 2, 3, 4, 5, 6, 7), b := (8, 9, 10, 11, 12, 13, 14),

and
H := 〈(a, ab), (b, ab2)〉 ≤ S14 × S14.

ThenH ∼= C7×C7, and in this section we determine two indecomposable SOMA(4, 14)s
invariant under H.

By considering random permutations of {1, . . . , 14}, we find

g := (1, 10, 12, 4, 6, 5, 8, 7)(2, 11, 13, 3),

such that the H-orbit gH has size 49 and is a clique in Σ0,1
14 . Next, by backtrack

search, we find the set C of common neighbours of the elements of gH in Σ0,1
14 . It

turns out that C is the union of just two H-orbits, each of size 7. Representatives for
these orbits are

g1 := (1, 8, 5, 14, 7, 10)(2, 13)(3, 11, 6, 12, 4, 9),

and
g2 := (1, 8, 6, 12, 5, 14)(2, 13, 3, 11, 7, 10)(4, 9).

Let Ai := gH ∪ gHi (i = 1, 2). Calculation shows that A1 and A2 are non-isomorphic
SOMA(4, 14)s, each having automorphism group H.

Proposition 4 Both A1 and A2 are indecomposable.

Proof Let i ∈ {1, 2}. By Theorem 3, part 7, Ai has a unique unrefinable decompo-
sition, and this unique decomposition must be fixed (setwise) by Aut(Ai). It follows
that if Ai is decomposable then Aut(Ai), having order 49, must fix a subSOMA(1, 14)
or subSOMA(2, 14) of Ai. However, this is impossible, since Aut(Ai) has orbit-lengths
49 and 7 in its action on Ai. 2

Problem 3 Does there exist a decomposable SOMA(4, 14)?

Problem 4 Does there exist a SOMA(k, 14) with 5 ≤ k ≤ 12? (It follows from the
Bruck-Ryser Theorem (see, for example, [6, Section 9.8]) that there is no projective
plane of order 14, and hence no SOMA(13, 14).)
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