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Abstract

An elevated Schröder path is a lattice path that uses the steps
(1, 1), (1,−1), and (2, 0), that begins and ends on the x-axis, and
that remains strictly above the x-axis otherwise. The total area
of elevated Schröder paths of length 2n + 2 satisfies the recurrence
fn+1 = 6fn − fn−1, n ≥ 2, with the initial conditions f0 = 1, f1 = 7.
A combinatorial interpretation of this recurrence is given, by first in-
troducing sets of unrestricted paths whose cardinality also satisfies the
recurrence relation and then establishing a bijection between the set
of these paths and the set of triangles constituting the total area of
elevated Schröder paths.

1 Introduction

In the plane ZZ× ZZ, we will use lattice paths with three steps types: a
rise step defined by (1, 1), a fall step defined by (1,−1), and a horizontal step
defined by (2, 0). A Schröder path is a sequence of rise, fall and horizontal
steps running from (0, 0) to (2n,0) and remaining weakly above the x–axis.
These paths are counted by the large Schröder numbers, denoted by rn. The
first few entries of the sequence {rn}n≥0 are: 1, 2, 6, 22, 90, 394, . . . (sequence

M1659 in [14]) and their generating function is
∑
n≥0

rnt
n = 1−t−

√
1−6t+t2

2t
. For
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other combinatorial objects counted by the Schröder numbers, see [2, 4, 5, 6,
10, 11, 12, 13].

An elevated Schröder path is the path obtained from a Schröder path by
adding a rise step at its beginning and a fall step at its end. In the sequel,
we denote S2n the class of elevated Schröder paths of length 2n.

We wish to use the area under Schröder paths to consider the combina-
torial significance of the recurrence:

fn+1 = 6fn − fn−1, n ≥ 2, (1)

subject to the initial conditions f0 = 1, f1 = 7. This recurrence defines
a sequence whose first terms are: 1, 7, 41, 239, 1393, . . . (sequence M4423 in
[14]). These numbers are known as NSW numbers, and are related both
to the order of simple groups [9] and to the solutions of the Diophantine
equation: x2 + (x+ 1)2 = y2 [8].

We will obtain a new bijective proof for this recurrence in terms of the
area of Schröder paths. In 1976 Kreweras [7] proved that the sum of the areas
of the regions lying under the elevated Schröder paths satisfies recurrence (1).
Specifically,

Proposition 1.1 If An denotes the total area of the regions lying below the
elevated Schröder paths of length 2n + 2 and the x-axis, then An satisfies
the recurrence An+1 = 6An − An−1, subject to the initial conditions A0 = 1,
A1 = 7.

Bonin et al. [3] asked for the combinatorial interpretation of fn+1 =
6fn − fn−1 with the phrase: “The recurrence fn+1 = 6fn − fn−1 cries out
for a combinatorial interpretation”. Barcucci et al. [1] gave the first answer
using a regular language defined so that the number of words having length
n is equal to fn+1. Sulanke [15] gave a combinatorial interpretation of the
recurrence in terms of total area of elevated Schröder paths.

In this paper, we present another combinatorial interpretation proving
Proposition 1.1.

We remark that our analysis naturally applies to elevated Dyck paths of
length 2n where the total area An satisfies An = 4An−1, and hence is 4n−1.
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2 An auxiliary path class

Let Vn denote the set of all unrestricted lattice paths that run from (0, 0)
to the line x = 2n+ 1 and that use the steps (1, 1), (1,−1) , and (2, 0) and
that do not end with a rise step. The first stage of our proof of Proposition
1.1 will use

Proposition 2.1 The cardinality vn of the set Vn satisfies the recurrence
relation (1) subject to the given initial conditions.

Proof. The initial conditions are trivial to check. To prove that {vn}n≥0

increases according to the recurrence (1), we apply 6 different operations to
the paths in Vn and establish a construction for Vn+1 if and only if some
particular paths are removed.

We pass from a path P ∈ Vn to a path P
′
∈ Vn+1 by:

1. adding a pair of rise steps at the beginning of P (see Figure 1, (1)),

2. adding a rise step followed by a fall step at the beginning of P (see
Figure 1, (2)),

3. adding a pair of fall steps at the beginning of P (see Figure 1, (3)),

4. adding a fall step followed by a rise step at the beginning of P (see
Figure 1, (4)),

5. adding a horizontal step at the beginning of P (see Figure 1, (5)),

6. inserting a horizontal step after the first step of P (see Figure 1, (6)).

The paths obtained by performing the above described operations lie in Vn+1,
and moreover, each P

′
∈ Vn+1 is obtained from some P ∈ Vn. However, some

paths in Vn+1 are obtained twice. They are precisely those paths beginning
with two consecutive horizontal steps obtained under operations 5 and 6.
The proof is completed by seeing that the set of paths beginning in a hori-
zontal step is immediately obtained by adding a first horizontal step to the
paths in Vn−1, which has cardinality vn−1.
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Next we partition Vn into three sets. The paths in V(−1)
n have final or-

dinate (−1) and end with a fall step, they are counted by the Delannoy
numbers [4, p. 81]. Let V↑n denote the subset of paths that have positive final
ordinate. Let V↓n denote the complement Vn − V(−1)

n − V↑n .

P

P

P

P

P

P

(1)

(5)

(6)

(4)

P

(2)

(3)

Figure 1: The six different operations to pass from Vn to Vn+1.

Taking a path in V↑n into consideration, we remove its last step, take the
reflection in the horizontal axis and reinsert the removed last step (see Figure
2).

Hence,

Lemma 2.2 There is a bijection between V↑n and V↓n.
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3 A bijection between triangles and paths of

Vn

Consider the region bounded by a path P and the x–axis. Let a(P )
denote the area of that region. We will take as our measure unit a triangle
whose vertex coordinates are either (x, y), (x + 1, y + 1), and (x + 2, y) or
(x, y), (x− 1, y+ 1), and (x+ 1, y + 1). We call the first type an up triangle
and the second type a down triangle. Figure 3 shows an elevated Schröder
path of length 16 and area 25. Let An =

∑
P∈S2n

a(P ), i.e., An is the total area

of elevated Schröder paths having length 2n (see Figure 4).

(a)

(b)

Figure 2: The bijection between V↑n and V↓n.

We can partition the triangles decomposing the total region of the (2n+

2)–length elevated Schröder paths into three sets. The set T (n)
1 contains the

up triangles that touch the path by their right side. The set T (n)
2 contains

the up triangles that do not touch the path by their right side, and the set
T (n)

3 contains the down triangles (see Figure 5). It is easily seen that each

triangle in T (n)
2 has on its right a triangle in T (n)

3 , and that every triangle in

T (n)
3 is so obtained.

Hence,

Lemma 3.1 There is a bijection between T (n)
2 and T (n)

3 .

We will now give constructions that establish:
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x0 16

y

Figure 3: An elevated Schröder path.

Figure 4: The 6 elevated Schröder paths of S6 and A3 = 41.
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Figure 5: The partition of the area of a (2n + 2)–length elevated Schröder
path.
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Lemma 3.2 There are bijections between the following pairs:

• T (n)
1 and V(−1)

n ,

• T (n)
2 and V↑n,

• T (n)
3 and V↓n.

Proof.

A bijection from the triangles in T (n)
1 to the path in V(−1)

n

Suppose that (x, y), (x + 1, y + 1), and (x + 2, y) are the vertices of a

triangle in T (n)
1 under an elevated Schröder path P ∈ S2n+2. Let Q denote

the point (x + 2, y). To obtain the corresponding path in V(−1)
n first delete

the initial rise step of P and then transpose the subpath of P that follows Q
with the modified subpath that precedes Q. (see Figure 6).

���
���
���

���
���
���

(b)

(c)

(a)
P Q

Figure 6: A pointed triangle in T (n)
1 and the corresponding path in V(−1)

n .
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Figure 7: A path in V(−1)
n and the corresponding pointed triangle in T (n)

1 .

This construction can be inverted as follows. For any path in V(−1)
n (see

Figure 7 (a)), the leftmost point in the path having least ordinate, say Q
′
,

determines two paths, the one on its left and the one on its right. We place
the desired triangle to lie just below the last step of the path as showed in
Figure 7 (b). The two paths are transposed, together with the desired trian-
gle, and a rise step is added at the beginning (see Figure 7 (c)).

A bijection from the triangles in T (n)
2 to the paths in V↑n

Suppose that (x, y), (x+ 1, y+ 1), and (x+ 2, y) define a triangle in T (n)
2

under an elevated Schröder path P ∈ S2n+2. We draw a line of slope 1 from
the point (x+ 2, y). This line meets the path P for the first time at a point
on P , labeled Q. Next we draw y + 1 horizontal rays to the right from the
center of the chosen triangle and from the center of each triangle beneath
it. Each of these rays meets, for the first time, a fall step in P which we
change into a rise step. We then delete the initial rise step and transpose
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the modified subpath following Q with the modified subpath preceding Q to
obtain a path in V↑n. (see Figure 8).

P

Q
(a)

(b)

(c)

Figure 8: A pointed triangle in T (n)
2 and the corresponding path in V↑n.

To see the inversion of this construction consider a path in V↑n with final
ordinate 2y + 1, y ≥ 0, (see Figure 9 (a)). Let q be the ordinate of the
rightmost point in the path having least ordinate. From each of the points in
the set {(2n+ 2, q+ i− 0.5)|1 ≤ i ≤ y+ 1} draw a horizontal ray to the left.
These rays hit the path for a first time at y+ 1 rise steps as shown in Figure
9 (b). The final end point of the (y+ 1)–th rise step, say Q

′
, determines two

paths: one on its left and one on its right (see Figure 9 (b)). We place the
desired up triangle with its rightmost vertex determined by the intersection
of the horizontal line of ordinate q + 2y and the line of slope 1 passing from
the final point of the original path (see Figure 9 (b)). This triangle is rigidly
attached to the path on the right of Q

′
. In the particular case of y = 0 the

rise step which must be changed into fall step is the left side of the triangle,
and the rise step that has to be added at the beginning of the path covers
the left side of the triangle. Once the y+ 1 rise steps that were hit have been
changed into fall steps, the two resulting subpaths are transposed, along with
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the desired triangle, as showed in Figure 9 (c) and a rise step is added at the
beginning. Simple geometric considerations show that the resulting path is
an elevated Schröder path.

The third part of the lemma follows from the previous parts and Lemmas
2.2, 3.1.

Figure 10 shows the bijection between the triangles constituing the total
area of 2– and 4–length Schröder paths and the paths in V0 and V1, respec-
tively.

Proposition 1.1 is now a consequence of Proposition 2.1 and the above
lemma.

Q 2y
+

1

2y

y+
1

(c)

(a)

(b)

Figure 9: A path in V↑n and the corresponding pointed triangle in T (n)
2 .
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Figure 10: The bijection between triangles and paths in Vn, n = 0, 1.
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