Comment on Volume 7, article R47 (2000)

"A Turán Type Problem Concerning the Powers of the Degrees of a Graph"

Yair Caro and Raphael Yuster

Comment by the authors, August 11, 2004:

In the original version of this paper Theorem 1.1 was mistakenly stated for all p. This was also observed by Pikhurko [2] and by Schelp. The theorem is valid only in the linear, quadratic and cubic cases. Namely:

Let k > 2 be a positive integer, and let p = 1, 2, 3. Then $t_p(n, K_k) = e_p(T(n, k))$, where T(n, k) is the Turán Graph.

Theorem 1.1 is sharp in the sense that for $p \ge 4$, $t_p(n, K_k)$ is *not* obtained by the Turán graph. This can already be seen by the fact that the complete bipartite graph $G = K_{\lfloor n/2 - 1 \rfloor, \lceil n/2 + 1 \rceil}$ has $e_4(G) > e_4(T(n, 3))$.

A revised version of this paper addressing this comment can be found in [1].

References

- Y. Caro and R. Yuster, A Turán Type Problem Concerning the Powers of the Degrees of a Graph (revised), arXiv:math.CO/0401398 (2004).
- [2] O. Pikhurko, Remarks on a paper of Y. Caro and R. Yuster on a Turán problem, arXiv:math.CO/0101235 (2001).