Note on Gy. Elekes's conjectures concerning unavoidable patterns in proper colorings

Vera Rosta

Webster University Geneva 1293 Bellevue, Switzerland rosta@masg22.epfl.ch

Submitted: March 19, 2000; Accepted: May 2, 2000. AMS Classification numbers: 05C15, 05C55, 05C38

Abstract

A counterexample is presented to Gy. Elekes's conjecture concerning the existence of long 2-colored paths in properly colored graphs. A modified version of the conjecture is given and its connections to a problem of Erdős - Gyárfás and to Szemerédi's theorem are examined.

The coloring of the edges of a simple undirected graph is considered *proper* if adjacent edges have different colors. To solve some combinatorial geometry questions, Elekes formulated the following conjectures:

Conjecture 1 [2] Let the edges of the complete graph K_n be properly colored with cn colors, c > 0. If n is sufficiently large then it must contain a six cycle with opposite edges having the same color.

Conjecture 2 [3] If the edges of the complete bipartite graph K(n,n) (or the edges of a complete graph K_n) are properly colored with cn colors where c > 0, $n > n_1(k, c)$ then there exists an alternating 2-colored path of length k.

This last conjecture is closely related to the following well known theorem of Szemerédi:

Theorem 1 [6] Any set $A = \{a_1, a_2, \ldots, a_n\} \subset N$ which $a_n < cn$, and $n > n_2(k, c)$ contains an arithmetic sequence of length k.

Szemerédi's theorem would follow easily from the last conjecture: Let $G = (A_1, A_2)$ be a complete bipartite graph where A_1, A_2 are identical copies of A and the color of the edge (x, y) is x - y where $x \in A_1$. Then the edges of G are properly colored with 2cn colors. If Conjecture 2 were true, with $n > n_1(2k, 2c)$ an alternating 2 -colored path of length 2k would guarantee an arithmetic progression of size k.

Here we give a coloring disproving the complete graph version of Conjecture 2 for k > 3, which can be easily applied to the bipartite case.

Example 1 Let $2^{m-1} < n \leq 2^m$ for some m. Label the vertices of the complete graph K_{2^m} by the 0-1 vectors of length m. Color the edges by $2^m - 1$ colors as follows. The color of edge (x, y) is the 0-1 vector $x + y \pmod{2}$. Consider K_n as a subgraph of K_{2^m} .

It is easy to see that in the example the union of any t > 1 colors consists of disjoint components of at most 2^t vertices. Also no open path can consist of edges colored (in this order) $a, b, c, \ldots, x, a, b, c, \ldots, x$ since such a sequence must always return to the starting point (i.e., it is a closed walk) by the mod 2 property. Therefore this example contradicts the second but not the first conjecture. In the special case of $n = 2^m$ this example uses n-1 colors, proper coloring is a 1-factorization and if there is no 2-colored path with 4 edges then this coloring is unique up to isomorphism [4].

Closely related to the topic of this note is the following question raised by P. Erdős and A. Gyárfás [5] : Is it possible to have a proper edge coloring of K_n with cn colors so that the union of any two color classes has no paths or cycles with 4 edges? M. Axenovich [1] has an example showing that it is possible with $2n^{1+c/\sqrt{\log n}}$ colors.

The above bipartite graph version of Szemerédi's theorem has no 2-colored cycles at all. This suggests the following modification of Conjecture 2:

Conjecture 3 Let (A, B) be a complete bipartite graph with |A| = |B| = n, $n > n_3(k, c)$ and the edges are properly colored with cn colors so that the union of any two color classes does not contain a cycle. Then there is an alternating 2-colored path of length k.

Conjecture 3 and the Erdős-Gyárfás problem are closely related. For k = 4 the two are equivalent. For k > 4 a positive answer to either of them would mean a negative answer for the other but a negative answer for either of them would not solve the other (where a positive answer for Conjecture 3 means that it is true).

Agknowledgment I am grateful to Gy. Elekes for telling me his interesting conjectures and to A. Gyárfás, Z. Füredi and A. Thomasson for helpful comments.

References

- [1] M. Axenovich, A generalized Ramsey problem, *Discrete Mathematics*, to appear.
- [2] Gy. Elekes, Recent trends in combinatorics, DIMANET Matrahaza workshop 22-28 Oct 1995, Combin. Probab. Comput (8) (1999), Cambridge University Press, Cambridge (1999), Ed. by E. Gyori and V.T. Sos, Problem collection, 185–192.
- [3] Gy. Elekes, oral communication.
- [4] P. Cameron, Parallelism and Complete Designs, London Math. Soc. Lecture Note. Ser. 23 Cambridge University Press (1976).
- [5] P. Erdős and A. Gyárfás, A variant of the Classical Ramsey Problem, Combinatorica 17(4) (1997), 459–467.
- [6] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arithmetika 27, 199–245.