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Abstract

The question of whether the characteristic polynomial of a simple graph is
uniquely determined by the characteristic polynomials of its vertex-deleted sub-
graphs is one of the many unresolved problems in graph reconstruction. In this
paper we prove that the characteristic polynomial of a graph is reconstructible
from the characteristic polynomials of the vertex-deleted subgraphs of the graph
and its complement.

AMS Classification Numbers: 05C60, 05C50

1 Introduction

Let G = (V,E) be a simple graph with a vertex set of at least three elements V =
{1, . . . , n}. We denote by E(G) the set of its edges. A subgraph of G obtained by
deleting vertex i and all its incident edges is called a vertex-deleted subgraph of G and
is denoted by Gi. The collection of vertex-deleted subgraphs of G is known as its deck.
The characteristic polynomial of G is the characteristic polynomial of its adjacency
matrix A and is defined by PG(x) = det(xI −A). We call the collection of the char-
acteristic polynomials of the vertex-deleted subgraphs the polynomial deck of G and
denote it by P(G) = {PG1, PG2, . . . , PGn}. In general, a property of a graph is said
to be reconstructible if it is uniquely determined by its deck. Tutte [11] proved that
the characteristic polynomial of a graph is reconstructible from its deck. But is the
full knowledge of the vertex-deleted subgraphs necessary to reconstruct the character-
istic polynomial? Gutman and Cvetković [6] first raised the still unresolved question

1



2 the electronic journal of combinatorics 7 (2000), #R12

of whether the polynomial deck of a simple graph on at least three vertices contains
enough information to reconstruct its characteristic polynomial. Some results are re-
ported in [2, 8, 10]. In this paper, we prove that PG(x) is uniquely determined by the
collection {

(
PGu(x), PGu

(x)
) ∣∣u ∈ V (G)}.

2 Preliminaries

We begin by listing some known facts and derive lemmas that are used to prove the
main theorem. The degree of vertex i is denoted by dG,i. Let WG(x), WG,i(x) and
CG,i(x) respectively be the generating functions for the total number of walks, number
of walks that originate at vertex i and number of closed walks that start and end at
vertex i. Then,

WG(x) =
1

x

(
(−1)nPG(−1− 1/x)

PG(1/x)
− 1

)
,(1)

WG(x) = WGi(x) +
W 2
G,i(x)

CG,i(x)
, i = 1, . . . , n,(2)

CG,i(x) =
1

x

PGi(1/x)

PG(1/x)
, i = 1, . . . , n.(3)

Eqn. (1) is derived in [1], p.45 and (2, 3) in [5].

Lemma 2.1 Let G and H be two graphs of the same order with |E(G)| > |E(H)|.
Then there exists an ε > 0 such that x ∈ (0, ε)⇒ WG(x) > WH(x).

Proof. Let W(x) =
(
wij(x)

)
where wij(x) is the generating function for the number

of walks from vertex i to j. Since Ak
ij is the number of walks of length k from i to j,

we have

W(x) =
∞∑
k=0

xkAk.(4)

This may be written as W(x) = I+xA+x2A2
∑∞

k=0 x
kAk. Let e be the vector all ones.

Then WG(x) = et W(x) e = n+ 2 |E(G)| x+ o(x2), from which the claim immediately
follows. �

Lemma 2.2 Given a graph G, there exists an ε > 0 such that for any pair i, j of its
vertices

(
dG,i − dG,j

)(
WGi(x)−WGj(x)

)
≤ 0 for x ∈ (0, ε).

Proof. The claim is obvious when dG,i = dG,j. If dG,i > dG,j then |E(Gi)| < |E(Gj)|
and by Lemma 2.1, there is an interval (0, εij) such that WGi(x) < WGj(x). If, on the
other hand dG,i < dG,j, then |E(Gi)| > |E(Gj)| and there is an interval (0, εij) over
which WGi(x) > WGj(x). Choosing ε = min

1≤i,j≤n
εij proves the lemma. �
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Lemma 2.3

PG(1/x) =
1

x
(
xWG(x)

)′ n∑
i=1

(
WG(x)−WGi(x)

)
PGi(1/x).

Proof. From (4) we have W(x) = I + xA W(x) so that W(x) = (I− xA)−1. Let
w(x) = W(x) e = (WG,1(x), . . . ,WG,n(x))t. By differentiating et (I− xA)−1 e, we first
obtain

W ′
G(x) = et (I− xA)−2 Ae = w(x)tAw(x).

Next,

WG(x) = etW(x)W(x)−1W(x)e = w(x)t (I− xA) w(x)

= w(x)tw(x)− xW ′
G(x).

Therefore (
xWG(x)

)′
= w(x)tw(x).(5)

From (2) and (3) we have

PG(1/x)W 2
G,i(x) =

1

x

(
WG(x)−WGi(x)

)
PGi(1/x).

Summing this over i and using (5) proves the lemma. �

Lemma 2.4 Graphs with identical characteristic polynomial decks have identical de-
gree sequences [6].

Proof. Let G, H be graphs such that PGi = PHi, i = 1, . . . , n. The number of edges
of a graph is determined by its characteristic polynomial. Thus, |E(Gi)| = |E(Hi)|,
i = 1, . . . , n. Now

∑
i |E(G)| − |E(Gi)| = n|E(G)| −

∑
i |E(Gi)| = 2|E(G). Then,

|E(G)| =
∑

i |E(Gi)|
/

(n− 2) = |E(H)|. Thus, dG,i = dH,i, i = 1, . . . , n. �

3 Main theorem

Theorem 3.1 The characteristic polynomial of a graph G is reconstructible from the
collection {

(
PGu(x), PGu

(x)
) ∣∣u ∈ V (G)}.

Proof. Let H be any graph such that
(
PHi(x), PHi

(x)
)

=
(
PGi(x), PGi

(x)
)
, i =

1, . . . , n. By (1), WGi(x) = WHi(x), i = 1, . . . , n. This result is used to show that
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there is an interval (0, ε) over which WG(x) = WH(x). We then conclude by Lemma 2.3
that PH(x) = PG(x).

Consider the interval (0, ε) from Lemma 2.2 and let x be any point in this interval.
Suppose WG(x) > WH(x). Then, for any pair of vertices i, j(

dG,i − dG,j
)(
WGi(x)−WGj(x)

)(
WG(x)−WH(x)

)
≤ 0.(6)

Because WGi(x) = WHi(x), WGj(x) = WHj(x) and using (3) we have(
WGi(x)−WGj(x)

)(
WG(x)−WH(x)

)
=
(
WG(x)−WGi(x)

)(
WH(x)−WHj(x)

)
−
(
WH(x)−WHi(x)

)(
WG(x)−WGj(x)

)
=

W 2
G,i(x)

CG,i(x)

W 2
H,j(x)

CH,j(x)
−

W 2
H,i(x)

CH,i(x)

W 2
G,j(x)

CG,j(x)
.

(7)

Next we note that

CG,i(x) CH,j(x) =
1

x

PGi(1/x)

PG(1/x)

1

x

PHj(1/x)

PH(1/x)

=
1

x

PHi(1/x)

PH(1/x)

1

x

PGj(1/x)

PG(1/x)
= CH,i(x) CG,j(x).

(8)

By using (8) and (7) in (6) and factoring we get(
dG,i − dG,j

)(
WG,i(x)WH,j(x)−WH,i(x)WG,j(x)

)
(
WG,i(x)WH,j(x) +WH,i(x)WG,j(x)

CH,i(x)CG,j(x)

)
≤ 0.

The last term is positive when x > 0. Thus,(
dG,i − dG,j

)(
WG,i(x)WH,j(x)−WH,i(x)WG,j(x)

)
≤ 0.

By Lemma 2.4, dG,i = dH,i, dG,j = dH,j. Therefore, we derive

dG,iWG,i(x)WH,j(x) + dG,jWG,j(x)WH,i(x)

− dH,iWH,i(x)WG,j(x) − dH,jWH,j(x)WG,i(x) ≤ 0.
(9)

We sum (9) over all vertices i, j to get,∑
i

dG,iWG,i(x)
∑
j

WH,j(x) +
∑
j

dG,jWG,j(x)
∑
i

WH,i(x)

−
∑
i

dH,iWH,i(x)
∑
j

WG,j(x) −
∑
j

dH,jWH,j(x)
∑
i

WG,i(x) ≤ 0,
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and simplify it to

WH(x)
∑
i

dG,iWG,i(x) − WG(x)
∑
i

dH,iWH,i(x) ≤ 0.(10)

From (4) we have W(x) = I+xA W(x). Hence, WG(x) = etW(x)e = n+x
∑n

i=1 dG,iWG,i(x).
Using this result in (10) and because x > 0 we get

WH(x) (WG(x)− n) − WG(x) (WH(x)− n) ≤ 0,

from which we conclude WG(x) ≤ WH(x). This contradicts the assumption that
WG(x) > WH(x). Therefore, WG(x) = WH(x). �

After showing that WG(x) is reconstructible from {
(
PGu(x), PGu

(x)
) ∣∣u ∈ V (G)},

we used Lemma 2.3 to prove that the characteristic polynomial is also reconstructible.
But there is an alternative argument to do this. Let P ′G(x) be the derivative of
the characteristic polynomial of G. Then (see [9]) P ′G(x) =

∑n
i=1 PGi(x) so that if

PG(x) =
∑n

k=0 aG,kx
k, then aG,k = (

∑n
i=1 aGi,k−1)

/
k, k = 1, . . . , n. The constant term

aG,0 is thus the only coefficient possibly not determined by P(G). However, aG,0 is
reconstructible if in addition to aG,k, k = 1, . . . , n, a single eigenvalue of G is recon-
structible [6].

An eigenvalue λ of a graph is called main if it has an associated eigenvector x such
that etx 6= 0. Let M(G) denote the set of main eigenvalues of G. Deo, Harary and
Schwenk [4] have shown that WG(x) = WH(x) iff M(G) = M(H) and M(G) = M(H).
They call such graphs comain. Thus, by Theorem 3.1 M(G) is reconstructible from
{
(
PGu(x), PGu

(x)
) ∣∣u ∈ V (G)} and since a graph has at least one main eigenvalue,

so is aG,0.

4 Discussion

The original problem of whether P(G) uniquely determines aG,0 is still open. It is part
of a general class of reconstruction problems which ask whether a graph invariant I(G)
is uniquely determined by the collection I(Gu), u ∈ V (G). In [8] Schwenk expresses
his suspicion that PG(x) is not reconstructible from P(G) but that counter-examples
will be difficult to find.

While searching for a counter-example, I found many pairs of non-cospectral graphs
G, H such that P ′G(x) = P ′H(x). An example of two such graphs is shown in Figure 1
where PG(x) = x12− 13x10 + 56x8− 102x6 + 80x4− 22x2 and PH(x) = PG(x) + 1. The
two graphs have identical degree sequence and PG2(x) = PH2(x), PG3(x) = PH3(x).
Moreover, the characteristic polynomials of the pairs

{
G7, H7

}
,
{
G11, H12

}
and

{
G12,

H11

}
differ only in their respective coefficients of x. The list of the characteristic

polynomials of the vertex deleted subgraphs of the two graphs is shown in Table 1.
This is hardly an indication that counter-examples exist and it may well turn out that
PGi(x) = PHi(x), i = 1, . . . , n if and only if PGi

(x) = PHi
(x), i = 1, . . . , n.



6 the electronic journal of combinatorics 7 (2000), #R12

graph a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

G 1 0 -13 0 56 0 -102 0 80 0 -22 0 0

G1 1 0 -12 0 47 0 -76 0 51 0 -11 0
G2 1 0 -12 0 47 0 -76 0 51 0 -11 0
G3 1 0 -12 0 45 0 -67 0 40 0 -8 0
G4 1 0 -11 0 37 0 -44 0 16 0 0 0
G5 1 0 -11 0 37 0 -47 0 22 0 -2 0
G6 1 0 -11 0 40 0 -57 0 27 0 0 0
G7 1 0 -11 0 35 0 -40 0 14 0 0 0
G8 1 0 -11 0 37 0 -53 0 34 0 -8 0
G9 1 0 -10 0 30 0 -34 0 12 0 0 0
G10 1 0 -10 0 34 0 -46 0 22 0 -2 0
G11 1 0 -10 0 33 0 -43 0 20 0 -2 0
G12 1 0 -9 0 26 0 -29 0 11 0 0 0

H 1 0 -13 0 56 0 -102 0 80 0 -22 0 1

H1 1 0 -12 0 46 0 -69 0 37 0 -2 0
H2 1 0 -12 0 47 0 -76 0 51 0 -11 0
H3 1 0 -12 0 45 0 -67 0 40 0 -8 0
H4 1 0 -11 0 38 0 -49 0 23 0 -3 0
H5 1 0 -11 0 37 0 -46 0 20 0 -2 0
H6 1 0 -11 0 41 0 -63 0 37 0 -4 0
H7 1 0 -11 0 35 0 -40 0 14 0 -1 0
H8 1 0 -11 0 37 0 -53 0 33 0 -7 0
H9 1 0 -10 0 30 0 -35 0 15 0 -2 0
H10 1 0 -10 0 33 0 -42 0 19 0 -2 0
H11 1 0 -9 0 26 0 -29 0 11 0 -1 0
H12 1 0 -10 0 33 0 -43 0 20 0 -1 0

Table 1: Coefficients of the characteristic polynomials of the graphs
of Figure 1 and their vertex-deleted subgraphs.
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Figure 1: Two non-cospectral graphs with P ′G(x) = P ′H(x).

Theorem 3.1 suggests that perhaps the correct problem to pose in general is: Is
I(G) uniquely determined by the collection {

(
I(Gu), I(Gu)

) ∣∣u ∈ V (G)}? The vertex-
deleted subgraphs are not essential to reconstruct the elementary invariants of a graph.
For example, the number of edges of a graph is determined from that of the subgraphs
as |E(G)| =

∑
i |E(Gi)|

/
(n−2). The degree sequence of G, denoted by DG, is uniquely

determined by
{
DGi

∣∣ i ∈ V (G)
}

. The degree sequence of a vertex i, denoted by DG,i,
is the list of the degrees of its neigbours in ascending order. It is easy to show that{
DG,i

∣∣ i ∈ V (G)
}

is reconstructible from
{
DGi,j

∣∣ i ∈ V (G), j ∈ V (Gi)
}

. In each of
these cases, we note that the invariants are equal for two graphs iff they are also equal
for their complements. We rely on these observations and Theorem 3.1 to suggest the
following problem.

Problem. Find examples of non-trivial invariants I(G) of a graph G with at least three
vertices which are reconstructible from their collection {

(
I(Gu), I(Gu)

) ∣∣u ∈ V (G)}.

The celebrated reconstruction conjecture which asserts that the isomorphism class
of a graph on at least three vertices is uniquely determined by the isomorphism classes of
its vertex-deleted subgraphs is the most general case of problems of this type. There are
counter-examples to the question of whether a graph invariant I(G) is reconstructible
from the collection {

(
I(Gu), I(Gu)

) ∣∣u ∈ V (G)}. This was pointed out to the author
(who originally hazarded it as a conjecture) by Brendan Mckay [7] who observed that
Hamiltonicity is not reconstructible in this sense. His observation was: “Let I(G) =
‘G is Hamiltonian’. Choose a large even number n. Let G be a cubic hypohamiltonian
graph (which exist for all large even orders). All the vertex-deleted subgraphs of both
G and G are Hamiltonian (for G, by definition; forG, because the degree is high enough
to imply it), yet G is not Hamiltonian. For the second graph, take H = G. Again
all the vertex-deleted subgraphs of both H and H are Hamiltonian, yet this time H is
also Hamiltonian.”

A different problem than that proved by Theorem 3.1 is the question of whether
PG(x) is reconstructible from the two decks P(G), P(G). Unlike the condition of
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Theorem 3.1, here it is not known a priori which characteristic polynomials from the
two decks belong to a vertex-deleted subgraph and its complement. This is crucial to
the proof of Theorem 3.1.

Finally, the referee noted that the result from the title can be reformulated as
follows: The eigenvalues and main angles of a graph can be uniquely reconstructed
from the eigenvalues and main angles of its vertex deleted subgraphs. This follows
from a formula connecting characteristic polynomials of a graph and its complement
and main angles (see, for example, [3] p. 99).
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[2] D. Cvetković and M. Lepovic, Seeking counterexamples to the reconstruction con-
jecture for characteristic polynomials of graphs and a positive result, Bull. Acad.
Serbe Sci. Arts, Cl. Sci. Math. Natur., Sci. Math., 116(1998), No. 23, pp.91-100.
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