
The Action of the Symmetric Group
on a Generalized Partition Semilattice

Robert Gill
Department of Mathematics and Statistics

University of Minnesota Duluth
10 University Drive
Duluth, MN 55812
rgill@d.umn.edu

Submitted: February 7, 1998; Accepted: April 21, 2000

Key Words: hyperplane arrangement, Möbius function, homology,
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Abstract

Given an integer n ≥ 2, and a non-negative integer k, consider all affine
hyperplanes in Rn of the form xi = xj+r for i, j ∈ [n] and a non-negative integer
r ≤ k. Let Πn,k be the poset whose elements are all nonempty intersections of
these affine hyperplanes, ordered by reverse inclusion. It is noted that Πn,0 is
isomorphic to the well-known partition lattice Πn, and in this paper, we extend
some of the results of Πn by Hanlon and Stanley to Πn,k.

Just as there is an action of the symmetric group Sn on Πn, there is also an
action on Πn,k which permutes the coordinates of each element. We consider the
subposet Πσ

n,k of elements that are fixed by some σ ∈ Sn, and find its Möbius
function µσ, using the characteristic polynomial. This generalizes what Hanlon
did in the case k = 0. It then follows that (−1)n−1µσ(Πσ

n,k), as a function of σ,
is the character of the action of Sn on the homology of Πn,k.

Let Ψn,k be this character times the sign character. For Cn, the cyclic group
generated by an n-cycle σ of Sn, we take its irreducible characters and induce
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them up to Sn. Stanley showed that Ψn,0 is just the induced character χ ↑Sn
Cn

where χ(σ) = e2πi/n. We generalize this by showing that for k > 0, there exists a
non-negative integer combination of the induced characters described here that
equals Ψn,k, and we find explicit formulas. In addition, we show another way
to prove that Ψn,k is a character, without using homology, by proving that the
derived coefficients of certain induced characters of Sn are non-negative integers.

1 Introduction

Given a finite partially ordered set P , let ≤ denote the partial order, and assume that
P has a unique minimal element 0̂. An automorphism σ on P is a permutation of the
elements of P such that if x ≤ y, then σ(x) ≤ σ(y). Let P σ be the subposet of P that
consists of the elements that are fixed by σ. If P is a lattice, then so is P σ (For a proof,
see page 319 of [9]).

Now we look at one particular lattice. For some positive integer n, if we let Πn

denote the set of all partitions of the set [n] = {1, 2, ..., n}, ordered by refinement, then
Πn is a lattice. There has been a lot of work on Πn, and the action of the symmetric
group Sn on it. An element of Sn permutes the elements of [n] = {1, 2, ..., n}, and
therefore acts as an automorphism on Πn. Given σ ∈ Sn, let Πσ

n denote the subposet
of Πn of elements that are fixed by σ.

The Möbius function µ is defined on intervals [x, y] = {z : x ≤ z ≤ y} of a poset P
such that µ(x, x) = 1 for all x ∈ P and for x < y,∑

z∈[x,y]

µ(x, z) = 0.

If P has 1̂, then define µ(P ) to be µ(0̂, 1̂). Let µσ be the Möbius function of Πσ
n. In

1981, Hanlon [9, Th. 4] showed that

µσ(Πσ
n) =


µ(n/d)(−n

d
)d−1(d− 1)! if σ is a product of d cycles

of length n/d for some d|n;

0 otherwise.

(1)

Here, µ(n/d) is the classical number-theoretic Möbius function. In 1982, Stanley [13]
used this result and the Lefschetz Fixed Point Theorem (stated in section 3) to show
that as a function of σ, (−1)n−1µσ(Πσ

n) is the character of a particular representation
of Sn (Refer to [12, Ch.1] for definitions), its action on the top-dimensional homology
of Πn, which we define in section 3. Let σ be an n-cycle in Sn and let Cn be the cyclic
subgroup of Sn generated by σ. Let χ be the (irreducible) character of Cn such that
χ(σ) = e2πi/n. Stanley showed that the induced character (defined in [12, §1.12]) χ ↑Sn

Cn

equals this homology character times the sign character, which we denote Ψn. It is
appropriate to show that Ψn is an induced character from the cyclic group of order n
since it is zero for all elements of Sn that are not conjugate to any element of Cn.
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In this paper, we extend these results of Πn to a generalized partition semilattice,
which we now define. We will call it Πn,k. The partition lattice is isomorphic to a
poset of subspaces of Rn for n ≥ 2, ordered by reverse inclusion, whose elements are
all intersections of the hyperplanes

Hi,j = {x ∈ Rn : xi = xj} ,

for i, j ∈ [n], with minimal element Rn. In other words, if i and j are in the same block
of a partition of Πn, then the corresponding subspace of Rn is contained in Hi,j.

Now consider the affine hyperplanes

Hi,j,r = {x ∈ Rn : xi = xj + r} .

For a non-negative integer k, let Πn,k be the poset whose elements are all nonempty
intersections of the Hi,j,r such that r ∈ Z and |r| ≤ k. These sets of hyperplanes are
known as the extended Catalan arrangements (See after Theorem 2.3 in [14]). The
unique minimal element is again the whole space Rn, but there is more than one
maximal element if k > 0. For an affine subspace X ∈ Πn,k, its dimension dim(X) is
equal to the dimension of the linear translation of X, the set {v − x : v ∈ X} for a
particular x ∈ X. So X is maximal if and only if dim(X) = 1.

First, the characteristic polynomial of a poset P of affine subspaces of Rn is given
by

λP (t) =
∑
X∈P

µ(0̂, X)tdim(X).

In section 2, we let P = Πn,k and consider P σ, the subposet of P fixed by some σ ∈ Sn.
We use the characteristic polynomial of P and the paper by Hanlon [9] to show that
the Möbius function of this subposet, µσ(P σ), is as stated in (4). Then in section 3, we
use a result from Stanley’s paper [13] to show that the character of the representation
of Sn acting on the top homology of P is (−1)n−1µσ(P σ).

Let Ψn,k be this character times the sign character, so Ψn,k = (−1)d−1µσ(P )σ).
In sections 4 and 5, we show that Ψn,k can be expressed as a non-negative integer
combination of the characters of Sn that are induced from irreducible characters of
Cn, as in (15). First, we show that the induced characters in this sum are a basis for
all induced characters from Cn. Then the main result in section 4 is that Ψn,k is a sum
of induced characters from Cd for each d|n. In section 5, we find an explicit expression
for Ψn,k in terms of these induced characters, also proving some concepts from number
theory which we use along the way.

In the last section, we prove separately that the coefficients are non-negative inte-
gers, using the formula derived in Lemma 11, which gives us a way to prove that Ψn,k

is a character without proving that it is a homology character.
There is a lot more one can do on the subject of Πn,k. For example, Christos

Athanasiadis in his Ph.D. thesis [1] used the Möbius Inversion Formula to find the
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characteristic polynomial of numerous affine hyperplane arrangements, including this
one [1, Th. 5.1]. Also, Julie Kerr in her Ph.D. thesis [10] discusses the poset obtained
by adding a unique maximal element to Πn,k. Although it becomes a lattice, its char-
acteristic polynomial does not in general factor linearly as it does for Πn,k. But its
top-dimensional homology is isomorphic to a direct sum of copies of the algebra CSn,
known as the regular representation of Sn. There is also additional work on the poset
Πn,k in [7].

2 The Möbius Function of Πσ
n,k

We first state [1, Th. 5.1]. This generalizes the characteristic polynomial of the well-
known partition lattice, which is the case k = 0.

Theorem 1. The characteristic polynomial of Πn,k is given by

λΠn,k(t) = t(t− nk − 1)(t− nk − 2)...(t− n(k + 1) + 1). (2)

We now extend some more results of the partition lattice Πn to Πn,k, first from
Hanlon’s paper [9]. Given any poset P with a unique minimal element 0̂, let Max(P )
denote the set of maximal elements of P and let

µ(P ) =
∑

x∈Max(P )

µ(0̂, x). (3)

Now let P = Πn,k and consider the action of the symmetric group Sn on P , permuting
the coordinates of the elements. We consider the subposet P σ, which consists of the
elements of P that are fixed by a permutation σ ∈ Sn, meaning whenever X ∈ P σ

and X ⊆ Hi,j,r, then X ⊆ Hσ(i),σ(j),r. Note that if ε is the identity permutation, then
P ε = P .

Let µσ denote the Möbius function in P σ = Πσ
n,k. The goal in this section is to

prove that

µσ(P σ) =


µ(n/d)(−n

d
)d−1

(
(k+1)d−1
d−1

)
(d− 1)! if σ is a product of d cycles

of length n/d for some d|n;

0 otherwise.

(4)

This is the Möbius function of P σ, defined as in (3). It generalizes Hanlon’s result for
k = 0, stated in (1). If σ, τ ∈ Sn, then one can verify the isomorphism P σ ∼= P τστ−1

.
Hence, viewed as a function of σ, µσ(P σ) is a class function on Sn. It is in fact, up to
a sign, a character of Sn, as we will soon see.

In order to find µσ(P σ), we find the sum of the Möbius functions of each maximal
interval of P σ. The methods we use here are in many cases very similar to those used by
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Hanlon, with a slightly different poset. We state a well-known theorem that we will use
here. Suppose we are given a finite lattice L = [0̂, 1̂]. For some x ∈ L, define Comp(x)
to be the set of complements of x in L, i.e., Comp(x) = {y ∈ L : x∧y = 0̂ and x∨y = 1̂}.
Then Crapo’s Complementation Theorem [5, Th. 4] says that for any x ∈ L,

µ(L) =
∑

y,z∈Comp(x)
y≤z

µ(0̂, y)µ(z, 1̂), (5)

and if some element of L has no complements, then µ(L) = 0.
So we need to show that [0̂, X]σ is a lattice for each X ∈ Max(P σ). By [18,

Prop. 3.1], since every element of P is an intersection of affine hyperplanes from a
given set, it is a geometric semilattice. Thus each maximal interval [0̂, X] in P is a
lattice, and by the first paragraph of section 1, [0̂, X]σ is a lattice too. So Crapo’s
Theorem applies here. Now we determine which element we use in Equation (5).

For each σ ∈ Sn, it can be verified that

Max(P σ) = Max(P ) ∩ P σ, (6)

which is mentioned in the proof of [10, Th. 2.1]. For σ, let

σ = σ1σ2...σd (7)

be the decomposition of σ into disjoint cycles. For i = 1, ..., d, let Ci be the support of
the cycle σi, that is, the set of all numbers from the cycle σi. It will be convenient to
extend Hanlon’s definition of the hinge of Πn [9, p. 324], the partition which puts each
cycle of σ into its own block. Here, we want to extend it to any k ≥ 0, so that it is an
intersection of affine hyperplanes. In Πn,0 the element that corresponds to the hinge of
Πn is the intersection of all Hj,l such that j and l are in the same Ci. So this will be
the hinge of Πn,0. The following lemma shows that for any k, only certain hyperplanes
in Πn,k can contain the hinge.

Lemma 2. Suppose two numbers i and j are in the same cycle of σ, and for some
Z ∈ P σ, Z is contained in Hi,j,r for some r. Then r = 0.

Proof. Suppose Z ∈ P σ and σ1 is one of the disjoint cycles of σ as in (7), with
length m ≥ 2. Suppose without loss of generality that i, j ∈ C1 and Z ⊆ Hi,j,r. Then
there exists an s such that σs(i) = j, so let τ = σs. Then Z ⊆ Hi,τ(i),r and then
Z ⊆ Hτω(i),τω+1(i),r, since for each integer ω, P σ ⊆ P σω . This means for any z ∈
Z, zi = zτ l(i) + lr, so zi = zτm(i) +mr = zi +mr, since τm fixes all elements of C1.
Therefore r = 0 and Z ⊆ Hi,j.

This proves that no nontrivial extension of the hinge is possible for Πn,k. So define
the hinge hσ of P σ to be the intersection of all Hj,l for which j and l are in the same
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cycle of σ. For an element Y ∈ Πn,k, define π(Y ) to be the partition that corresponds
to Y . In other words, if Y ⊆ Hi,j,r for some r, then i and j are in the same block of
π(Y ). Therefore, each Ci is a block of π(hσ). Then dim(hσ) is the number of blocks
of π(hσ) and the number of cycles of σ. For example, if σ = (1, 2, 3)(4, 5)(6) ∈ S6,
then hσ = H1,2 ∩H1,3 ∩H2,3 ∩H4,5 in R6, and dim(hσ) = 3. Notice that by Lemma 2,
hσ ≤ X for all X ∈ Max(P σ), and that hσ is the greatest lower bound of all the
maximal elements of P σ. This is the element that whose complements we will find in
order to prove the main result of this section. Now we are ready to prove one case
of (4).

Theorem 3. µσ(P σ) = 0 unless all disjoint cycles of σ have the same length.

Proof. We prove this by showing that for a given X ∈ Max(P σ), hσ has no comple-
ments in [0̂, X]σ. If σ is an n-cycle, then all cycles of σ have the same length, and
we do not consider that here. Otherwise, given any two blocks B1 and B2 of π(hσ), a
given element Z ∈ P σ is a complement of hσ in [0̂, X]σ only if there exists one element
from each of the two blocks, say i ∈ B1 and j ∈ B2, such that Z ⊆ Hi,j,r for some r.
We need to show that if any two blocks of π(hσ) are not the same size, or equivalently,
if any two cycles are not the same length, then there is an element less than Z that is
not 0̂ and is also less than hσ.

Suppose we pick out two cycles from σ that have different lengths. We can assume
that σ1 = (1, ...,m) and σ2 = (m + 1, ...,m + b), as defined in (7), and m < b. In
order for Z to be a complement of hσ in [0̂, X]σ, Z must be contained in some H1,j,r

for some r and for m+ 1 ≤ j ≤ m+ b. So assume without loss of generality that
Z ⊆ H1,m+1,r, so then Z ⊆ Hs,m+s,r for all s = 1, ...,m. Let g = gcd(m, b). Then
g < b and Z ⊆ Hm+1,m+g+1. Let Y be the intersection of all hyperplanes Hs−g,s for
m+ g < s ≤ m+ b. Then Z ≥ Y and π(Y ) is a refinement of π(hσ), so since by Lemma
2, only hyperplanes Hi,j can contain hσ, hσ ≥ Y too.

Therefore, hσ ∧ Z ≥ Y > 0̂, so Z is not a complement of hσ in [0̂, X]σ. Since we
chose an arbitrary X ∈ Max(P σ), we have proved that hσ has no complements in any
[0̂, X]σ. Thus µσ(0̂, X) = 0 for all X ∈ Max(P σ) and therefore, µσ(P σ) = 0 unless all
cycles of σ have the same length.

Now we will find µσ(P σ) for the other case of (4), if σ is a product of d cycles of
length n/d. To do this, we may assume that

σ = (1, 2, ..., j)(j + 1, ..., 2j) · · · (n− j + 1, ..., n),

where j = n/d. Again, for each X ∈ Max(P σ), we use complements of the hinge hσ

in [0̂, X]σ and equation (5). If C ∈ Comp(hσ) in [0̂, x]σ, then C 6⊆ Hω1,ω2,r for any
ω1, ω2 ∈ [j] and any r, and

C ⊆ H1,sj+is,rs (8)
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for s = 1, 2, ..., d− 1, and rs and is ∈ [j] that depend on s. Note that dim(C) = j for
all such C, so no two complements are comparable to each other. This will be used
later to simplify (5). We now state the other case that we will prove, but we need a
few lemmas first. Many of the lemmas here are similar to parts of [9, Lemma 6].

Theorem 4. µσ(P σ) = µ(n/d)(−n
d
)d−1

(
(k+1)d−1
d−1

)
(d− 1)! if σ is a product of d disjoint

cycles of length n/d.

Lemma 5. Given X ∈ Max(P σ), if C ∈ Comp(hσ) in [0̂, X]σ, then [C,X]σ ∼= Dj, the
lattice of divisors of j. Thus, µσ(C,X) = µ(n/d).

Proof. For any point in an affine subspace from [C,X]σ, whatever equality is in the
coordinates 1, 2, ..., j, the same equality holds for corresponding coordinates from the
other blocks of π(hσ), depending on is in (8). At the bottom element C of the interval
[C,X]σ, for any i1, i2 ∈ [j], C 6⊆ Hi1,i2,r for any r. At the maximal element, X ⊆ Hi1,i2

by Lemma 2. So [C,X]σ here is isomorphic to [C, 1̂]σ in the case k = 0. Since [9,
Lemma 6c] says that [C, 1̂]σ ∼= Dn/d, we are done.

Lemma 6. There exists a one-to-one correspondence between the maximal elements
of P σ and the maximal elements of Πd,k.

Proof. If d = 1, then P σ has only one maximal element, and |Π1,k| = 1. If d ≥ 2,
then by Lemma 2, if X ∈ Max(P σ), then X ⊆ Hj(i−1)+ω,j(i−1)+ω+1 for all i = 1, ..., d
and all ω ∈ [j − 1]. Then the X ∈ Max(P σ) such that X ⊆ Hj(ω1−1)+1,j(ω2−1)+1,r ⊆ Rn
corresponds to the Y ∈ Max(Πd,k) such that Y ⊆ Hω1,ω2,r ⊆ Rd, and vice-versa. So this
correspondence is a bijection.

Lemma 7. Given a maximal element X ∈ P σ, let Y be its corresponding maximal
element in Πd,k, as described in Lemma 6. If d ≥ 2, then for all C ∈ Comp(hσ)
in [0̂, X]σ, [0̂, C]σ ∼= [0̂, Y ]Πd,k. If d = 1, then C = 0̂ is the only complement. Thus

µσ(0̂, C) is constant for all C ≤ X.

Proof. If d = 1, then since hσ is the maximal element, 0̂ is its only complement. If
d ≥ 2, then we must find a bijection between the elements of [0̂, C]σ ⊆ P σ for a given
C ∈ Comp(hσ) in [0̂, X]σ and [0̂, Y ] ⊆ Πd,k. Suppose C is as in (8), and assume without
loss of generality that is = 1 for all s. Then for all l = 1, ..., j, C ⊆ Hl,sj+l,rs. Given
Z ∈ [0̂, C]σ, if Z 6⊆ H(ω1−1)i+1,(ω2−1)i+1,r for any r, then this corresponds to the element

Z ′ ∈ [0̂, y] such that Z ′ 6⊆ Hω1,ω2,r for any r. If Z ⊆ H(ω1−1)i+1,(ω2−1)i+1,r, then the
corresponding Z ′ ⊆ Hω1,ω2,r. This correspondence can be defined similarly the other
way, Z ′ 7→ Z, so [0̂, C]σ ∼= [0̂, Y ]. Thus µσ(0̂, C) = µΠd,k(0̂, Y ) for all complements C

of hσ in [0̂, X].
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Lemma 8. Given X ∈ Max(P σ), hσ has (n
d
)d−1 complements in [0̂, X]σ.

Proof. If d = 1, then hσ is the maximal element of P σ, so 0̂ is its only complement.
If d > 1, then for each s = 1, 2, ..., d − 1, is, as described in (8), has n/d possible
values, all independent of each other. So the number of complements of hσ is (n

d
)d−1

for d ≥ 1.

Proof of Theorem 4. Let CX be some complement of hσ in [0̂, X]σ for each X ∈
Max(P σ). Thus:∑

X∈Max(Pσ)

µσ(0̂, X) =
∑
X

∑
C∈Comp(hσ)

in [0̂,X]σ

µσ(0̂, C)µσ(C,X) (9)

= µ(n/d)
∑
X

∑
C

µσ(0̂, C) (10)

= µ(n/d)
(n
d

)d−1∑
X

µσ(0̂, CX) (Lemmas 7 and 8)

= µ(n/d)
(n
d

)d−1 ∑
Y ∈Max(Πd,k)

µΠd,k(0̂, Y ) (Lemma 7)

= µ(n/d)
(n
d

)d−1

(−1)d−1(d− 1)!

(
(k + 1)d− 1

d− 1

)
(11)

= µ(n/d)
(
−n
d

)d−1
(

(k + 1)d− 1

d− 1

)
(d− 1)!

Equation (9) holds by Crapo’s Complementation Theorem. Ordinarily, the sum
would be over all C,C ′ ∈ Comp(hσ) such that C ≤ C ′. But no two complements of hσ

are comparable, as mentioned right before the statement of this theorem. So the sum
is just over all C ∈ Comp(hσ).

Equation (10) is true by Lemma 5. Also,
⋃
X {C ∈ Comp(hσ) in [C,X]σ} has to

be a disjoint union. Suppose C ∈ Comp(hσ) in both [0̂, X]σ and [0̂, Y ]σ for X 6= Y .
Then there exist i and j such that X ⊆ Hi,j,r1 and Y ⊆ Hi,j,r2, where r1 6= r2. If we
let Z = X ∧ Y , then i and j are in different blocks of π(Z), and Z 6⊆ Hi′,j′,r for any r
and for any i′ in the same block as i of π(Z) and any j′ in the same block as j, since
X ⊆ Hi′,j′,r1 and Y ⊆ Hi′,j′,r2. So Z cannot be greater than any complement of hσ in
[0̂, X]σ or in [0̂, Y ]σ. But C ≤ X, Y , which means C ≤ X ∧ Y = Z, a contradiction.
So it is a disjoint union.

To get the result (11), find µ(Πd,k) by extracting the coefficient of t in the charac-
teristic polynomial (2).
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3 A Homology Character from µσ(Pσ)

Again, let P = Πn,k. Now we define an integer-valued function Ψn,k on Sn given by

Ψn,k(σ) = (−1)d−1µσ(P σ), (12)

where d is the number of cycles of σ. Note that the cycles do not all have to be the
same length; if they are not, then µσ(P σ) = 0, so Ψn,k(σ) = 0.

We now prove that Ψn,k(σ) is, up to a sign, the character afforded by a linear action
of Sn on a suitable homology. In fact, the character is (−1)n−1µσ(P σ), and Ψn,k is this
character times the sign character of Sn. We use the methods of Stanley in [13].

Let Q be a poset with 0̂ and 1̂, and let Q̄ = Q \ {0̂, 1̂}. We follow the notation
of [16]. The order complex ∆(Q̄) is the abstract simplicial complex whose vertex set
is Q̄ and whose r-dimensional faces are all chains of the form x0 < x1 < · · · < xr in Q̄.
The dimension of ∆(Q) is the largest possible value of r for any chain in Q̄.

Now n is the number of elements in the largest chain in Q, which means r ≤ n− 3.
So for r = 0, ..., n − 3, Cr(Q̄) is defined to be the vector space over C whose basis is
the r-dimensional faces of ∆(Q̄). Also, C−1(Q̄) is the one-dimensional vector space
generated by the null chain. For all other r, Cr(Q̄) = 0. For r = −1, 0, ..., n − 3, the
map ∂r : Cr(Q̄) −→ Cr−1(Q̄) is a linear map called the boundary map, defined as

∂r(y0 < y1 < · · · < yr) =
r∑
i=0

(−1)i(y0 < y1 < · · · < ŷi < · · · < yr),

where ŷi means that yi is deleted. The homology of Q for each r is

Hr(Q̄) = ker ∂r/im ∂r+1. (13)

Now suppose P is a poset with least element 0̂ and maybe more than one maximal
element. For any X ∈ P , let QX = [0̂, X]. We now define a boundary map the same
way as above, except that we include the maximal element X in the chains, following
the definition in [4, §5]. So ∂r defined above corresponds to ∂r+1 here. We also define
the homology the same way as in (13). The r-dimensional homology for the boundary
map on the order complex is known as the Whitney homology, denoted HW

r (P ), which
was first defined in [2].

A poset with 0̂ and 1̂ is Cohen-Macaulay if every interval I has Hr(I) = 0 whenever
r 6= dim(∆(I)). As mentioned earlier, P = Πn,k is a geometric semilattice. If we add
a unique maximal element to the poset P = Πn,k, then it is a geometric lattice and
therefore Cohen-Macaulay by Theorem 4.1 in [6]. So the homology of each maximal
interval in P is concentrated in dimension n− 3. Therefore, by Theorem 5.1 in [4], the
Whitney homology of P is

HW
n−2(P ) =

⊕
X∈Max(P )

Hn−3(Q̄X). (14)
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We use the Lefschetz Fixed Point Theorem (See [13, §1], and it appears that it
was first stated in [3]). A version of it states that if the homology of a poset Q is
concentrated in a single dimension r, then the character of the action of a group G
on the homology of Q is (−1)r times the Möbius function of the poset. Note that in
many papers, the dimension of the homology of the null chain is 0. In that case, the
character is (−1)r+1 times the Möbius function. The sign depends on this.

The action of Sn on P induces a canonical action on both the homology and the
Whitney homology of P . For a Cohen-Macaulay poset Q, let βQ : Sn → End(H(Q)) be
the representation with Sn action on H(Q), the non-trivial top-dimensional homology
on Q, following the notation of [13]. For any linear representation α of Sn, let 〈α, τ〉
be the character of α evaluated at τ ∈ Sn. Then here we have〈

βQ
X

, σ
〉

= (−1)n−1µσ(0̂, X)

for any X ∈ Max(P σ). Therefore, if we let βP be the representation with Sn-action
on HW (P ) = HW

n−2(P ), then using (14) and (6),〈
βP , σ

〉
=

∑
X∈Max(Pσ)

〈
βQ

X

, σ
〉

=
∑

X∈Max(Pσ)

(−1)n−1µσ(0̂, X) = (−1)n−1µσ(P σ).

This is the character of the action of Sn on HW (P ). If we combine this with (12), we
get Ψn,k(σ) = (−1)n−d

〈
βP , σ

〉
and hence the following result.

Theorem 9. Ψn,k is the product of the sign character of Sn and the character afforded
by the action of Sn on the Whitney homology of Πn,k.

Note that (−1)n−d = −1 only if n is even and d is odd. If 4|n, then µ(n/d) = 0.
Therefore, Ψn,k is the homology character, and is self-conjugate unless n ≡ 2 (mod 4).
(This is an extension of [13, Lemma 7.3].)

4 Ψn,k is an Induced Character

Now we know that Ψn,k is a character, and it is zero for elements of Sn that are not
conjugate to any elements of Cn. So a good direction to go now is to prove that Ψn,k

can be represented as a sum of induced characters χ ↑Sn
Cn

, where χ is an irreducible
character of Cn. By [13, Lemma 7.2], Ψn,0 is simply the value of the induced character
ψ ↑Sn

Cn
, where ψ evaluated at a given n-cycle that generates Cn is e2πi/n. We now extend

this result to Ψn,k for k > 0.
Let σ be an n-cycle of Sn in Cn. Let ζ = e2πi/n and for s = 1, ..., n, let χs,n be the

character of Cn such that χs,n(σ) = ζs. Then it is known that the χs,n are the irreducible
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characters of Cn. Let χ?s,n be the induced character χs,n ↑SnCn . If gcd(d, n) = gcd(s, n),
then it can be verified that χ?s,n = χ?d,n, so the goal in this section and the next is to
prove that

Ψn,k =
∑
s|n

asn,kχ
?
s,n (15)

for non-negative integers asn,k. In this section, the main theorem shows that Ψn,k is an
induced character. In the next section, we calculate all the coefficients. It is well-known
that if ζ is a primitive n-th root of unity, then

n∑
i=1

ζ ir =

{
n if n|r;
0 otherwise.

(16)

First, we prove the following lemma.

Lemma 10. The χ?d,n for d|n are linearly independent.

Proof. For d|n, let λd,n =
∑n/d

i=1 χdi,n. Then λd,n = 1 ↑Cn
Cd

, because if we evaluate it at
some σr, then we get (16), so λd,n(σr) = 0 unless n

d
|r, in which case it is n

d
. Let

νd,n =
∑
s|d

µ(d/s)sλs,n.

Given r, let g = gcd(n, r). Then λs,n(σr) = 0 unless n
s
|r, or equivalently, n

g
|s, in which

case it is n
s
. So

νd,n(σr) =
∑
s|d

µ(d/s)sλs,n(σ
r) =

∑
s|d,n

g
|s

µ(d/s)sλs,n(σ
r)

= n
∑
s|d,n

g
|s

µ(d/s) = n
∑
s| dg
n

µ(s) =

{
n if g = n

d
;

0 otherwise,

since for any positive integer m,
∑

d|m µ(d) = δ1,m. Inducing this up to Sn,

ν?d,n(σr) = νd,n ↑SnCn (σr) =

{
n!φ(d)

|cclSn(σr)| if gcd(r, n) = n
d

(or equivalently, σr ∼ σn/d);

0 otherwise,

which, if not zero, is the number of τ ∈ Sn such that τσrτ−1 ∈ Cn. Here, cclSn(σ) is
the conjugacy class of σ in Sn. From the ν?d,n, we can get the standard basis of class
functions that are zero in all classes that do not contain an element of Cn. Since each
ν?d,n can be expressed as a linear combination of the χ?d,n, and vice-versa, and the ν?d,n
are linearly independent for d|n, we can conclude that the χ?d,n are linearly independent
too, since there are the same number of χ?d,n as there are ν?d,n.
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Thus the χ∗d,n for d|n are a basis for the induced characters from Cn up to Sn. By
Theorem 3 and the last part of the proof of Lemma 10, Ψn,k can be expressed as a
linear combination, as in (15). We now need to show that the asn,k are non-negative
integers by finding formulas for them. We first determine ann,k, which can be found by
simply using inner products. Then we find the asn,k in the next section.

Lemma 11. ann,k = 1
n

∑
d|n µ

(
n
d

) (
(k+1)d−1
d−1

)
for n ≥ 1.

Proof. For n > 1, we show that ann,k = 〈Ψn,k, 1Sn〉Sn . Using Frobenius Reciprocity
[12, Th. 1.12.6],

〈Ψn,k, 1Sn〉Sn =
∑
d|n

adn,k
〈
χ?d,n, 1Sn

〉
Sn

=
∑
d|n

adn,k 〈χd,n, 1Cn〉Cn = ann,k.

The last equality is by orthogonality of irreducible characters. Thus the only time 1Sn
appears in the sum (15) is when d = n. So for an n-cycle σ,

ann,k = 〈Ψn,k, 1Sn〉 =
1

n!

∑
τ∈Sn

Ψn,k(τ)

=
1

n!

∑
d|n

∣∣cclSn(σd)
∣∣ Ψn,k(σ

d) (Theorem 3)

=
1

n!

∑
d|n

(
n!

(n/d)dd!

)
µ
(n
d

)(n
d

)d−1
(

(k + 1)d− 1

d− 1

)
(d− 1)! (Theorem 4)

=
1

n

∑
d|n

µ
(n
d

)((k + 1)d− 1

d− 1

)
.

For n = 1, it is clear that Ψ1,k ≡ 1 and a1
1,k = 1.

Since Ψn,k is a character of Sn, it follows by the first assertion in the proof of
Lemma 11 that ann,k is a non-negative integer. For d|n, let Cn/d =

〈
σd
〉
, and let χs,n

d
for

s ≤ n
d

be an irreducible character for Cn/d such that χs,n
d
(σd) = ζsd for 1 ≤ s ≤ n

d
. Now

let χreg
d,n = χ1,n

d
↑Sn
Cn/d

. Notice that χreg
n,n is the regular character for Sn and χreg

1,n = χ?1,n.

Also, note that the χreg
d,n need not be linearly independent. Now we use the next lemma

to prove the main result of this section, that Ψn,k is an induced character from Cn,
because each χreg

d,n is.

Lemma 12. Let σ be an n-cycle in Sn. Then we have the following identity:

1

d
χreg
d,n(σr) =

{
χ?1,n(σr) if d|r
0 otherwise.
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Proof. We know that 1
d
χreg
d,n(σr) = 1

d
χ1,n

d
↑Sn
Cn/d

(σr) and χ?1,n = χ1,n ↑SnCn . Since induc-

tion of representations is transitive, it is enough to show that

1

d
χ1,n

d
↑Cn
Cn/d

(σr) =

{
χ1,n(σr) if d|r
0 otherwise.

d|r if and only if σr ∈ Cn/d, and then both sides are ζr. We induce both sides up to
Sn, and we are done.

Theorem 13. Ψn,k =
∑

d|n a
d
d,kχ

reg
d,n

Proof. Let Hk,s =
(

(k+1)s−1
s−1

)
. We know that

Ψn,k(τ) =


µ(d)(n

d
)d−1(d− 1)!Hk,d if τ is a product of d cycles

of length n/d for some d|n;

0 otherwise.

Again assume that d|n and σ is an n-cycle such that Cn =
〈
σd
〉
.

∑
r|n

arr,kχ
reg
r,n

(
σd
)

=
∑
r|n

1

r

∑
s|r

µ
(r
s

)
Hk,s

χreg
r,n

(
σd
)

(Lemma 11)

=
∑
r|n

1

r
χreg
r,n

(
σd
)∑
s|r

µ
(r
s

)
Hk,s = χ?1,n(σd)

∑
r|d

∑
s|r

µ
(r
s

)
Hk,s

(Lemma 12)

= χ?1,n(σd)
∑
s|d

Hk,s

∑
r|d,s|r

µ
(r
s

)
= χ?1,n(σd)

∑
s|d

Hk,sδd,s (17)

= µ(n/d)(n/d)d−1(d− 1)!Hk,d (18)

The second equality of (17) holds because given s,∑
r|d,s|r

µ
(r
s

)
=
∑
q| d
s

µ(q) = δd,s.

For equation (18), [13, Lemma 7.2] proves that χ?1,n(σd) = Ψn,0(σd). Thus we have
proved that the right-hand side is equal to a value that we know is Ψn,k.
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Given a real number x, let 〈x〉 be the nearest integer to x. Recall that the irreducible
characters of Sn are the χλ for each partition λ of n, and fλ is the degree of χλ. We
now have a way to decompose Ψp,k into irreducible characters of Sp for any odd prime
p. The following corollary is an extension of a result by Stanley.

Corollary 14. Given an odd prime p, and a partition λ of p,〈
Ψp,k, χ

λ
〉
Sn

= app,kf
λ +

〈
fλ/p

〉
.

Proof. By Theorem 13,

Ψp,k = a1
1,kχ

∗
1,p + app,kχ

reg
p,p .

Therefore, since a1
1,k = 1 for all k, we get〈

Ψp,k, χ
λ
〉
Sn

= app,k
〈
χreg
p,p, χ

λ
〉

+
〈
χ∗1,p, χ

λ
〉

= app,kf
λ +

〈
fλ/p

〉
.

The first summand is well-known about the regular character of Sn (For example, see
Theorem 1.10.1 of [12]). The second summand is by Corollary 7.4 of [13].

5 The Coefficients asn,k

By Theorem 13, Ψn,k is an induced character from Cn up to Sn. For the sake of
completeness, we now determine the coefficients asn,k. This also makes it more clear
how to decompose Ψn,k into irreducibles if n is not prime, since there are references
that have the decomposition of induced characters from Cn. See for Example [15, §3],
where it is done in terms of standard Young tableaux. By the next lemma, each asn,k is

a sum of non-negative integers add,k for each d such that χ?d,n appears in the expression
of χreg

s,n. All we need to do now is determine what asn,k is for s properly dividing n.

Lemma 15. For d|n, χreg
d,n =

∑d−1
i=0 χ

?
in
d

+1,n.

Sketch of Proof. It is enough to show that χ1,n
d
↑Cn
Cn/d

=
∑d−1

i=0 χind+1,n. Just evaluate

both sides at σr, and then induce up to Sn.

This shows that for a given k, asn,k can be expressed in terms of the numbers add,k.
So let Asn be the infinite sequence {asn,k}∞k=0. Since the expression of asn,k in terms of

the numbers add,k is independent of k, this is a way to write these numbers so that we
do not have to write k all the time. We need to find a formula for these sequences, now
that we know the Add sequences for d|n. Define the sum of two sequences and scalar
multiplication of a sequence the usual way. By theorem 13, add,k is the coefficient of χreg

d,n

in Ψn,k, so by Lemma 15, it appears in the coefficient of χ?(i−1)n
d

+1,n for i = 1, 2, ..., d,
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given k. Also, if s = gcd(g, n) for some g, then χ?s,n = χ?g,n, so each Asn sequence can
be written as a non-negative integer combination of the Add sequences for which add,k
appears in the coefficient of χ?s,n, and that is for each d such that there exists an r ≡ 1
(mod n

d
) with gcd(r, n) = s. In this case, gcd(s, n

d
) = gcd(r, n, n

d
) = 1 and s|d. Our goal

is to find how many of these r exist up to modulo n, and that will be the coefficient of
Add in Asn. First we prove a lemma from number theory that we will use.

Lemma 16. Given positive integers a, b, t such that gcd(a, b) = 1, there exists an
integer u such that 0 ≤ u < t and gcd(ua+ b, t) = 1.

Proof. We form an increasing sequence a0, a1, ..., at of integers that are pairwise rela-
tively prime, or coprime. Let a0 = a and a1 = b. For m ≥ 1, let

am+1 = am + a0a1...am−1.

We prove that these numbers are coprime by induction. First, it is given that a0 and a1

are relatively prime. Now assuming that a0, ..., am are coprime, we use the Euclidean
algorithm to prove that am+1 is relatively prime to all ai for i = 0, 1, ...,m. Now
gcd(am, am+1) = gcd(am, a0...am−1), and for i < m,

gcd(ai, am+1) = gcd(ai, am).

By hypothesis, both are 1, so the numbers in the sequence are all coprime. To prove
that the am are of the form u′a+b for some integer u′ and m ≥ 1, we know that it holds
for m = 1; it is 0a+b. Now assume that it holds for some m ≥ 1 and prove it for m+1.
We need to show that a|(am+1− b). We know that am+1 − b = am − b+ a0...am−1. We
also know that a divides am− b by hypothesis, and a divides a0...am−1 because a = a0.
This proves that a1, ..., at are t coprime numbers, all congruent to b modulo a, and
therefore there must be at least one of these numbers that is relatively prime to t.
Suppose ai is one such number. Let u′ = ai−b

a
. In other words, ai = u′a + b. Then

there exists a unique expression u′ = u′′t + u such that 0 ≤ u < t. It follows that
gcd(ua+ b, t) = 1.

The number of r up to modulo n such that r ≡ 0 (mod s) is n/s, and the number
of such r with gcd(r, n) = s is φ(n/s). Now we find how many of these r have r ≡ 1
(mod n

d
). Let t1 and t2 be units in the ring Z/(n

d
), t1 chosen so that there definitely

exists an r among these numbers such that r ≡ t1 (mod n
d
) (t1 can be s, for example).

Suppose that r1, ..., rw are the numbers mod n such that

ri ≡ t
(

mod
n

d

)
and gcd(ri, n) = s. (19)

for t = t1. In Z/(n), t2 is not necessarily a unit, but by Lemma 16, there exists a u
such that gcd(t2 + u(n

d
), n) = 1. Then (t2 + u(n

d
))r1, ..., (t2 + u(n

d
))rw are all congruent
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to t1t2 mod n/d and distinct mod n, since the ri were all multiplied by a unit of Z/(n).
This proves that there are at least w of them. To prove there are exactly w, consider
t−1
2 in Z/(n

d
) and suppose there are w′ numbers, w′ ≥ w. By Lemma 16, there exists

a u′ such that gcd(t−1
2 + u′(n

d
), n) = 1. Then the numbers (t−1

2 + u′(n
d
))(t2 + u(n

d
))ri

are all congruent to t1 mod n/d, and there are at least w′ such numbers. Since there
are w of them, w = w′. So we can let t2 = t−1

1 , and then we have w numbers that are
congruent to 1 mod n/d. Thus for each unit t mod n/d, there are w numbers up to
mod n that satisfy (19), so one out of every φ(n/d) of the numbers r is congruent to
1 mod n/d. Therefore,

Asn =
∑
d

φ(n/s)

φ(n/d)
Add, (20)

summing over all d such that add,k appears in the coefficient of χ?s,n.

Example. Suppose n = 72 and s = 3. Then the values of d that would have nonzero
coefficients in (20) are d = 9, 18, 36, 72. We do d = 9 in detail. Let t1 = 3 in Z/(8).
The values of r such that gcd(r, 72) = 3 are 3, 15, 21, 33, 39, 51, 57, 69, and those r such
that r ≡ 3 (mod 8) are 3 and 51, so w = 2. Then t−1

1 ≡ 3 (mod 8), but 3 is not a unit
in Z/(72). However, by adding 8 (u = 1), we get 11, which is a unit. So multiply 3 and
51 by 11 to get 33 and 57, respectively, mod 72. These are the numbers ri described
in (19) for t = 1. Therefore, the coefficient of A9

9 in A3
72 is 2 and φ(n/s) = φ(24) = 8

and φ(n/d) = φ(8) = 4, which verifies (20) here. The expression for A3
72 in terms of

the Add is
A3

72 = 2A9
9 + 4A18

18 + 8A36
36 + 8A72

72.

There is another equivalent condition on the d that can be used. With this, we will
have a quicker way of obtaining which values of d have nonzero terms in the sum. We
have the following lemma.

Lemma 17. Given integers s and d that divide n, there exists an r ≡ 1 (mod d) such
that gcd(r, n) = s if and only if gcd(s, d) = 1.

Proof. To prove (=⇒), if such an r exists, then since s|r, gcd(s, d) = 1.
To prove (⇐=), if gcd(s, d) = 1, then it follows that s|n

d
, so it’s enough to show

there exists an r ≡ 1 (mod d) such that gcd(r, n
d
) = s. There exists a t such that

0 < t < d and st ≡ 1 (mod d). This equation also holds if t is replaced by id + t for
i = 0, 1, ..., n

d
−1. By Lemma 16, gcd(id+ t, n

d
) = 1 for at least one of these i, and then

we let r = s(id+ t).

Now in order to find which d have nonzero summands, we only need to find those
divisors of n that are relatively prime to s, and then divide n by them. Thus we have
the result.
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Theorem 18. For s|n and some integer k ≥ 0,

asn,k =
∑
d|n

gcd(s,n
d

)=1

φ(n/s)

φ(n/d)
add,k =

∑
d

φ(n/s)

dφ(n/d)

∑
t|d

µ

(
d

t

)(
(k + 1)t− 1

t− 1

)
.

6 Another Proof that Ψn,k is a Character

It is also possible to prove that Ψn,k is a character of Sn without using homology of
posets, as we did in section 3. In section 4, the only time the homology result was used
was when it was found that Ψn,k is a character. From this, it was concluded that the
add,k are all non-negative integers because of Lemma 11. By Theorem 13,

Ψn,k =
∑
d|n

add,kχ
reg
d,n.

If we can show that ann,k is a non-negative integer for each n, then we will have shown
that Ψn,k is a sum of characters of Sn, and therefore, a character itself. By Lemma 11,

ann,k =
1

n

∑
d|n

µ
(n
d

)((k + 1)d− 1

d− 1

)
. (21)

Lemma 19. For positive integers n and r, and k = r − 1, ann,k is an integer.

Proof. Let p be a prime divisor of n, and let s be the positive integer such that ps ‖ n.
Then

nann,k =
∑
d| n
ps

(
µ

(
n

ps−1d

)(
ps−1rd− 1

ps−1d− 1

)
+ µ

(
n

psd

)(
psrd− 1

psd− 1

))

=
∑
d| n
ps

µ

(
n

psd

)((
psrd− 1

psd− 1

)
−
(
ps−1rd− 1

ps−1d− 1

))
,

since the other summands are definitely zero. We show that each summand is congruent
to 0 mod ps.(

psrd− 1

psd− 1

)
=

(psrd− 1)(psrd− 2) · · · (ps(r − 1)d+ 1)

(psd− 1)(psd− 2) · · ·3 · 2 · 1

= A
(psrd− p)(psrd− 2p) · · · (ps(r − 1)d+ p)

(psd− p)(psd− 2p) · · ·3p · 2p · p

= A
(ps−1rd− 1)(ps−1rd− 2) · · · (ps−1(r − 1)d+ 1)

(ps−1d− 1)!
= A

(
ps−1rd− 1

ps−1d− 1

)
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Here, A is a product of fractions of the form psrd−a
psd−a for all a relatively prime to p. Since

the numerator and denominator of each of these fractions are units in Z/(ps), all the
fractions are equivalent to 1 mod ps. Thus A ≡ 1 (mod ps). This proves that(

psrd− 1

psd− 1

)
−
(
ps−1rd− 1

ps−1d− 1

)
≡ 0 (mod ps),

and therefore nann,k ≡ 0 (mod ps) for each prime divisor p of n. Therefore, by the
Chinese Remainder Theorem, nann,k ≡ 0 (mod n), and this proves the lemma.

Lemma 20. For n ≥ 2, ann,0 = 0, and for k ≥ 1, ann,k > 0.

Proof. We know the case k = 0. Using [13, Lemma 7.2], a1
n,0 = 1 and adn,0 = 0 for

d > 1. For k ≥ 1, let r = k + 1. Given a prime divisor p of n, let qp = n/p. It is
well-known that summing over prime divisors of n,

∑
p|n

1
p2 < 1 (This inequality also

holds when summed over all primes). So we will prove that(
nr − 1

n− 1

)
> p2

(
qpr − 1

qp − 1

)
. (22)

If we let (a)b = b!
(
a
b

)
for integers a and b, then this is equivalent to

(nr − 1)n−1 > p2(n− 1)n−qp(qpr − 1)qp−1.

Since pqp = n, it follows that p2(qpr−1)(qpr−2) < (nr−1)(nr−2). Thus it is enough
to show that

(nr − 3)n−3 > (n− 1)n−qp(qpr − 3)qp−3.

The left side is equal to (nr− 3)qp−3(nr− qp)n−qp. It is clear that nr− 3 > qpr− 3 and
nr−qp > n−1 (since r > 1). Thus (22) is true, so for each prime p|n, 1

p2

(
nr−1
n−1

)
>
(
qpr−1
qp−1

)
.

Therefore,

(
nr − 1

n− 1

)
>

 ∑
p|n

p prime

1

p2

(nr − 1

n− 1

)
>
∑
p|n

p prime

(
qpr − 1

qp − 1

)

This inequality holds for each integer n. In (21), if one term Hk,d (cf. proof of Theo-
rem 13) is subtracted, then Hk,pd is added for some prime p, which is a lot larger than
Hk,d by (22). Also, the coefficient of Hk,n is always 1. Therefore, ann,k > 0.

Thus we have proved the following, which by Theorem 13 proves that Ψn,k is a
character of Sn

Theorem 21. ann,k is a non-negative integer for all n ≥ 2, and it is zero only if k = 0.
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